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KYBERNETIKA — VOLUME // (1974), NUMBER 2 

Algebraic Approach to Discrete 
Stochastic Control 

VLADIMÍR KUČERA 

The paper presents a unified formulation and solution of various problems of stochastic control, 
viz. random disturbance compensation, random signal following, etc. for multivariable linear 
discrete systems. The algebraic method developed originally for the problems of deterministic 
control is succesfully applied. The synthesis procedure is reduced to solving a linear Diophantine 
equation in polynomial matrices. Due to the algebraic approach, the classical results are extended 
to unstable systems with possibly different number of inputs and outputs and not necessarily of 
full rank, and to a class of nonstationary random sequences with possibly singular correlation 
matrix. 

INTRODUCTION 

The design of optimum systems with random inputs is one of the most significant 
problems in optimal control. There are many related problems with many modifica­
tions to be found in the literature. We shall summarize some typical problems below. 

(1) Following a random signal. 
Given a system Sf, find a controller 0t such that the system output Y follows 

a given random signal Cin an optimal way, see Fig. 1. 

Fig. 1. Following a random signal. 

(2) Compensating a random disturbance. 
Given a system y = Sf\S*\ and a random disturbance V passing through 

the part S" ± ofS", find a controller ffl that minimizes the effect of F o n the system 
output Y in some specified sense, see Fig. 2. 



(3) Following a random signal contaminated by noise. 115 
Given a system Sf and a random signal C contaminated by additive noise V, 

find a controller 9t such that the system output Y follows the C in an optimal 
manner, see Fig. 3. 

Fig. 2. Compensating a random 
disturbance. 

Fig. 3. Following a random signal contaminat­
ed by noise. 

(4) Following a random signal in the presence of disturbance. 
Given a system £? = £"i£f2

 a n < i a random disturbance V passing through the 
part £fl of £f, find a controller M such that the system output Y follows a given 
random signal C in a prespecified sense, see Fig. 4. 

Fig. 4. Following a random signal 
in the presence of disturbance. 

In all cases the closed-loop system is required to be stable and so is the system input. 
Otherwise the results would be of limited engineering relevance. 

There are other problems of stochastic control which are combinations of the above 
and, therefore, will not be explicitly mentioned. 

A recognized optimality criterion is the minimum of the sum of steady-state 
variances of certain stochastic components, i.e. the components of the follow-up 
error in problems (l), (3), (4) and the components of the system output in problem (2). 

The above problems have been considered by many authors who applied different 
approaches. There are essentially two major directions — the complex-domain and 
the time-domain formulations. The complex-domain approach rests on the solution 
of a Wiener-Hopf-like equation by spectral factorization and can be found in [2; 7; 
24; 30; 31]. The solution is restricted to stable systems with nonsingular impulse 
response matrix and to stationary random inputs with nonsingular correlation 
matrix. In [27] a modified approach has been applied to obtain the solution for the 
special case of single-input single-output possibly unstable systems. On the other hand, 
the time-domain approach is based on the solution of a matrix algebraic equation 
derived by Kalman [10; 11] and a comprehensive treatment can be found in [1 ; 6; 
9; 26; 29]. The solution can easily by generalized to nonconstant or nonlinear systems 



but it requires the knowledge of the system state, which is rarely accessible in a real 
system. Moreover, solving matrix algebraic equations is not a simple task due to 
nonuniqueness of solutions [19; 20; 21; 22]. 

A similar status quo was also in the field of deterministic control. Recently, the 
author has developed a new algebraic theory of discrete deterministic optimal control 
[12; 13; 14; 15; 16; 17; 18] in an attempt to obtain a general solution well-adapted 
to machine processing. In this paper the algebraic approach is applied to the problems 
of discrete stochastic optimal control. The mathematical machinery needed to solve 
these problems is relatively very simple and is based on polynomial algebra. The 
synthesis procedure reduces to solving a linear Diophantine equation in polynomials 
or polynomial matrices, and can be effectively algorithmized. The method is general 
enough to accommodate unstable systems with different number of inputs and outputs 
and random signals with singular correlation matrix and possibly unbounded 
covariance matrix. 

Problems (1) through (4) and other related problems, though different in nature, 
can be cast into a common scheme defined in the following sections. This will make it 
possible to present a unified general treatment of all cases. 

PRELIMINARIES 

Referring for details to [4; 18; 23; 33] we first summarize some preliminary 
results. 

Let 9? be a commutative ring. If an element e e 9? has a multiplicative inverse in % 
we call e a unit of 9L If a, b e 9?, b #= 0 we write b | a to denote that b divides a. 
A greatest common divisor of a, b e 91 will be denoted as (a, b). Note that (a, b) 
is determined by a and b to within units in 91. 

Given the field $ of reals, let 5 [ z _ 1 ] denote the ring of polynomials over g in the 
indeterminate z" 1 . If a e «5[z_1] then da denotes the degree of a. By convention, 
d0 = —oo. The units of 5 [ z _ 1 ] are polynomials of zero degree. 

Let 5 ( z - 1 ) denote the quotient field of 5 [ z _ 1 ] , i.e. the field of rational functions 

(5) a - « 
P 

with p + 0, aeg[z-1]. Then we denote «5{z-1} the ring of elements (5) such that 
(p, z"1) = 1, i.e. the ring of realizable rational functions. They can be written as 

(6) a = a0 + a j z - 1 + a2z~2 + . . . , «ke%. 

