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KYBERNETIKA — VOLUME 24 (1988), NUMBER 1

ON SYMMETRY AND REVERSIBLE SYMMETRY
CONCERNING GENERALIZED DIRECTED DIVERGENCE

T. D. RAKHEJA, K. K. GULATI

The authors have proved a theorem on symmetry considering three probability distributions
using reversible symmetry, a concept weaker than symmetry in the strict sense.

1. INTRODUCTION

Let
Ty= {(poperp)iPi20,i=1L2on Yp=1}, n=234,..
i=1
and
n
I ={(pyp2r- PPy =0,p;20,i=23,...m Yp=1}, n=234,..
i=1
denote respectively the sets of all n-component complete discrete probability distribu-
tions with non-negative elements and with first component zero. Let G,, n = 2,3, ...
denote the set of all 3n-tuples of the form (py, pa, ..., Pus 15 das --os Qa3 Fis Fas ooos 7y
with (py, p2s .. pw) €l (41,92, ...a) €T, and (ry, 7y, ..., r,)el, such that
whenever r; is zero, the corresponding g; and p; arc also zero, 1 < i < n.
A measure called the generalized directed divergence is defined as (| 1], [4], [5], [7])
"
(1) Tn(Ph P2seoos Pus Q15925 s GQus Fi5 Fasenny 7',;) = Z p; log, (‘Ii/"i)
i=1

Here the convention 0 log, (0/x) = 0, x 2 0 is used.
An important property of T, is:

Postulate I, (Symmetry). T,: G, — Ris symmetric under the simultaneous permuta-
tions of p, g and r,, k = 1,2, ..., n, that is,

(2) Tn(Pp Paseves Pus Q15 Q2 o5 4us P15 ¥y oeny ",.) = T,,(p,,(l), DPr(2)s -
Prnys Gr(1ys Dz(2)s -5 Drinys Tr(1)s Tr(2)s -+ o» rn(n)) -

where 7 is an arbitrary permutation of 1, 2, ..., n.
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The object of this paper is to prove a theorem on symmetry using reversible
symmetry, a concept weaker than that of symmetry in the strict sense. This theorem
can be used in various characterization of the generalized directed divergence. For
some related work concerning directed divergence, see [6].

2. REVERSIBLY SYMMETRIC FUNCTIONS

EXE x..x

E
Definition. Let E be a non-empty set and E" = . A non-empty

n-times
subset D, of E" x E" x E"is said to be closed under reversible symmetry if

(xl’ X2y ooy Xym 15 X3 V1o Y25 oo0s V=15 Vs 215 Z25 v 00y Zy 15 zn) €D, =
= (xm Xpe1s eves X25 X153 Vs Yu~15 -5 V25 Y15 Zns Zu—15 =05 Z25 21) eD,

for all (X1, Xz, + s X V1 Vay ooor Va3 215 225 -2 Z0) € Dy
A function f,: D, - R is said to be reversibly symmetric over the domain D, if

fn(xl’ Xoyeons Xg—15 Xus Y15 V2o oovs V=15 Vs Z15 225 +03 Zp—15 Zy) =
= S Xum 1 <o er X25 X153 Vs Va1 o+ V25 V15 Zus Zumi 205 225 Z1)
for all (Xy, Xa, .us X5 Y15 evvs Va3 21 Z25 +oes Z) € D,

The above definition is motivated by reversible codes, see [3].

3. SYSTEM OF POSTULATES
Postulate II,,, (Rcversible Symmetry): T,: G, — R, m = 2 is reversibly symmetric,
that is,
() TlPis P2seeos Pt P 415 G2 oo e 15 s 715 T2 -0 Tt T} =
T Pars P15 -5 P25 P5 Qs D15 ++> D25 415 Tons P15 -5 25 1)
for all (py, P2y «+-s Pme15 Pms Q15 D25 -+ +> Dmm1> Goms P15 P25+ Frn) € G

Postulate II,, tells us that value of T,, remains unaltered if the order of probability
estimates is reversed. It uses only two permutations of 1,2, ..., m, namely the
identity permutation 1, 2, ..., m and the permutation m, m — 1,...,3,2, 1.

Postulate I,, implies Postulate II,,. We give an example to show that the converse
is not true.

Example I. Define F,: G, > R, n = 3,4, ... as

FuP1s s vos Bas Q1> Q20 ovos @i Fio Pay oy 1) =
n—1

z (piqiri — Pi+149i+ 17'i+1)2 .

i1
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Then for all integers n = 3, F, satisfies Postulate I1, but not I,. Thus II, is weaker
than I, in the strict sense.

