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KYBERNETIKA — VOLUME 31 (1995), NUMBER 2, PAGES 189-206

ON d-OPTIMALITY OF THE LR TESTS

FRANTISEK RuBLik!

‘The lower asymptotic distributional bound of the level attained is attained in the case
of the likelihood ratio statistics. The regularity conditions on which the proofs are based
are verified for the non-singular normal, the multinomial and the Poisson distribution.

1. INTRODUCTION AND THE MAIN RESULTS

First we introduce notations which will be useful for describing asymptotic properties
of tests of hypotheses about g statistical populations. These ¢ populations will be
supposed to have their distributions from the same family of probabilities.

Let {P,; v € £} be a family of probability measures, defined on (X, ) by means
of the densities {f(z,7); ¥ € E } with respect to a measure v. If we denote the g-fold
products

S=XPx...xX®, §=F®x..xF®, =21 (1.1)
then for 0 = (0y,...,8,) € © the corresponding product measure
=00 =00
Py= Py x...x Py, (1.2)

defined on the o-algebra §, describes independent sampling from the ¢ populations
(X, F,Pa),i=1, 00

Throughout the paper we shall assume that the null and the alternative hypothe-
ses

0# QC hco (1.3)

are tested by means of a test statistic T, : S — R, whose large values are significant
(i.e. the null hypothesis 2 is rejected in favor of the alternative {3 — 2y, whenever
T, exceeds a chosen critical constant). We shall suppose that Ty, depends on

o= (1, 50Kz ) €5

through
2 = (y(1,n), ., ylg, nfP)) (19

U This research was supported by the Sloval Academy of Sciences under Grant No. 999366.
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only, where ) )
y (J}"S,j)) = (TY),-»».@E{(})) (1.5)
is a sample from the jth population. To establish a bound for the asymptotic distri

bution of the log Lu(s), where the level attained Lu(s) = sup{ Po[Ts > Tu(5)]; 0 €
Q0 }, we impose these conditions.

(C1). In the notation

9
Ny = Zn&"’, P = n/ny (L.6)
Y=t
the relations
lim n, =400, lim p{d=p; €(0,1), j=1,...,q (1.7)
u—oo u—roo

hold.

(C2). The measurable space (X, F) = (R™, B™), the dominating measure v is not
suppported on a flat, the parameter set

E:{yER"';/e"rrdu(z)<+oo} (1.8)
is open, and the densities are determined by the formula
Jo,m) = Sy = e, (19)
dv
where prime denotes transposition of the vector, and

Cly) = log/e”’lrdu(m). (1.10)

Before proceeding to the further text we remark, that one of the consequences
of (C2) according to Lemma 2.1 in [2] is that P, # P,. whenever the parameters
TET :

Let us denote

7
7)z{PER";Zp‘,-:Iandp‘,>0fora.llj} (1.11)
i=t
and for 8,0 €O, pe P put

9
K(0,0°,p) =Y pi K(6;,6}), (1.12)
i=1
K(0,90,p) = inf{ K(0,6*,p); 6* € Q}, (1.13)

where K(8;,0}) = [log (%) £(z,8;) dv(x) is the Kullback-Leibler information

number.
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Lemma 1.1. If the assumptions (C1), (C2) are fulfilled and 0 € 2, — (o, Where
the bar denotes the closure of the set, then for every parameters 7, € g such that

K(0,Q0,pu) = K(0, 74, pu) + o(1/n4), (1.14)

and for every real number ¢

. log Lu(s) + nu K (8,0, pu) ]
1 py |l T A T T <] < (), 1.15)
o [P S

where in the notation (1.6)

pu= (0, ..., P, (1.16)

o2 = 3 ) g? 11;(8), L (7)) a*(v,7*) = Var |lo S B, 1.17
E= LA o) [ fEDm ],

(0, 00) = 05, (1.18)

and & is distribution function of the N(0,1) distribution.

If the set Q is closed in ©, i.e. if
Qo =0NnC where CC R™ is a closed set, (1.19)

then in accordance with Lemma 1.1 and the terminology accepted in [1] we shall say
that the statistics T, are d-optimal (distributionally optimal) for testing o against
Q) — §, if for cach 6 € ©; — o, every real number ¢ and 7, € € satisfying (1.14)

log Lu(s) + nuK (8,20, pu)
Vuoy

whenever (C1) holds. In the one-sample case investigated in [3] obviously K (8, Qo, pu)
= inf{ K(0,0");0* € Qo}. However, if ¢ > 1, then K(0,Qp,p,) cannot be in (1.20)
replaced with its limiting value K (0,0, p) , because the left-hand side in (1.20) could
be zero and the set of d-optimal statistics would be empty for such hypotheses.