The elements (6) for which the sequence {a0, a^ a 2 , . . .} converges to zero form the 
ring of stable realizable rational functions, denoted by g + { z - 1 } . 



Now denote 

5,,m = set of / x m matrices over 5 

ЊÅ*"! = set of / x m matrices over 5Þ-1] 
sj--1) = set of l x m matrices over SO"1) 
gl.mí--1} = set of l x m matrices over ^ 1 } 
^ m ^ 1 } = set of / x m matrices over zЧz-1} . 

These sets are noncommutative rings when / = m > 1. The $1,1 is viewed as iso­

morphic with 3- We shall write J; for the / x / identity matrix over g. 

By the classical invariant-factor theorem [4; 9; 18] any polynomial matrix 

A e 55i,m[ z l ] c a n D e written in the form 

(7) A = Ey diag{aj, a 2, ..., ar, 0, ...,0} E2 , 

where E! e 5 i , i [z _ 1 ] and E2 e 3fm > m[z_ 1] are matrices such that det En and det E2 

are units of 3 f [z - 1 ] , a n d where diag {•} is a matrix in 5 i , m [ z _ 1 ] all of whose elements 
are zero except those on the main diagonal, which are au az, ..., ar, possibly followed 
by zeros. The polynomials ak are the invariant polynomials of A; they are uniquely 
determined by A up to units of 5 [ z _ 1 ] and satisfy ak | ak + 1, k = 1, 2,.,., r — 1. 
The integer r is the rank of A. We shall call (7) the canonical decomposition of A. 

The polynomial matrices of 5 i , m [ z - 1 ] c a n also be written [18] as matrix poly­
nomials over g i m , 

A = A0 + Ajz""1 + ... + Anz~~", Afcegim. 

If A„ + 0 then n is the degree of A, denoted by dA. We define 50 = — 00. 

Let aeg[z_1] and Ee5i,m[z_1] with elements bu. Then we write (a, B) to 
denote (a,(blu b12,..., blm)). 

A polynomial p e 5 [ z _ 1 ] is said to be stable if l/p 6 g + {z - 1 } . Then any nonzero 
polynomial a e <5[ z _ 1 ] can be factorized as 

where a + is the stable factor of a having highest degree and belonging to 3 [ z - 1 ] . 
Given a nonzero polynomial matrix A e ( ^ ^ [ z - 1 ] and its canonical decomposition 
(7), we define the factorizations 

(8) A = A+A2~ = ArA2, 

where 

A + = E 1 d i a g { a 1

+ , a 2

+ , . . . , a r

+ , l , . . . , l } e j j , , ^ 1 ] , 

Az = diag {ar,a2~, ..., a", 0,..., 0} E2 e ^ [ z - 1 ] , 

A!- - E! diag {at, az, ..., a;, 0, ..., 0} e 5 i ,m[ z " ' ] > 

A+ = d i a g { a 1
+ , a + , . . . , a r

+ , l , . . . , l } £ 2 € g f m , m [ z - 1 ] . 



118 Observe that A+ and A+ are nonsingular matrices [18]. 

If 

A = A„Z~" + An+1Z-(" + 1) + ... 6 g ^ z " 1 ) , 

we can denote 

A'k = transpose of Ak, 

tr A = trace of A , 

<A> = A0 , the term of A at z° , 

A= =A„z" + A „ + 1z" + 1 + . . . . 

Then the set g,+
m{z - 1}, viewed as a vector space over g, can be normed by 

introducing the quadratic norm || • | as follows 

(9) HAD2 = t r < A = ' A > . 

In particular, consider 

A = A o + A J Z - 1 + . . . + A n z - " e g , , m [ z - 1 ] 

with dA = n §: 0. Then we define 

(10) A~ = z~"A= = A0z"" + A J z _ ( " _ 1 ) + . . . + A „ e 5 , , m [ z - 1 ] . 

For any nonzero polynomial a e 5 [ z 1 ] w e define the polynomial 

a* = a+a~~, 

belonging again to 5 [ z _ 1 ] a f id satisfying [18] 

(11) a=a = a* = a*. 

Given a nonzero polynomial matrix A e 5 / , m [ z _ 1 ] a n d let 

A" A =E1'diag{p=p1,...,ps-ps,0,...,0}E1, 

AA-' =E2 diag{q1q
=,...,qsqs

=,0,...,0}E = ' 

be the canonical decompositions of A='A and AA=/. Then we define the matrix 

AUZsA'-'lby 
(12) diag{p*, . . . ,p ,*,0, . . . ,0} JE 1 = [ A t 

[1] 
and the matrix A* e S/,s[

z %1 by 

(13) E2diag{a?,...,«:,0,...,0}=[A*0]. 



It is clear [18; 32] that the A1 and A2 satisfy the relations 119 

A=,A = A*=,At, AA = ' = A * A * = ' , 

rank A* = s , rank A* = s . 

MATRIX DIOPHANTINE EQUATIONS 

When dealing with single-input single-output systems we have to solve linear 
Diophantine equations of the form 

(14) ax + by = c , 

where a, b, c are given polynomials of ~ [ z _ 1 ] and x, y are unknown polynomials. 
It is shown in [12; 23] that equation (16) has a solution if and only if (a, b) j c. 
When x0, y0 is a particular solution of (14) then all solutions can be written as 

(15) x = x0 + - A - t, 
(a,b) 

a 

(a,b) 

where t is an arbitrary polynomial of g [ z - 1 ] . If equation (14) is viewed over g + { z - 1 } , 
then tin (15) is an arbitrary element of g + { z - 1 } . An effective algorithm to find x0, y0 

is presented in [12]. 
In applications, we often seek for a particular solution x°, y° such that dy° < da. 

