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KYBERNETIKA- VOLUME 24 (1988), NUMBER 1 

CONTROLLABILITY OF A CLASS 
OF PERTURBED NONLINEAR SYSTEMS 

KRISHNAN BALACHANDRAN 

Sufficient conditions are established for the controllability of general nonlinear system 
of the form 

x = g(t, x) + B(t, x)u + f(t, x, x, u) 

1. INTRODUCTION 

The controllability of various nonlinear control systems has been studied by several 
authors [3]. One type of method used in many of these studies has been perturbation 
techniques (for references see [6]). In particular, the results of Dauer [7] give sufficient 
conditions for controllability of perturbed nonlinear systems. Dacka [5] introduced 
a new method of analysis to study the controllability of nonlinear systems with 
implicit derivatives, based on the measure of noncompactness of a set and Darbo's 
fixed point theorem. This method has been extended to a larger class of nonlinear 
dynamical systems by Balachandran [2]. The purpose of this paper is to study the 
problem of controllability of a class of perturbed nonlinear systems with implicit 
derivative by the method of Dacka [5] (see also [4]). The results generalise the 
results of Dacka [5] and Dauer [7]. 

2. PRELIMINARIES 

Consider the following nonlinear control system 

(1) x(t) = g(t, x(t)) + B(t, x(t)) u(t) + f(t, x(t), x(t), u(tj), x(t0) = x0 

defined on [f0, f:] = I, where x e R" and u e Rm. Let g: I x R" -> R" have continuous 
second derivatives with respect to x and continuous first derivative with respect to 
t, let dgjdx be bounded, let B(t, x) be an n x m matrix whose elements are bounded 
and continuous in / x R" and continuously differentiable in x, let f(t, x, x, u) be 

61 



continuous and bounded. Further of each y, y e R" and xe R",ue Rm, tel, 

(2) \f(t,x,y,u)-f(t,x,y,u)\Sk\y-y\ 

where k is a positive constant such that k < 1. 
Then there exists a solution y(t, s, x0) [I, 8] of 

y = <?(t> J>) 
y(5, s, x0) = x0 

defined on / . It follows that the corresponding Jacobian matrix function 

Z(t.M.x) - * * • ' ' ^ 
y ' dx 

is bounded on I x I x R" and is the fundamental matrix solution of 

BZ _rdg(t,y(t,s,x))lz 

8t I dy J 
such that Z(r, t, x) is the identity matrix. By Alekseev's variation of parameters 
formula [1], for every continuous function u(t) the solution of (l) is given by 

(3) x(t) = y(t, t0, x0) + pt0 Z(t, s, x) B(s, x) u(s) ds + 

+ pt0Z(t,s,x)f(s,x,x,u)ds 

We say that system (1) is completely controllable if for any x0, xt e R" there exists 
continuous control function u(t), defined on J such that a solution x of (1) satisfies 

*(ti) = *i-
Define the controllability matrix 

(4) W(t0, t1;x) = j ' t 0 Z(tu t; x) B(t, x) B*(t, x) Z*(tu t, x) dt 

and 
(5) q(tu x, x, u) = xL - y(tu t0, x0) - j ' t o Z(tu s, x)f(s, x, x, u) ds 

where the star denotes the matrix transpose. 

3. MAIN RESULT 

Theorem. If the assumptions about the system (1) given above are satisfied, and 
moreover 

inf det W(t0, tt;x) > 0 
xeC'[(0 , r i] 

then the system (1) is completely controllable. 

Proof. The proof of the theorem is similar to the proofs given in [2, 4, 5] and 

hence it will be only sketched. Define the nonlinear transformation by 

T: Cm(l) x Cl(l) -* Cm(l) x Cl(l) 
by 

T([u, x]) (t) = [Tl([u, x]) (t), T2([u, x]) (0] 
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where the pair of operators Ta and T2 is defined as follows: 

(6) Ta([u, x]) (t) = B*(t, x(t)) Z*(tu t, x(t)) W^t, x, x, u) 

and 

(7) T2([u, x]) (t) = y(t, t0, x0) + JJ0 Z(t, s, x(s)) B(s, x(s)) Ta([u, x]) (s) ds 

+ J|o Z(f, s, x(s))/(s, x(s), .4(5), r t([«, x]) (s)) ds 

Obviously the operator T is continuous and maps the space Cm(I) x C,',(/) into 
itself. Consider the closed convex subset of Cm(l) x C^(/) by 

H = {[u,x]e Cm(l) x C\(l): ||x|| ^ JV., ||U|| g iV2, | x | :S iV3} 

where Nt, N2, N3 are positive constants depending on the bounds of g, B, f and Z. 
The mapping Transforms the set H into H. As in [2, 4, 5] the family of the functions 
Tt([u, x]) (t) with [u, x] e H is equicontinuous. Further the modulus of continuity 
of DT2([u, x]) (t) (D denotes the derivative with respect to t) can be estimated by 
(see [4]) 

\DT2([x, «]) (t) - DT2([x, «]) (s)| ^ fc|*(.) - x(s)| + 0(|. - s\), with 

/3(h) = o(h), 

and so, for any set E c: if, it follows that 

H(TE) ^ kfi(E), 

where p stands for the measure of noncompactness. 
By the Darbo fixed point theorem the mapping T has at least one fixed point; 

therefore, there exists functions u* e Cm(l) and x* e C\(l) such that 

(8) u*(t) = Tt([u*, x*]) (t) 

(9) x*(t)=T2([u*,x*])(t) 

The functions (8) and (9) are the required solutions. Further it is easy to verify that 
the control u(t) given in (8) steers the system (l) from x0 to x(fj) = x t . Hence the 
system (1) is completely controllable. 

Remark. If we assume that the nonlinear function in equation (l) also satisfies 
the Lipschitz condition, with respect to the state variable, then we can obtain the 
unique response determined by any control. 

4. EXAMPLE 

Consider the scalar system 

(10) x = - i x 3 + x2u + sin -
2 
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For any fixed x e C\(l), the solution of (10) is given by [9] 

x(t) = y(t, t0; x0) + j ' t 0 [x2(s) (t - s) + I ] - 3 ' 2 x2(s) u(s) + sin M \ ds 

where y(t, t0; x0) is the solution of y — ~\y3 such that 

y(t, t0; x0) = x0[x2
0(t - t0) + 1 ] " 1 / 2 

and 

Z(t, t0, x0) = [x2
0(t - t0) + 1 ]~ 3 / 2 

The controllability matrix Wis 

W(t0, h; x) = ft x*(s) [x2(s) (f. - s) + I ] " 3 ds 

If tx > *0, then the infimum of det W(t0, / x ; x) is greater than zero. Further/satisfies 

Lipschitz condition with respect to the variable x with the constant k = -J. Thus 

from the above theorem, the dynamical system (10) is completely controllable. 
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