In considerations concerning the likelihood ratio test statistic we shall use for
Q C © throughout the paper the notation

Jim P,[ <t| =) (1.20)

g 2
L(z™),Q) = sup {H I[ 79,60 6=1,....0,) € n} . (1.21)

j=li=1

In proving d-optimality of the LRT statistics we shall use also the following condition.



192 F. RUBLIK

(C3). If (Cl) holds, then there exist measurable functions hy : (0,+00) — R
such that for every real ¢t > 0

L(z), @) ) —t
sup {Pg [2 log m})—g—) > t] RS 9} < exp [7 + hu(t)] (1.22)
where h(te)
lim =" =0 (1.23)

u—00 f/Thy

for every sequence {f,}o%; of non-negative numbers satisfying the inequality

lim sup h < 400, (1.24)
Ny

u—+00

If both (1.3) and (1.19) hold, then we shall say that the set Qo is @ informatio-
nally regular (or briefly, Q, IR), if for each p € P and § € Q; there exists a unique
point n = n(0, p) € Qo such that in the notation (1.13) the equality

K(0,90,p) = K(0,7(6, ), p) (1.25)

holds.

Theorem 1.1. TLet us assume, that the assumptions (C1), (C2) hold, the set Qq
from (1.3) is Q1 IR, (
Lz, Q)

L= 2 log AT ) .
T log L™, 520) (1.26)
and 8 € ) — Q.
(I) In the notation (1.13), (1.16)--(1.18) and (1.2)
ST = mK(6,00,2)
2P| — N (1.27)

VMuOy

in the sense of the weak convergence of probability measures.

(11) If also (C3) is fulfilled, then (1.20) holds and the statistics (1.26) are d-optimal
for testing §2p against 0y — Qq.

‘This theorem is a g-sample version of Proposition 2.8 in {1], whose assumptions are
of the asymptotic nature, and require verification for every particular hypothesis,
which mainly in the g-sample case could be complicated. In contrast with this,
Theorem 1.1 provides us with an apriori knowledge, that for the given exponential
family the statistics (1.26) are d-optimal in the case of the IR hypotheses. As it
is well known, and explained also in considerations concerning (2.43) in [11], under
validity of (C2)

log L(z™,8) = GM)(z™) — n, K(6,0, p,) (1.28)
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provided that the unrestricted MLE § exists. Hence the MLE of the unknown pa-
rameter from g is the value minimizing K (4, -, p.) on o, and the IR hypotheses
may be interpreted as the ones for which the restricted MLE is uniquely deter-
mined. This suggests that the assumption of being informationally regular is not

very restrictive.

2. PROOFS OF THE ASSERTIONS FROM SECTION 1

Lemma 2.1. Let the conditions (C1), (C2) hold and parameters 0, 7, satisfly the
assumptions of Lemma 1.1. There exists a compact set I' C @ such that

e €T for all u (2.1)

and if we put (cf. (1.21)) Lz, 6)

L(wt), )
then in the notation (1.13) and (1.16) - (1.18) for u — oo

Ru(s) = log (2.2)

Ru(5) = nuK(6,Q0, pu)
L ——-ﬁ—u——ﬂ’g — N(0,1). (2.3)
Moreover, if the set Qo is Q) IR, then (cf. (1.25))
Jim = n(0,p). (24)

Proof. First we shall assume that , — n for © — oo. Utilizing the Tchebychev
inequality and continuity of o(7,.) we obtain that

Ry(5) — nuK (8, R, pu) = op(nl/?) + Z‘Zu,j (2.5)
i

with (cf. (1.18), (1.5))

- og OGO e o
T = Lo T Ty FILO: (),

where 3°* denotes the sum over the indices j for which the inequality II;(6) #
M;(n) holds. Since » is not supported on a flat, according to Lemma 2.1 in [2]
the number o?(y,v*) in (1.17) is positive if 7 # 7*. Furthermore, the parameter
set = of this exponential family is open, which together with n, — 7 enables us
to apply the Lindeberg theorem on [ngf)o'z(ﬂj(e),Il]-(n“))]_l/ZZu,jA Thus (2.3)
follows from (2.5) and from the fact that o2 tends to the positive real number
o? =3, o (I (6), I (n))- )

Let us not assume that the sequence {ny} is convergent. Let 6 € Qq be a fixed
parameter and

[; = {0 e 5 K(I;(0), 0;(6*) < i}, ¢ = ;)1; (Z K(I;(6), T (6)) + 1) ,
i=1
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where p = (p L, pg) 1s vector of the limiting values from (1.7). According to
Lemma 2.2 in [11] the set T is compact. Since non-negativity of K{-,) together
with (1.14) and (1.7) imply that n, € =TI x...x I’y for all u sufficiently large,
(2.1) is proved. Since [ is compact, from the previous part of the proof we obtain
that for every subsequence {u;} of positive integers there exists a subsubsequence
{u;,} for which (2.3) holds, and the convergence (2.3) is proved.