To find the solution we apply the division algorithm 

y0 = — - q+r, Ôr < õ —— 
(a, b) (a, b) 

and, in view of (15), 

*° = *o + — T (to + q) , 
(a,b) 

n a 
y =r- r~^ t o ' 

(a,b) 

where t0 is an arbitrary polynomial of 5 [ z _ 1 ] with 

dt0 < d(a, b) . 

In case (a, b) = 1 the solution x°, y° is uniquely determined by setting t0 = 0 and 
has the property that dy° < dy for any y satisfying (15). 



120 In multivariate control problems we encounter linear Diophantine equations of 
the form 

(16) AX +YB = C, 

where A e 3 f l p [z - 1 ] , J3 e gf ? m [z - 1 ] , C_glm[z-1] are given polynomial matrices 
and Z e g p > m [ z _ 1 ] , Yeg1(J[z

-1] are unknown matrices. It is shown in [18] that 
equation (16) has a solution if and only if the matrices 

TA Cl and TA 01 

Lo B \ LO B \ 

have the same invariant polynomials. 
Let 

A = ElA diag {au a2, ..., ar, 0, . . . , 0} E2A , 

B =ElB diag {bu b2, ..., bs, 0 , . . . , 0} £ 2 B 

be the canonical decompositions of A and B and write 5c,-, for the elements of X = 
= E2AXE2B, ytJ for the elements of Y = EtA

lYElB, and ctJ for the elements of C = 
= EtACE2B. Then any solvable equation (16) is equivalent to the following sets of 
polynomial equations 

i = 1, 2, ..., r and j = 1,2, ..., s , 

i = \,2,...,r and j=s + l,...,m, 

i = r + I, ..., I and j = 1, 2, . . . , s , 

i = r + l,...,l and j = s + 1, . . . , m . 

The remaining elements xtJ and yu can be chosen arbitrarily within _?[z - 1]. 

As a consequence [18], a particular solution of equation (16) can be written as 

^0 = E2A j AT0,11 ^0,12 I E2B 6 Sfp,m[z J 

Lo 0 J 
Y0 =ElA rYo.n 01 E^e^^z-1], 

L-0,21 0j 

where the elements xoiJ of X0ll e 5r,s[z_1] ancl t n e elements y 0 , 7 of Y0jne 
e «5r,s[z_1] are particular solutions of (17), the elements x0JJ of X0>12 e t5r,m-s[z_1] 
are particular solutions of (18), and the elements y0iiJ of Y0j2i e _?i_r>s[-

-1'] are 
particular solutions of (19). 

(17) aßц + Ўijbj = č;, 

(18) a гx ;, = ćy 

(19) ӮІJЬJ = - џ 

(20) 0 = c ŕ , 



Then it is proved in [18] that the general solution of equation (16) becomes 

(21) X =X0+E2

1TE2B, 

* — Y0 — ElASE1B , 

T = г г u 0 1 , S = Г S U S 1 2 " | . 

lт2ì T22J Lo s 2 2 J 
The elements of T__ e 3>,s[z

 J ] are tijbjl(a{, b}) and the elements of S u e 3.,s[z 1 ] 
are a,fy/(a;, £•_), where fy are arbitrary polynomials of Sfz - 1 ' ] - The matrices T21 e 
e S p - . I z - 1 ] , TZ 2eaf ,- r > B 1- . [z--] and S12 e & , ,_ , [_ - - ] , S ^ e g , - , , - , ^ 1 ] are 
arbitrary polynomial matrices. 

It is to be noted that a particular solution X°, Y° such that 3Y° < dA cannot be, 
in general, found by application of the division algorithm but, instead, by analysis 
of the general solution Y see [18]. 

When the X and Yare allowed to be matrices over g + { z - 1 } then the ry in (21) 
are arbitrary elements of 3 + { z - 1 } and so are the elements of T21, T22 and S12 , S22. 

SYSTEM DESCRIPTION 

Throughout the paper we shall consider finite-dimensional discrete linear constants 
m-input /-output systems defined over the field g. They are described by the equations 

(22) x_+1 = Axfc + Bufc, 

yk = Cx t + Duk, 

where k ranges over integers, u e _m is the m-vector input, y e 5 ' is the /-vector 
output, x 6 5" is the re-dimensional state vector, and A, B, C, D are matrices over % 
of appropriate dimensions [9]. 

The matrix sequence 

(23) s = Cz--(I- - z ^ A ) " 1 B + D e g ^ z - 1 } 

is called the impulse response matrix of the system. Conversely, any quadruple 
{A, B, C, D} satisfying (23) is a realization of s; if A is of least possible size the 
realization is minimal [9; 15; 18]. 

The s can be written as the ratio of a polynomial matrix and a polynomial, viz. 

(24) s = - , 
a 

where a e _f[z - 1] , B e %i,m\_z"1] and 

(a,B) = l , (a,z~1) = l . 