For n = 2, I, and II, are equivalent.

Postulate I, (Recursivity). For all probability distributions (py, p,, ..., p,) €
el, with p; + p, >0, (41,92, ..., 9,) €T (1,755 ..., 7)€, such that
(P1s P2y oeee ol 13 Qs o 3 T1 T2y, 1) € G,

4 T(P1s P2s P35 o5 Ps Q1> Q25 Q35 o5 s 715 T2 T3 ooy T) =
7;,41(171 F Doy Paseees Pud A1 F G2 Q3o oo Gy Py F P2y T3y ey 1) +
r r
(P1 + Pz) Tz( Pr s L H 4 5 4 5 LI 2 >
Pr+p2 PitpP2 G+ Gy i+ qy Tty Tt
P+ pa>0.

Postulate IV,. For all probability distributions (0,0, ps, ..., p,) e I'Y,
(‘11: q25 G35 o+ qn)EFua (7'1, P25 ees rn) elwith0 £ g, + ¢, <1,05r, +7, <1,

such that (0, 0, P35 s Pus d1> Q25 -5 s 10 T2 oo "n) €G,,
)] T(0,0, Py ooy P Q15 Q25 D35 - or @i P15 T2, T3y o ) =

Tnﬂ(oa Das-os Dus Ay + 25 Q35 o5 Qs 1+ 7o, 13, -~-,T‘n) .

Since g + g, = q2 + g, and r; + r, = r, + r(, Postulate IV, implies

(6) T(0, 0, p3s s D3 Q1> Q2> Q3s +oos Qi 715 725 P35 oees T) =
77.(0: 0, Pas ooy Pus @25 Q1> Q35 o5 @us T2 715 735 w5 rn) .

4. THEOREM ON SYMMETRY

The main result of this paper is the following theorem.

Theorem 1. Let T,: G, —» R, n = 2, 3, ... satisfy the Postulates II,,, for some fixed
m = 4,11, (n 2 3) and IV, (n = 4) then T,: G, —» R is symmetric under the simul-
tancous permutation of p;, ¢; and r; (i = 1,2,..., n).

To prove the above theorem, we need the following lemma:

Lemma 1. Postulates IT,, for some fixed m 2 4,1II, (n 2 3) and IV, (n = 4) imply

(7) Ty(1,0:1,0; 1,0) = 0 = T,(0, 1; 0, 1; 0, 1)
®) T i(Pis P2 oo P 0,0, 00,0544, G2y ooy Gy 0, 0,000,057, 74, s Ty
J—times Jj—times
0,0,....,0) = TPy, P2y eoos Pus 1> Q25 -+ > G T1s P25 o0 Ta)
j—v‘imes

Pyt p2>0, j=1,2,..;n=23,...
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) To(P1, D2 415 925 715 2) = TaP2y P15 925 Q15 72, 74)

(10)  Ts(py, p2» P33 41> 425 935 T1s 720 73) = Ts(P2s Pis> P35 420 41, 433 720 71, )

(11)  Ta(pys P2s P2} G1s Q20 435 715 725 73) = T3, P, Pi5 G35 G20 €45 735 20 71)
Proof. Fix m = 4 arbitrarily. Then, by IL,, with pe [0, 1)

(12)  T,0,0,..,0,1 — p, p;0,0,...,0,1 = p, p; 0,0,...,0,1 — p, p) =

T{p,1~-p,0,...,0,0; p,1 — p,0,...,0,0; p,1 — p,0,...,0,0)
Using 1V, (4 < n < m) repeatedly, the LS. of (12) reduces to T3(0,1 — p, p;
0,1 — p,p; 0,1 — p, p). The R.H.S. of (12), after the repeated use of III, (n 2 3),

reduces to (m —2) T,(1,0;1,0;1,0) + To(p,1 — p; p, 1 — p; p,1 — p). Thus,
(12) reduces to

(13) 10,1~ p,p;0,1 = p,p; 0,1 = p,p) = (m = 2) T,(1,0; 1,0 1,0) +
+ To(p, 1 = p;p, 1~ p; p, 1 — p)
Applying I1I; to the L.H.S. of (13), we obtain
(14) T(1-ppil—ppil—pp)+(1—p T(0,1;0,10,1) =
=(m—-2)T(1,0;1,0; 1, 0) + To(p, 1 — p;p, L — 3 p, 1 — )

Choosing p = Oand p = } respectively in (14), we get (m — 3) T2(1, 0; 1, 0; 1, 0)=0
and '

T5(1,0; 1,0; 1,0) = 375(0, 150, 1; 0,1)
from which (7) follows.