Since the set T is compact, each subsequence of {7, } contains a convergent sub-
subsequence. But if the set Qg is Q) IR, continuity of K'(-,€Qq, ) proved in Lemma
2.3(111) in [11] implies that thlb bubbubasqucuce converges to n(0,p), and (2.4) is
proved. a

Proof of Lemma 1.1. The proof can be performed analogously as the proof
of Theorem 2.1 in [3], where only the case ¢ = 1 is considered and an assumption of
existence of a minimizing point is imposed. Let us denote for e > 0

Au(e) = {s € S; log Lu(s) + Ry (s) < —ey/ny} -
Since (2.3) holds, given § > 0 we can find a number M such that the sets
By, = {s € S; |[Ru(s) = nuK (8, nu, pu)| < My/nyay}

satisfy the incquality 1 — P3(By) < 6. Hence following the lines of the prool of
Theorem 2.1 in [3], p. 387, we can prove that

hm Pp(Au(e)) =0

which together with Lemma 2.1 implies (1.15). s}

Lemma 2.2. Tet the assumptions (C1), (C2) hold. If the set o is 2y IR, 0 € Q4
and the parameters 0, € Qg satisfy (1.14), then (cf. (1.21), (1.2))

L(.r(“), Q) on(1), (26)

—1/2 LAT,30)
o8 TR )

where P = Py.
Proof. Let us denote
An = (21, 20) ER™ T € BW)),

where T = l ~, Tj, and

B(v)={(v);v€E}, &)= /1f(1,7)du(z).

As it is explained in the proof of Theorem 1.2 in {11] on p. 61, the sets A,, B(v) are
open, the mapping & posseses an inversion £~1 and both ¢ and £~! have continuous
derivatives of the first order. Moreover, if we denote for (z,...,z,) € An

én(zl,...,zﬂ) = (2.7)
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and put gn(ey, ..., 2n) = n(Fn Gy — C(én)), then for each parameter v € E on A,

log L(21,...,2n,7) = gal®1, - 20) = nK(0a,7) (2.8)

where K(7*,7) = (v =7)'Eqy- ()= C(y*)+C(7) is the Kullback-Leibler information
quantity; non-negativity of K(-,-) and (2.8) imply that , is the unrestricted MLE.
Since the set B(v) is open, making use of the law of large numbers we get that for
each y € E .

Jim Py(4n) =1, 0o —7ac PT. (2.9)
According to the central limit theorem the random variables /n(z—£(7)) are bound-
cd in the probability ﬁ?,q Combining this with the Taylor theorem, (2.7), the fact

that the set B(v) is open and ¢~! has on B(v) continuous partial derivatives, we
get that

500

b =7+0p(n~Y?), P=P]. (2.10)

Further, Qo = 29N C, where C C R™ is a closed set. This according to Theorem
1.2 in [11] means that there exist measurable mappings

0u:Du=A,m%...x A w— Q (2.11)

such that on D, the equality
1 (9,20) = 1 (s, 0,(z)) (2.12)
holds, and in the notation H = {8* € Qo; K(0,6%,p) = K(6,%0,p)} the random
variables p(f,, H) tend to zero in probability Pp. Since the set Qg is Q2 IR, the set
H consisls of the unique point 7(f,p), and taking into account the first relation in

(2.9) we see that -
0. =n(6,p) +op(l), P=P. (2.13)

If we denote for z(*) € D,
I (@) = (B (a0, 0 w0 nPY) | (214)

then taking into account (2.8), (2.12) and the first equality in (2.9) we see that in
the notation (1.18)

Lz, Q) &

A G | K (11 (6, . — (0 (0.
%8 L ) JZ" (K113 Bay), T3 (m)) = 5 (T3 0, 15 (B))] + 0p (1)
(2.15)
Let us define the function ¢ : E x E x £ — R! by the formula
(0,8%,0™) = K(6,0*) - K(8,6). (2.16)