122 If / — m = 1 (single-variable system) we obtain 

(25) S-±e%{z~1} 
a 

where both a and b belong to 3 [ z _ 1 ] -
While (25) completely describes a single-variable system, the ratio (24) tells very 

little about a multivariable system. We have to refine it as follows. Let 

B = Et diag {gu g2, ..., gr, 0, ..., 0} £ 2 

be a canonical decomposition of B and let 

2 - 1 - - - - , 1 - 1 , 2 , . . . , - , 
a a f 

after cancelling common factors. Then 

? = £ l d i a g & A . . A , 0,...,oU 
a (.ai a2 ^ J 

and, defining the matrices 

(26) B1=E1 diag{bub2,...,bf,0,...,0} e ^ , ^ " 1 ] , 

A2 =£2-1diag{a1,a2, ...,aT, 1, ..., 1} e ^ . . [ z " 1 ] . 

A! = diag{at, a2,..., ar, 1,..., 1} EJ"1 ef5fM[z~1] , 

£2 = diag{i>1,b2,...,ftr,0,...,0}£2 e S f i J - " 1 ] , 

we can write 

(27) s = B 1AJ 1 = A1
iB2. 

The above decomposition of s into the product of a polynomial matrix and the 
inverse of another polynomial matrix is fundamental and plays the role similar to (25). 

RANDOM SEQUENCES 

For convenience, we shall review some elementary facts about random sequences. 
For details consult [3; 5; 8; 24; 25; 28; 30]. 

An Z-vector random variable over 5 is a vector function whose values belong 
to »5i,i and depend on the outcome of a chance event. The (ensemble) expectation 
of a random variable A will be denoted by E/d. 



A sequence of Z-vector random variables 

A = {...,A_„A0,AU...} 

is called an Z-vector random sequence over %. The k function with values EAk is called 
the mean-value vector of A. The s, t function whose values are EASAJ is the correla­
tion matrix of A. If 

B = {...,B_1,B0,B1,...} 

is another vector random sequence, the s, r function with values EAsB't is the cross-
correlation matrix of A and B (in this-order). 

A vector random sequence is said to be (weakly) stationary if its mean-value vector 
is independent of k and its correlation matrix depends only on s — t and is bounded. 

A stationary Z-vector random sequence is called white if 

E(AS - EAS) (A , - EA,)' =Q, s = t, 

= 0 , s + t, 

where Q e 8fi,i is a symmetric nonnegative definite matrix. 

An Z-vector random sequence A over g can be thought of as the output of an g-input 
Z-output system !FA over % excited by a white a-vector random sequence D, see 
Fig. 5. The OFA is usually called the shaping filter of A. This representation of A is 
essential for obtaining the main results of the paper. 

Fig. 5. Random sequence model. 

In all that follows we shall confine ourselves to vector random sequences whose 
shaping filters are systems governed by equations (22). Such a sequence A is stationary 
if and only if the impulse response matrix FA of 2FA belongs to g f^Jz - 1 } . Then the 
sequence 

. . . + <Z>_lZ + <P0 + $iZ-x + ..., 

where 

->* - E(4.+. - E 4.+. ) (^ - EA.)' = #'-*. 

is the correlation matrix of A. The <P0 is called the covariance matrix of A. If B is 
another stationary vector random sequence, the cross-correlation matrix of A and B 
can be written as 

. . . + P _ t z + W0 + W^-1 + . . . , 

where 

Vk = E(Ak+s - EAk+,)= (B, - EB,)' . 



124 It can be shown that 

. . . + <i>_1z + 4>0 +<i51z-1 + . . . =F:F'A 

and hence 

(28) tr 4>0 = tr iFAF'Ay = tr {F2'FA} = | | ^ | | 2 

by (9). In words, the trace of the covariance matrix ( = sum of the variances of indi­
vidual components) of a stationary vector random sequence A can be interpreted as 
the squared quadratic norm of its shaping filter impulse response matrix FA. In case 
of a scalar random sequence A the <P0 itself is the variance of A and hence the squared 
quadratic norm of FA. 

CLOSED-LOOP STABILITY 

Consider the closed-loop system configuration shown in Fig. 6, where £f is the 
system to be controlled and M is the controller. The most important condition imposed 
on closed-loop control systems is that of stability. An extensive discussion of the 
closed-loop stability problem is given in [15] and [18]. 

i—IZJ—i 
Fig. 6. Closed-loop system conflgura-

I [T-fL- 1 tion_ 

We shall first summarize the fundamental results for single-variable systems [15] 

and then proceed to multivariable systems [18]. 

Let y be a minimal realization of 

a 

^2 be a minimal realization of some R e ^{z"1} and denote 

(29) K = -?£- . 
J 1 + SR 

Then the closed-loop system is stable if and only if 

(30) K=bM, l - K = aN, 

where M a n d N are elements of 5 + { z _ 1 } such that 

(31) bM + aN = 1 . 



This is a linear Diophantine equation over g + { z - 1 } which has infinitely many 125 
solutions M, At. The freedom in choosing M and A can be exploited for optimization. 

Now let y be a minimal realization of 

S = BXA2
1 = A r 1 B 2 6 g , > m { z - 1 } , 

^2 be a minimal realization of some R e 3rm,.{z-1} and denote 

(32) Kx = SR(I, + SR)-1 , K2= RS(Im + RS)-1 . 