Equation (8) follows by the successive application of I, b =j j — 1, ..., 1;
n=2,3,...and (7).

To prove (9), we divide our discussion into four cases.
Casel. py =0,p,=1;9, =0,9g, =1;r; =0, r, = 1.

Casell. p; =1, p=0;9,=1,q,=0;7r; =1, r, =0. In both these cases,
(9) follows from (7).

Casell. 0£p, <1,0<p,£1;0<q; <L,0<qg,<1;0<T <1 0<r,<1.
Then

To(po> P23 01 02571 72) =® T(pr> P2, 0, -, 0544, €2, 0, - 0 71,5 0, .., 0)
= T(0,...,0,p2. 0130, ..., 0, 42, 4150, ..., 0 T2 7y)
= T3(0= P2, 2150, 42, 415 0,73, 7‘1)
=E‘% TZ(I’Zs Pi:d2 4945 T2, "1) .
CaselV.py=1,p,=0;0<4d;<1,0<q <1;0<r, <L 0<, <1 Now
{15) T,(0,1,0, ...,0; 0, gy, G, 0, ..., 0,0, r, 7y, .. 0)
= T,0,...,0.1,0;0,...,0, g3, 455 0, ..., 72> "1: 0)



The LHS of (15) by using I, (1 2 3) and (7) reduce to T,,_ (1,0, ..., 0; g4, q,, ...
.o 05 7, 75, ..., 0) which by the use of (8), reduces to
Ty(1, 0; g1, 45; 71, 72). The RHS of (15), by using IV, (n Z 4), reduces to
T3(0, 1,0; 43, qy, 0; 75, 74, 0) which by using III; and (7), gives T,(0, 1; q,, q5;
75, 71). Thus (9) is proved.
To prove (10), we have the following cases:
Casel. py + p, =0, p3=1; 059+ < ;0= r; +r, <1 Then
Ts(Pl, P25 P35 41, 925935 T4, T2, 7‘3)Z Tz(O, 0,15 41, 42, q3; 7y, T2, r3)
= T,(0,...,0,0,1;0,..., 41, 2, 43; 0, ..., 7y, ¥3, 73)
= T,(1,0,0,...,0; g3, G2, 41> -+, 05 73, 72, 7y, ..., 0)
=& T.{0,1,0,...,0; 42, 43, 415 .., 0 73, 73, 74, ..., 0)
= T(0,...,0,1,0;0, ..., 41,93, 23 0, ..., 7y, 73, 73)
= T3(0, 1,05 91, 43, 425 71, 735 7’2)
=E3§ Ta(l, 0,0; g3, 415 425 73, 15 ¥2)
=®T,(1,0,0,0,...,0; ¢35, 91, 42,0, ..., 0; 73, 7,, 75,0, ..., 0)
=®71/0,....0,0,0,1;0,...,0,45,4,, 43; 0, ..., 0, 75, 7,, r3)
=® T3(0, 0,1; g2, 91, 935 2, 15 r3)
= Ts(l’z, P P35 92,915 935 T25 Ty rj)
Casell. 0 <p; +p, =1;0<q, +¢,=1,0<r; +r, <1,
In this case, (10) follows from (4) and (9).
To prove (11) we have the following cases:
Casel. py + po=0,p3=0L0=2q + g, < ;0= r, + 1y < 1.
Then
T3(p1> P2, P35 415 425 435 T1s T2 r3) = T5(0,0,1; qy, 42, 935 74, T2, 73)
=OT,0,...0,0, 150, ..., 415 42, 433 0, ..., 7y, 15, 73)
= Tm(lx 0,0,...,0; 43, 92. 41, 0, .., 05 73, 7y 7y, oy 0)
=® T3(1: 0,0; 93, 42, 915 73, T2, 7'1)
= Ta(l’sy P2, P15 93, 92> 4915 7‘3:"2,"1)-
Casell. 0 <pi +p2210<q, +q, £L,0<r +r, £ 1.
Then
TS(pl’ P2, P3> 915 925 935 ¥y, T2s 7’3)
=® T(p1, P25 3,0, ., 05 41,42, 45,0, ..., 05 7y, 75, 73,0, ..., 0)
= Tm(O, 0,93, 92,215 0,...,0, 43, 45,440, ..., 0, 73, ¥, 1)
= Ty(p3, P2s P15 3, G20 413 T3, P2 r)if ps =0
=€‘7t; Ts(Pss P2 P15 43, 92> 415 T3, ¥2, 7)) if  py > 0.
Thus Lemma is proved.
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Proof of the Main Theorem.