Since (C2) holds, the set = is open, and according to Lemma 7, chapter II in [9]
also convex. If 7€ Z, then according to Theorem 9, chapter II in [9] derivatives of
all orders of [e7 @ dv(x) may be computed by differentiating under the integration
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sign, and therefore K (7*,7) has on E continuous partial derivatives of the first order.
Thus applying the Taylor theorem on (2.16) we get that

¥ (ni(é(u))v 10; (), "J(M) =9 (Hj(f?), 10 (1), H,-(&u)) +dy, (2.17)
where
3 { T (Bay) -+ (1 = @)L (8), T (), T (6) A
=Y et o ) (150) - 1,9)) -

= 8 (all, () + (1 - I (6))
(2.18)
Since the first derivatives are continuous, from (2.9), (2.4), (2.13) and (2.16) we get
that
a9 (all; (Guy) + (1 = @)1 (0), 1; (7). 1;(4.))
8ot (Buy) + (1 = @)1L;(0))

Y 1L;(0), IT; (7(9, p)), W3 (08, p))
- d arilj((;), ) +op(1) = 0p(1) , (2.19)

where P = Py. Taking into account (2.18), (2.19), (2.10) and (C1) we see, that the
absolute value of the remainder term

ldul < op(DIT; () = (O = 0p(NO((nP)711?) = 0p(ng /).
Hence (2.15)-(2.17) imply that

i

LE*,Q0) _ 1

0< nri2op AE_100)
Y EOR M R

[1{(9,90,17“) - I{(ﬂﬁu,pu)] +op(1) < op(1),

. (2.20)
where the last inequality follows from the fact that 8, € 0. Validity of (2.20) means
that (2.6) is proved. =}

Proof of Theorem 1.1. (I) Making use of Lemma 2.2 and the inequality

L(z™), ) L(z), 0)
V< losTrmm, g < B TEm.g)

we see that (cf. (2.2))
(2nY/%1T, = n7V?Ry + 0p(1),

and (1.27) follows from Lemma 2.1 and the inequality
liminfoy, >0
u—00

which holds owing to (2.4) and # € © — Q.
(I1) ¥ 6y € S, then
L(z™), 0)

Tu SQIugm.

(2.21)
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Since (C2) holds, the measure v is not supported on a flat, which according to
Lemma 2.1 in [2] means that the probabilities {P.; v € £} are mutually different.
Thus the Kullback-Leibler information quantity K (fn,v) > 0 and the equality sign
holds if and only if v = f,,. This together with (2.8) and (2.9) means, that for vy € E
almost everywhere P,
1 Voo 80, B . L on
Jim — log% = lim K(0,7)=0. (2.22)

Combining (2.21) with (C3) we obtain that

log Ly(s) < *5251) + hu(Tu(s)) = _T@ +nl20p(1) (2.23)

where the last equality follows from (C3), (2.21), (2.22) and the law of large numbers.
The equality (2.23) together with (1.27) and Lemma 1 yield (1.20). [u}

3. APPLICATION TO THE NORMAL DISTRIBUTION
Let k > 1 be an integer and a = k(k + 1)/2. Let us put m = k + a and denote
E={y=(¢,0'Y € R, p€ R*, 0 € R® and V(o) is positive definite} (3.1)

the set of parameters of the non-singular k-dimensional normal distributions, i.e., g
is the vector of means, ¢ = (v11,...,V1k, V22, .., V2k, ..., Ukk)’ are elements of the
covariance matrix and V(o) is the symmetric matrix with V(o);; = v;; for ¢ < j.
For v = (u',a')' € Z let f(z,7) be density of the normal distribution N{(u, V(7).
In this setting Theorem 1 gets the following form.

Theorem 3.1. Let us assume that © = 27, the set Qy from (1.3) satisfies (1.19)
and 6 € Q; — Q.

(I) The relations (1.7) imply (1.15).

(II) If Qo is 1 IR and if {Tu} are the statistics (1.26), then under validity of
(1.7) the convergence (1.27), (1.20) occurs and the statistics (1.26) are d-optimal for
testing Qo against Q; — Qo.