Then the closed-loop system is stable if and only if 

(33) Kx = BXMX , I, - Kx = NXAX , 

K2 = M2B2 , Im - K2 = A2A2 

where Mx e fr^z"1}, ^ e ^ j z " 1 } and M2 e g ^ z " 1 } , ^ e g ^ z " 1 } obey 
the linear Diophantine equations 

(34) J3.M. + A , A , = / , , 

(35) A2A2 + M2B2 = Im . 

It is shown in [18] that the Mx, Nx and M2 , A2 satisfy the mutual relations 

(36) A2MX = M2AX , 

NXB2 =BXN2 

by virtue of (32) and (33). 

If / = m = 1 we have 

Av= A2= a, Bx = B2 = b, Kx = K2 = K 

and equations (34) and (35) reduce to equation (31). 
As shown in [15, 18] the closed-loop system need not be a minimal realization of Jf. 

and K2 even if the y and 3% are minimal realizations of S and R. Then the above result 
demands that, in addition to stability of the minimal realization of Kx and K2, the 
remaining part of the closed-loop system, which has no relation to Kx and K2, 
should also be stable. This part appears due to the mode cancellations in the cascades 
ym and sty. 

STOCHASTIC CONTROL 

In this section we shall transform problems (1) through (4) into a common frame­
work and give the formal definition and complete solution of the general stochastic 
control problem. 



Consider the closed-loop configuration shown in Fig. 7, where 

SP = system to be controlled , 

M = controller, 

!FW = shaping filter of W, 

W = random input sequence , 

D = white random sequence , 

U = system input sequence , 

Y = system output sequence , 

E = error sequence . 

Further denote respectively Fv and FE the impulse response matrices of the shaping 
filters !FV and #"- that generate the random sequences U and E, i.e. 

U = FVD, E = FED. 

The optimality criterion to be minimized will be chosen as | |r£ | |2, which can be 
interpreted as the sum of steady-state variances of the error sequence components 

Fig. 7. The general stochastic control problem. 

The mean value of the error sequence is immaterial since it has no effect upon the 
steady-state variances. The optimality criterion simply disregards the mean values. 
If the error is a zero-mean random sequence then this criterion coincides with the 
root-mean-square error criterion [2; 30; 31]. 

For the moment, we introduce the following notation: 

C = FCD, V = FYD , 

s! = impulse response matrix of £f t , 

<PCC = correlation matrix of C, 

$vy = correlation matrix of V, 

4>cy = cross-correlation matrix of C and V. 

Then it is clear that problems (1) through (4) can be expressed in terms of Fig. 7 
when identifying 

sub 1 • Fw = Fc, 



sub 2 Fw = StFv, 127 

SUb 3 FWFW = #CC + <PCy + <Pcy + $yy , 

sub 4 FWFW = <5CC - <PCKs; - sr*CK + ®vv • 

Now we can give an exact formulation of the general stochastic control problem. 
It is instructive and certainly worthwhile to begin with the special case of single-
variable systems and then generalize. 

(37) Given a system if which is a minimal realization of 

s = -sg{z- 1}, b + 0 
a 

and a random sequence W by its shaping filter Fw which is a (not necessarily 
minimal) realization of 

Fw = «e%{z~1}, q + 0. 
P 

Find a controller M which is a minimal realization of some R e «5{z-1} such 
that the closed-loop system is stable, the Fv is stable, and the \FE\2 is mini­
mized. 

For further reference define 

(38) a- = °-2 
P Po 

after cancelling common factors. Then we have the following result, which is a gen­
eralization of a similar result in [27]. 

Theorem 1. Problem (37) has a solution if and only if the linear Diophantine 
equation 

(39) b~x + pa~y = b~~q*a~ ~ 

has a solution x°, y° such that dy° < db~ and 

M = - ^ _ , yv= A * 0 

b*q*a~~ b~~q*at' 

Fv = aMFw, FE = aNFw 

belong to 3f+{z - 1}. 
The optimal controller is unique and it is given as a minimal realization of 

(40) * = * * . 
v ' N 



128 Moreover, 

(41) 

Proof. In order to minimize the variance |r_| | 2 of E we shall assume that FE is 
stable, whereby the E is a stationary random sequence and 

(42) ||__||2 = <J_F_> 

in view of (28). Then we will manipulate the expression (F^FE} so as to make the 
minimizing choice of _ obvious. 

Write 

_ £ - ( l - _ _ ) _ • * „ , . 

Denoting 

(43) 

it is clear that 

Ғ*-( l - _ _ ) £ , 
_> 

(44) ғïғE=ғ;*ғ* 
by virtue of (11) and 

(45) ғE = i_ --_--. 

To guarantee a stable closed-loop system we have to set A- = bM for some 
M e f f z ' 1 } , see (30). Then 

(46) F* = - - - WW i -
_ P 

and 

. - _ , • « • . ' 9" __,_- .* , , -__•_" ! ? * - / _ ? - ^ ^ * - - ! - . _ - - - — M=_ = 3_ + 
i- _ _» _ P P 

p p \b* p P J \b* p p 

after rearranging. Since 

___ - _ 1 = _ b"~ 
£>* = ~ b~ b~ 

by (10) and the definition of £>*, and since 

= 1 



we can wпte 

(47) ғГ~ғ*E = rEOrEO > 

where 

(48) ғE0 

_ b~~q*a0~ 

b~pa0 

-
b*q*a0~ 

paõ 

Now take the partial fract ion expansion 

(49) 
b~~q*a0~ 

b"pa~ 

y 

Ъ~ 

X 
- + . 

pa0 

м. 