For n = 2, the theorem follows from (9). For n = 3, it follows from (10) and (11).
We prove the theorem for all n = 4 by induction on n. We assume that 7,, is symmetric
under the simultaneous permutation of p;, g; and r; (i =1,2,..,j),j=nz3
and then prove that T, is symmetric. For this, it is enough to prove the following:
(16) T+ 1(P1s P2y ees Pusts Q10925 ooy Gut15 Fis a5 oees 7"n+x)

= Tu+1(P2; Pis s Puti1s 925915 -5 w15 Fas Fs enes rn+1)
(17)  Toes(Pu> P2s Pas o> Put 13 91> Q20 @35 o0 ot 13 T15 725 35 > Tt )
= T,1(Pi> P2> Prays -5 Prns 195 Q15 925 Grcays -+ Qs 13
F1s P25 Fr(3ys oo os rk(n+1))
where k is an arbitrary permutation of 3, 4, ..., (n + 1) and
(18) Tuﬂ(sz D2: P3s Pas <5 Put1s Q15 925 935 Q4o - Dt 15 V15 T25 F3s Pt ooy ’"n+1)
= Tuﬂ(l’p P35 P25 Pas s Put 15 915935425 Gas -5 Dyt 15 P15 735 T2 Fas ooy rn+1)
To prove (16), we have the following cases:
Casel. p, + p, = 0. In this case, (16) follows from (6).
Casell. 0 < p; + p, = 1. In this case, (16) follows from IIL, and (9).

To prove (17), we have the following cases:

Casel. p, + p, = 0.Inthis case, (17) follows from (5) and the induction hypothesis.
Casell. 0 < p, + p, < 1.1In this case, (17) follows from III, (n = 3) and the induc-
tion hypothesis.

To prove (18), we have the following cases:

Casel. py+p, =0, 0Z5¢qg, +¢g,<1; 0Zr  +1r,< 1.

Then

T+ 1(P1» P2 P35 P4 -5 Pyt 15915 925 935 Gas -5 ur 15 715 P25 F35 T ooy ”n+1)

= T,e1(0, 0, D3, Pas oo Pt @15 G20 @35 Gt -5 Dt 13 715 T2s T35 T 05 Tyr1)

=® Iwz(oa 0,0, p3; Pas s Pus13 0, Qs 425 43 Gas -+ Duv1s

0.7y, 720 T3 Fap oevs Tug)
=0T 05(0,0, 03,0, pay - Pas 13 0, G5 3 425 G -5 Do 13
0,71, 73, 72 Fay ooy Tugq)
=% T, 1(0, P30, Pas ooy P13 41> G35 Q25 Qo o> Dub 15 71 T3, F25 P oy "‘n+1)

= Tn+1(pla P3s P25 Pas -5 Pur 15915 93: 425 ar > usr 15 P15 T35 T2 Pay ooy ’"n+1)
Casell. 0<py +p, £ 1,0<q; +¢, S 1;0<r; +ry, = L.

In this case, (18) (n = 4) follows from 1II, (n = 3) and the symmetry of T3 by

proceeding in the same way as on page 60 in [2].
This completes the proof of the theorem.
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COMMENTS

A code is defined to be reversible if its code-word set is invariant under a reversal
of the digits in each code word. An important subclass of the BCH codes consists
entirely of reversible codes.

Suppose that information has been encoded into a block code and the code word
placed in a storage medium. It may be advantageous to read out the stored data
beginning from either end of the stored block.

Suppose, however, that the code can be decoded digit-by-digit by feeding the block
into a sequential circuit. If the code is reversible, then the same decoding circuit
can be used regardless of which end of the block is processed first. But it is possible
that much greater potential utility lies in exploiting the additional symmetry provided
by reversibility to simplify the decoding procedure for a reversible code.

Just as a reversible code remains invariant under a reversal of the digits in each
code word; in an analogous way, the average amount of information H, (p,, D23 s Pu)
associated with the probability distribution also remains unchanged if the elements
of (py, P2, .--» Ps) are reversed so that H,(p,, ..., p2, py) is the average amount of in-
formation associated with (p,, py—1, ..., P2, P1) i€

H,;(Pp P25 eves pn) = {:l(prxv «ees P2,y pl)
This property of H, is known as the reversible symmetry of the Shannon entropy H,.
This sort of analogy can be extended to other measures of information like directed
divergence and generalized directed divergence also. In this paper, we have exhibited
such an analogy between the reversible codes and the reversible symmetry pertaining
to generalized directed divergence.
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