Proof. If we put for z € R¥ and y = (4',¢') € E

2 z2 22\’
T(z) = (Il,‘..,xk,—%,'—xlxm»4»»‘_1'lzkx“72y"12131-»-,_-7:211:»---,—7’:‘)
and analogously
- ’
e(y) = ((V'l(a)#)'yV_l(U)u»Vkl((’)n,-»-:»--:V Yodr)'s

then () T(z) = _%(z —p) V(o) "z~ p)+ %/"W")_ll‘ . (32)
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f(z,7) = exple(y)'T(z) — D(v)] and e, ¢! are continuous mappings of Z onto =. If
the measure v is on B™ defined by the formula v(A4) = ur(T~1A), where pp is the
Lebesque measure on (R*, B¥), and if Pe(y) is the measure on B™ defined by means
of the density

Fly,e(1) = exple(y) 'y = Cle(m)]
with respect to v, then for any normal distributions Py, Py+ (with y, 7* from (3.1))

K(Py, Pye) = K (Fz('v)vﬁe('y')) )

ar [ o fweM) | ~Var( (e~ W) B ) = Var {log L&) 15
Ve (1g—mycﬁ,»JE(ﬂ)AVa((m{(v )'T(x)|Py )=V (lg oxa) P«)A

Obviously {T-1(B); B € B™} = B¥, which implics that for every measurable func-
tion M, : R¥"v —» R! there exists a measurable function My : R™+ — R} such
that My(2() = M, (1), with 1) = TP for j = 1,..,q, i = 1,..., 2.
Thus every test on parameters of the normal distribution can _be identified with a
test on parameters of the exponential family with the density f. Since according to
Lemma 2.4 in [11] the measure v is not supported on a flat and the natural set of
parameters (1.8) coincides with the set (3.1) which is open, Theorem 3.1 will follow
from Lemma 1.1 and Theorem 1.1, if we prove that (C3) holds. One can prove this
by referring to Lemma 4.4 in [7]. Since this technical report may be not available
to the reader, we prefer to prove the following lemma, from which (C3) obviously
follows.

Lemma 3.1. For 7 = (¢/,0’)’ € E let f(z,7) denote density of the normal dis-
tribution N(u, V(s)). Let n$? denote size of sample from the normal N{(u;, V(o;))
population, the real number ¢ > 0, and in the notation
iy = min {n{), ..., n{D} (3.3)

the i i

e inequality kte< iy (3.4)
holds. There exist numbers hy = h(ng), . ,n&q), k,c) such that under validity of
(C1)

) hy = O(logn,,) (3.5)
and for every ¢ € =7 and ¢t > 0 in the notation (1.21)
L(z\"),0)
Po [log 7oty gy 2 t] < exp [—t+Hu(t)] ; (3.6)
where k
+
Hu(t) = —ﬁ—ft+ b 3.7)
u

Proof. If y = (W', e'Y, 7" = (u*’,0*") belong to (3.1), then the Kullback—
Leibler information quantity

Ky = %(u — YV - w) + %tr [V(U)V(a*)“l] - %]og IIVV((O’))II - g ,
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Hence if
e ~ I
XY= o ig_l(z; ~T)(z; —Z), T= 'E_l z;, (3.9)

and A, = {(z1,...,%a) € (R*)"; |£| > 0}, then one can easily verify that there
exists a function g, : A, — R! such that on Ay, for each v from (3.1)

long 2:,7) = gn(21, ..., 20) — nK (00, 7), (3.10)

where 6, is the parameter corresponding to the normal N (%, f)) distribution. We
shall proceed similarly as in the proof of Theorem 2.1 in [5]. Since for v = (', 0’)’ €
Zand n > k +1 the equality Py(An) =1 holds, and

L[K(én,A/)IF’y] = L:[K((;m 0')“_)0' ]

where 9” is the parameter corresponding to the normal N(0, I) distribution, denot-
ing ¥ = (J*,...,9") € © and utilizing the notations (2.14), (1.16) we see that for
fi, > k + 1 and any positive real number £

(z( u) 9)

Fo [log Lz, 6)

] Py [nuK(ﬂ(u), 9, pu) > 1] <

q
< exp (-—ft + an(,)(fnfj))) R (3.11)
j=1

where (5 g%
on(2) = log Eg» [exp(z[\(ﬂn,ﬂ ))] .

Employing the Bartlett decomposition of the Wishart matrix, described in [8], p.
55, and performing all necessary integrations, we get that for z <n—k

ou(z) = —Elog(l—i)+%logn+[@ "’“]1 2~
k
z+z 1 =z
- logI’ 1 —
Z°g ( )+Z °g(z 2n)+
+ Zlogf(n z—z) (zl)klog(1~%)—%i, (3.12)

where I' denotes the usual gamma function. According to the Stirling formula for
logarithm of the gamma function (cf. (12.5.3) in [4])

log I(z) = (z - —) logz ~z + = log(27r) +o(1), (3.13)
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where lim; .o 0(1) = 0. Combining (3.12) and (3.13) we obtain that for = 1 —
(Au)~1(k + c) under validity of (C1)

@, () = Olog ny) ,
which together with (3.11) means that the lemma is true. 0o

In the following considerations we shall drop for ¥ = (¢/,¢’)’ € E the notation
V(0), and covariance matrix of the normal distribution with the density f(z,v) we
shall denote simply by V(7).