It follows that the polynomials x and y are governed by equation (39). 

In view of (48) and (49) we can write 

(50) FE0=-^ + Z, 
b 

y r

E0 — 

where 

(51) Z = A - ^ V M 

pa0 pa0 

Then, by (44), (47), and (50), 

(52) ^<{v){i)) + ({f)~) + (-'{i-»+^-
Any solution of equation (39) can be written as 

(53) , _ „ o + ^ £ _ , , 
(b ,pa0) 

(54) , , « / _ * _ _ , 
(b ,pa0) 

where / e S f z 1 ] arbitrary and 

(55) 8y° < db~ . 

The key observation is that 

v°\= v°~ 
y \ _ _ -{db- -dy°) 

,b-J b-

is divisible by z'1 due to (55). Therefore 

'•y 

i-1 I \ v 7 (I>-,P°;)I 



130 and after substituting (54) into (52) we have 

. V V>"7/ \V (6".P«o)1 V (b',Pao) 

The first term on the right-hand side of (56) cannot be affected by any choice of M 
(and hence R). The best we can do to minimize (56) is to set 

(57) Z - — - — - 0 , 
(b ,pa0) 

_ _ - - _ - _ - £ - M - - 0 
pa0 pa0 (b , pa0) 

by (51). But 

pa0 (b , pa0) pa0 ' 

see (53). Hence (56) is minimized by setting 

(58) M'lA^' 
b*q*a0 

Substituting (58) into (46) we obtain 

/59^ / ? * - _ ! _ b~x° b'~q*a0~ - b~xc 

p b ~pa0~ b ~pa0 ~ 

_ pa0y° _ a0y° 

b~~pa0~ a0~b~~ 

on using equation (39). Now consider (43) and set 1 — K = aN for some At e 
e 5 + { z - 1 } to guarantee a stable closed-loop system, see (30). Then 

(60) F* = aN^- = a0N^-
P Po 

and the comparison of (59) and (60) yields 

(61) " = F ^ _ -
b a*a* 



Observe that the M and N satisfy the Diophantine equation (31). Therefore, the 131 

closed-loop system will be stable if and only if both M and TV are stable. Moreover, 

we have to require that 

a0 q p0b* 

be stable according to the problem statement, and that 

Fғ = aNFw ш 

be stable to satisfy hypothesis (42). It can be seen that the FE is always stable, see equa­

tion (39), and hence the minimized steady-state variance of E is given by (41) on 

applying (42), (56) and (57). 

The optimal controller is given as a minimal realization of 

RшL к м 

SI - K N Pob*y° 

by virtue of (29), (30) and (58), (61). 

In order that the Fv may be stable it is necessary that p0 be stable, i.e. p~ [ a 

by (42). Then (b~, pa0) = 1 and the solution x°, y° satisfying dy° < db~ exists and 

has also the property that y° is of least possible degree among all solutions of (39). 

As such a solution is unique, the optimal controller M is also unique. • 

It is to be noted that the input random sequence W was not assumed stationary 

in the sense that 2FW does not have to be stable. For unstable $~w, however, the 

problem (41) can have a solution only if p~ | a. This can hardly be exactly satisfied 

in practice due to the parameter fluctuations unless the unstable part of J v is actually 

a part of the system Sf through which the random sequence passes on its way to system 

output. As typical examples in this line serve problems (2) and (4) when a stationary 

disturbance V passes through an unstable part Sft of S", see Example 1. 

Example 1. Consider problem (2) for the system Sf = 9>

lSP2, where 

5 l " ( i - O U - i - s z - T 5 l " 1 , 

and the disturbance V which is a zero-mean white random sequence over § with shaping filter 

Fy-1. 

Note that the £f is not stable. It can be thought of as a two-phase servomotor with small rotor 
resistance, operating at low speeds. At this mode of operation the shaft torque increases with 
increasing speed. 



132 Transforming the problem into the general configuration shown in Fig. 7 we obtain 

-I 

^ ( l - z - ' J I l - l ^ ) ' 
- l . 

Fw = (T^W^i^)' 
Applying Theorem 1 we compute 

b+ = l , f = z - 1 , 

flo = 1 , flo = 1 , 

« * - = ! , Po = 1 , 
and solve the equation 

(62) z- Jx + (l - z " 1 ) ( l - ISz'^y = 1. 

Using the algorithm described in [12] we find the solution x°, y° satisfying 0y° < 1 to be 

x° = 2 - 5 - VSz'1, 

j,o = l . 

Then 

M = 2-5 - 1-Sz"1, TV = 1 , 

ru = 2-5z_1 - l-5z^2 , FE = z " 1 

all belong to % + {z"1} and hence the optimal controller exists and is given as a minimal realiza­
tion of 

R = 2 5 - 1-5Z"1 

by (40). 

Since FEFE= 1, the random sequence £ (the output of .5" in Fig. 2) approaches a white 
random sequence with variance 1|JFEllmin ^^ *» e v e n though the random sequence W is not 
stationary. 

Example 2. Consider problem (1) for the system & over $ which is a minimal realization of 

- l 

5 = = ( l - z - 1 ) ( l - 0 - 4 Z - 1 ) 

and the zero-mean random sequence C by its shaping filter 

^ C " 1 - 0 -5Z- 1 • 



This is a typical positioning system. Recasting the problem in terms of Fig. 7 we have 

1 
Fw = 

1 - 0 - 5 Z - 1 

Hence 

b + = l , b - = z ~ l , 

a* = 1 - 0 - 4 Z " 1 , a' = 1 - z _ 1 , 

q* = 1 , p 0 = 1 - 0 - 5 z _ 1 , 

and equation (39) reads 

z " 1 * + (1 - 0-5Z" 1) (1 - z'1) y = z - 1 - 1 

The solution x°, y° with 3^° < 1 is 

X° = - 0 - 5 ( 1 - z - 1 ) , 

/ = - l 

and it yields 

1 - 0-5Z" 1 

(63) M = 0-5 , N = 
I - z-l)(í - O Ч z " 1 ) ' 

/ p , Q . 5 ( - - ' - ' ) ( - - ^ - ^ , E£ = l . 
1 - 0-5Z" 1 

Since the iV is not stable the closed-loop system would not be stable, either, and hence the error 
variance never reaches its steady state. We conclude that the problem has no solution. As a rule, 
it is impossible to design a stable closed-loop positioning system that would follow a zero-mean 
stationary random signal in the minimum variance sense. To avoid this impass we usually intro­
duce a nonzero mean value and take it into computations in several ways, see [2; 30]. 

Example 3. Consider problem (2) for the system S* = £"^2 o v e r 8 which is a minimal 
realization of 

s -x s - z " ( 1 - z - 1 ) 
5 . - 1 , S 2 - - - r r — r 

and for the random disturbance V given by 

4 - 3 z - 1 + z " 2 

F r = - z - i - 2 — 

Clearly, we have 

e - - - ^ - - - - 1 ) F _ . 4 ~ 3 z - 1 + z - 2 

- - - - 2 ' •" z " 1 - 2 

in Fig. 7 and 

b+ = 1 , &~ = z - 1 ( l - z - 1 ) , 



flo = 1 , . . 0 = 1 , 

a* = 4 - 3 Z " 1 +z~2 , p0 = 1 . 

Thus equation (39) becomes 

z-*(l - z-1) x + (z"1 - 2) ,. = (z-1 - 1) (4 - 3Z"1 + z-2) 

and the solution x°, y° with dy0 < 2 is 

x ° = 1 - z ~ X , 

y0=2{l-z-'). 
We obtain 

M = - J- , At - -
4 - 3 z - 1 + z " 2 ' ( 4 - 3 Z - 1 + z ~ 2 ) ( z - 1 - 2 ) ' 

' • - - ' • f ' = i^F. 
which all belong to ^ + [z"1}, and hence the optimal controller is a minimal realization of 

It should be noted that the optimal and stable solution exists (the steady-state system output 
is even a white random sequence) though the system Sf does not enjoy the minimum-phase 
property. This result serves as a counterexample to the common fallacy that a system with zeros 
at the stability boundary cannot be stably controlled in the minimum variance sense [27]. 

Now we proceed to the multivariable case. 
(64) Given a system y which is a minimal realization of 

s = -GSr> m{z - 1}, B+-0, 
a 

and a vector random sequence W by its shaping filter Fw which is a (not 
necessarily minimal) realization of 

Fw = ^e%lrq{z-1}, e + 0 . 
P 

Find a controller 01 which is a minimal realization of some Re^ml{z~1} 
such that the closed-loop system is stable, the Fv is stable, and the \FE\2 is 
minimized. 

For further reference denote rank B = r and write 

S = B,AJ1 = A - 1 5 2 . . 



By (26) and (8) the Bj can be written as B1 = B1 B2 and 135 

B~ = [Bfx 0] , 

where B~. e g , , . ^ - 1 ] , O e g , , , , ^ ^ 1 ] and r a n k B ^ = r. Then, using (12), 

S i T ' B - i = (Bu)*-'^!)*3 , 

where (B^)* e ~-r r [ z _ 1 ] and rank (B^)* = r. For convenience, denote H = 

= (B^)* and 

(65) d = dBlx - dH . 

Further let rank Q - s and employing (8) write Q = Q\Q2, where by definition 

er = 
ra 

with g 2 1 e ~f s > 4 [- _ 1 ], 0 e g . - s J V 1 ] and rank g 2 1 = s. Then, using (13), 

e 2 T Q 2 " 1 ' = ( S 2 " 1 ) * = ( S 2 1 ) * ' , 

where (QJi)* e g ^ z - 1 ] and rank (Q^)* = s. For convenience, denote L = 

= (62".)* and 

(66) Q* = Q 

We shall also use the notation 

ГГLlє-Uz- 1 ] . 

A ^ = F - , 
P Po' 

where (p 0 , F) = 1, and write F = F^F^. In view of (8) the F2 can be written in 

the form 

"To] 
with F 2 i e g s s [ z * ] , 0 e g,- s > s[z x ] and rank F 2 1 = s. Then, using (13), 

F-21F-' ={F-21)*{F-21)*=>, 

where ( F 2 1 ) * 6 ~f s, s[z - 1] and rank {F21)* = s. For convenience, denote G = ( F ^ ) * . 

It can be shown [18] that 

(67) dF21 - dG = 0 . 

We have the following fundamental result. 