Example 1. Testing the cq;lality 2= po. Let py € RF be afixed vector and
Q0 ={y €E E=[Py) = po}. (3.14)
If y € E and v* € {2, then
- . . . 1
K(7,7") = K[N(0, 4), N0, V(y' )] + 5 log ({4l/IV (1))
where A = V(y)+ (1 — po)(1t — po)" . Thus K(,.) is on Qo minimized at the unique
parameter 7) corresponding to N(uo, A). If
n
S=) (zi - &)(zi - 2) = L (3.15)
i=1

and T2 = n(n—1)(& — po)'S™1(Z — po) is the Hotelling statistic with (n— 1) degrees
of freedom, then according to [12], p. 111

L(zy,...,2n,E) _ 1 2
—_L(xl,...,z,.,ﬂg)ﬁnlog l+-————n_1T,I . (3.16)

Since increasing transformations preserve the level attained, from Theorem 3.1 we

2log

. ) -k 1= . .
obtain that the Hotelling F-test based on l(n—k—l(a'c — po)'S™Y (% - j1g) is d-optimal
for testing the hypothesis ¢ = pq.

Example 2. Testing sphericity of the covariance matrix. Let
Qo = {7 € E; there exist ¢ > 0 such that V(y) = ¢l } (3.17)
where I is the identity matrix. If v € Z and y* € Qo, then

K v = (2077 [l = 7|7 + tx(V()] + %log e V)l - g .

Thus K(7,.) is on Qg minimized at the unique parameter n corresponding to the
N(p, k=tr(V(¥))1¢) distribution. From Theorem 3.1 we therefore obtain that the
statistics (cf. (3.15) )

H = nlog ([tr(6715)] k/|S|) (3.18)

are d-optimal for testing the sphericity hypothesis (3.17).

Ts =2log
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Example 3. Testing independence of sets of variates. Let o' = (zf,...,z})
be a partitioning of the vector x € R¥. Since z is supposed to be normally distribut-
ed, independence of these subvectors corresponds to the hypothesis

Qo={rye&; Vij(y)=0forall i £} (3.19)

where V;;(v) = cov(zi, z;|P,). If v € = and v* € Qq, then

K(1,77) = 0 KNG Vo) NG VD) + o (172 T v )
i=1

i=1
Thus K(7,.) is on Qp minimized at the unique parameter corresponding to the
normal N(p, V*) distribution, where V;; = 0if ¢ # j and V;} = Vii(v). Hence

denoting the ith block of the matrix 2 from (3.15) by £ and taking into account
Theorem 3.1 we see that the statistics

r

T, = 2log ——_—-I{‘(xl' : ""’:1""{250)) =nlog [(H lflnl)/lﬁl] (3.20)

(21, - iy

are d-optimal for testing the hypothesis of independence (3.19).
In the following two examples we assume that ¢ > 1 and @ =59 .

Example 4. Testing equality of means. Let

Qo={0=(61,...,8,) €O; E(z|6h) = ... = E(z|8), V(b1)=...=V(6,)}
(3.21)
be the hypothesis that the means of the ¢ normal populations are equal (and the
usual assumption of equality of the covariance matrices is imposed). Let us denote

Qu={0=(01,...,0) €O V(f:) =...= V(8,)}) (3.22)

the alternative hypothesis which places no restriction on the means, but still assumes
the equality of the covariances.

If 6 € i, 60" € Qo and p € P, then in the notation V = V(8;), V* = V(6}),
p* = E(z|0) and A= 35, pi(u; — p")(pj ~ p#*) +V we get

K(0,0%,p) = K[N(0, 4), N(0,V*)] + —;—log (1a1/v1).

Thus K(f,.,p) is on o minimized at the unique point n = (m,...,7n,), where
M = ... =g correspond to the N (f, 3-; pj(pj — B)(»j — i) + V) distribution, with
= Ej pjnj, and Qo is @ IR. If

z, ; (3.23)
denote the sample mean and the sample covariance matrix constructed from the
sample drawn from the jth population, then making use of (1.28) we get after some
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computation that

N R . L
T, = zlogm_znu(K((a(u),no,pu)~A(o(.,),£n,pu))
14]
— —nilogh, A= 1AL 3.9
melogd, A= @-21)

where A = 37, ng,j)'Zj, B=%; n‘(j)(i_, - (& -, h=0; Jor ]z] From Theo-
rem 3.1 we obtain that the statistics (3.24) arc d-optimal for testmg (3.21) against
(3.22) (this d-optimality of course applics also to the Wilks statistic A with the level
attained defined in this special case by the formula L(s) = P[{A < A(s)] ).

Example 5. Testing equality of covariances. Let us denote

Q= (0=, ..0) €O V() =...=V(0)} (3.25)
the hypothesis that the covariance matrices of the ¢ normal populations are equal. If
0 €O, 6" €Qgand p€ P, then in the notation V(0;) = V;, V(07) = ... = V(0}) =
VA= Zj piV;

K(0,0%,p) =
I PR . . . 1
= 5 Y pilt =V g = )+ K (NGO, A), N0,V 5 3wy los (141/1941)
i i

Thus the set 2y i1s © IR and

K(0,Q,p) = Zp tog (|A1/17;1) (3.26)
] 1
In the notation (3.23) and S; = ny)ﬁj, S= JJ 1 Si
&)
I ooty LEDO) s s | " .
Ty = 2log L(z, 00) =logly , Tu= - / L1 "1(‘” Si (3.27)

As pointed out in [12], p.225, to obtain an unbiased test, instead of T}, the modified

statistic
n{)-1

Tr = (3.28)

(]) 11'

is used. We shall prove d-optimality of the statistic T}.

Let (1.7) hold. There exist an index uo and a positive constant ¢ such that
Pg[T JTe > c] = 1for all u > up and @ € ©. Thus if L}, is the level attained by
then for u > ug

T,

L (s)<sup{Pg [2logfm—0(?))>1ogT;(s)+10gc} .0 e@}.
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Let 0 € © — . From (3.26) and (3.28) we obtain that ng!log Ty — 2K(6, 0, p)
a.e. Since the ratio T, /Ty converges a.c. to a positive constant, and according to
the proof of Theorem 3.1 the condition (C3} is fulfilled,
ng?log Li(s) < —(2n)/*) 7' Tuls) + op(1),
where P = Pj. This together with (1.27) and Lemma 1 yields d-optimality of Ty
for testing the hypothesis (3.25).
4. APPLICATION TO THE MULTINOMIAL DISTRIBUTION

Let X = {1,...,k} be a finite set,

k-1
2= {(171,--»,111;—1)' € RFYminpi >0, Y pi< 1} (4.1)
i=1
and k-1
fle,p)=ps, pe=1- p; (42)
j=1

denotes a density with respect to the counting measure g on (X, 2%).

Theorem 4.1. Let us assume that © = E¢, the set Qg from (1.3) satisfies (1.19)
and 6 € € — Qo.

(I) The relations (1.7) imply (1.15).

(11) If Qo is €y IR and if {7} are the statistics (1.26), then under validity of
(1.7) the convergence (1.27) and (1.20) occurs and the statistics (1.26) are d-optimal
for testing €y against Q — Q.

Proofl. We shall proceed similarly as in proof of Theorem 3.1. After the iden-
tification ,
p— (logp—l,“.,log pk—'l-> (4.3)
Pk Pk
with the exponential family (1.9), where v(A) = card {A n{0,ey,... €1 }] and
0=(0,...,0), ¢ =(0,...,0,1,0,...,0) belong to R¥~!, we see that the set (1.8)
of natural parameters £ = R*~1, and the axiom (C2) is fulfilled. Further, let n,

denote the number of occurrences of z in (z1,...,%,) € X™ and
- . N " . Ng
gnz(PI:-«-ka‘l) f PzZT- (4-4)

Making use of the first equality in (4.2), the relation (2.4) in [6] and procceding as
in the proof of the inequality (2.10) in [6], we obtain that in the notation (2.14) and
(4.4) for each § € © and set A C © (where © denotes closure of © in the usual
topology)

Py(buy € A) < exp(—nuK(A,0,pu) + O(logny)) . (4.5)
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Since (3.10) holds also in this case, in the notation B,={0+€0; n K (0%,0,pu)>t}

Py (log L(( (u) )) ) Pg(ﬁ(u) € Bu)

and (C3) follows from (4.5). Thus the assumptions of Lemma 1.1 and Theorem 1. l
are fulfilled, and the assertion is proved.

Example 6. Testing the simple hypothesis. Let py = (p(lo),...,pio_)l)’ be a
fixed point from (4.1). From Theorem 4.1 we obtain that in the notation (4.4) the
statistics

L(zy,...,zn, ) k. Pi
AL I 3 i log —e 4.
Tn = 2log L(z T ampe) 2n‘§=1p lngpgo) (4.6)
where
Ologz =0 (4.7)

are d-optimal for testing the hypothesis p = pg against p # po -

Example 7. Testing independence in contingency tables. Let in accordance
with (4.1)

E={(P11,--+Prss- -1 Pris- -, Pra-1) € RTTY; min pij >0, Somj<1} (48)

be the parametric set of the r x s contingency tables. Let
s r
B= D P, Pi=9 pij
i=1 i=1
where the number p,, is defined analogously as in (4.2). Then

Qo ={p€Ep;=pip; foralli,j} (4.9)

is the hypothesis, that the row and the column variables are stochastically indepen-
dent. If the parameter p € E is fixed, then making use of the Lagrange method of
multipliers we find out that the parameter from (4.9) with f;; = p; p; for all ¢, j, is
the unique parameter minimizing on { the Kullback-Leibler information quantity
K(p,.)- Thus the set Qo is = IR and according to Theorem 4.1 the likelihood ratio
statistics (cf. (4.4) and (4.7) )

Lizy,...,&n, )
Th = 2log ———— 2" =2 ! 4.10
n og Le1, - 5m 00) n;l}_lz)u og A_'A_ (4.10)

are d-optimal for testing o against £ — Qo . We remark, that for s = » = 2 this
d-optimality is proved in [1], p.17.
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Example 8. Testing equality of parameters of q multinomial populations.
Let an integer ¢ > 1 and © = E9, where Z is the set (4.1). Let us denote

Qo={0=(0,...,0)€0; 0, =...=0,} (411)

the hypothesis that the parameters of the ¢ multinomial populations are the same.
If # € © and p € P (cf. (1.11)) are fixed, then making use of the Lagrange method of
multipliers we find out that = (y,...,7)’, where y = 2;1:1 p;0;, is the unique point
from (4.11) minimizing on Qg the Kullback—Leibler information quantity K (4, .,p).
Thus the set Qg is © IR, and if z(*) is the vector of samples (1.4) and oj; denotes
the number of occurrences of the element ¢ in the sample y(j,n,(‘j)) from the jth
population, then the likelihood ratio statistics

L(z®), ©) &
(z) = 2log =24 =2 - log 2412 .
Tu(z™)) = 2log I(z™, $o) Jg;";-los (4.12)
are according to Theorem 4.1 d-optimal for testing (4.11) against © — Q.
5. APPLICATION TO THE POISSON DISTRIBUTION
Let X ={0,1,2,...},
= = (0,+00) (5.1)
and N
e~ \®
e =" (5.2)

be density of the Poisson distribution Py with respect to the counting measure  on
(X,2%).

Theorem 5.1. Let us assume that © = 29, the set Qg from (1.3) satisfies (1.19)
and § € Q) — Q.

() The relations (1.7) imply (1.15).

(II) If Qo is Q; IR and {T3,} are the statistics (1.26), then under validity of (1.7)
the convergence (1.27) and (1.20) occurs and the statistics (1.26) are d-optimal for
testing 2o against Q; — Q.

Proof. We shall proceed similarly as in proof of Theorem 3.1. After the iden-
tification A — log A with the exponential family (1.9), where ¥(A) = 3272, x4 (7)/3!
with x4 denoting the indicator function of the set A, we see that the sct (1.8) of
natural parameters £ = R! and the axiom (C2) is fulfilled. Since validity of the
condition (C3) follows from Lemma 4.3 in [7], and can be verified also by means
of the relation (6.22) in {10], the assumptions of Lemma 1.1 and Theorem 1.1 are
fulfilled, and the assertion is proved. o
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Example 9. Testing equality of means. Let an integer ¢ > 1 and © = =9,
where = is the set (5.1). Let us denote

Qo={0=( - M) EO A =...= X} (5.3)

the hypothesis that the parameters of the ¢ Poisson populations are equal. If § € ©
and p € P are fixed, then n.= (A*,...,A*), A* = $"p;);, is the unique point from
Qq, minimizing K(8,.,p) and Qo is © IR. Hence according to Theorem 5.1 the LR
test statistics

= 210g KO o ) e 5y g M
Tu__?logm—?;nu X=Xy 4 dilog 3| (5.4)
where ) g
b= Y, N =T
i=1 j=1

are d-optimal for testing the hypothesis (5.3).

(Received February 23, 1993.)
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