136 Theorem 2. Problem (64) has a solution if and only if the linear Diophantine 
equation 

(68) z-"H~'X + YG~'p = B;~'Q*F21~' 

has a solution X° 6 3f,>-[-,~1], Y° e t$fr,,[z-1] such fhaf dY° < d--dH~' and the 
linear Diophantine equations 

(69) B.Af, + iV.X, = J , , 

(70) A2At2 + M2B2 = Im 

and 

(71) A2Mt = M 2 A ! , 

B,N2 = N,B2 

have solutions M. 6 ^ { z " 1 } , .V. e ^ { z - 1 } and M 2 e ^ { z ^ 1 } , N2 e g*,m{z - 1} 
satisfying 

(72) HMIVF2~' =X\ B^M.Q* = E:ľ 
(73) B r r ' A t ^ G = Y % , JV.F+ = [ ! V n A t 1 2 ] , 

and 

F„ = A^F^ be'onas fo S ^ J z " 1 } , 

F £ = iV-.iltiV foeZonas to g ^ z - 1 } • 

The optimal controller is not unique, in general, and all optimal controllers are 
given as minimal realizations of 

(74) R=M2N;1 = N2
XM,. 

Moreover, 

(75) | |F£ | |2
i n = tr <((H~')-1 Y0)" ((II~')_ 1 Y°)> + 

+ tr <FW'FW} - tr ^ ' B r ^ - ^ i T ' ) " " 1 ~*u='*V> . 

Proof. In order to minimize the sum of variances | F £ | 2 we shall assume that F £ 

is stable, whereby the E is a stationary vector random sequence and 

(76) | |F£ | |2 = tr {F;F'E} = tr <F£= 'F£> 

in view of (28). Then we will manipulate the expression tr (FE'FEy so as to make 
the minimizing choice of R obvious. 



Write 

FE=(ll-Kx)Fw. 

Denoting 

(77) F*E={Il-K1)^, 
P 

it is clear that 

(78) * _ . _ - - / _ = * _ ' 

by virtue of (15) and (43), and 

(79) FE=FtL-'Q-2x. 

To guarantee a stable closed-loop system we have to set Kx = BXMX for some 
Mx e 5m,i{z - 1}, see (33). Then 

(80) r£* = 2 ! - _ 2 M i e ! = e _ - [ _ 1 - 1 0 ] B + M i
e * - e * B » W " 

P P P ' P P P 

where 

B.Af.Q* = 

[«;:] 
and Afn e g+

s{z _, M 2 1 e g ^ ^ z " 1 } . Substituting into (78) we obtain 

_*_,_* _ __i__ _ o ^ __iMii _ _/i7__.f _?_ + 

p- p p-p p p 

+ Aff1'Brr,-r-_1-1A_11 = 
p p 

_ /^(______li___ _ gAfny Y ^ " ' ) " 1 B"'"g* _ ____) + 
p p / V P P 

P P P i> 

N o w , by definition, 

G-^-.FJfXG")"1-^ 



138 and using the well-known property of the trace of a matrix, we obtain 

(81) t r r r ' r £ = 

= tr(F;r(G--rr'^r\B;rQ* - ^ J ' . 

^=o-^rr'cj*_/_M^N(f2T,(G.ri.) + 

+ t r O ! _ t r r , - r f ( r r ^ - e ! . 
p p p p 

Since the last two terms in (81) are independent of M r i (and hence Ml and, in 
turn, _?) the expression tr <F£ 'FE} attains its minimum for the same controller R 
as the expression tr <r£0'r_o) does, where 

(82) FEO - (n^y1 B;r'Q*F^'(G=r1 _ ^Muni^Tl __ 
p p 

_ (H~ri B-xl~'Q*F-2r(G~ri HM^F^XG-')-1 

z~dp p 

Here we have used the substitutions 

(H-y1 sir = (H~TI*TC\ F_r(G-ri-p-zfXG-r1 

obtained from (10) and (65), (67). 

Now take the partial fraction expansion 

« _ _____ _______l'____j _ _____ r i j__Z__ 
(83) _ _ _ _ + _ _ _ _ _ . 

It follows that the matrices X and Y are governed by the Diophantine equation (68). 

In view of (82) and (83) we can write 

m , » _ _ _ £ _ _ - + z . 

where 

(85) - _ X ( G ~ r * _-M 1 1F_r(G~')- \ 

P P 



Then (84) implies 

(86) tt^Fm},tt/((jn2iY'((jn:'2\) + 

+tt((_^-;-) + .(-..(_^) + .<z-.z>. 

Now let 

(87) z'dH~' = E1Adiag{a1,az,...,ar}EZA, 

G~'p = E1Bdiag{bu b2, ..., bs} E2B 

be the respective canonical decompositions. Then, using (21), any solution of equa­
tion (68) can be written in the form 

(88) X =X° + E2-A
1TE2B, 

(89) Y - Y° - E^SErs1, 

where 

(90) dY° < Bz-dH~', 

the matrix T e g f , ^ - 1 ] has elements fybj/(aj, bj), the matrix S e j j z " 1 ] has 

elements a;f0/(a;, bj), and where ttl are arbitrary polynomials of 3 [ z - 1 ] . 

The key observation is that 

(II ) j_ \ _ ^-(dz-dH~'-dY0) (TT,\~1 Y-~ \ = z-(dz-*H~'-dY0) ( j f - W yO 

is divisible by z 1 due to (90). Therefore 

E1ASE;B
1\\ = 0 , 

{jn--Y°X'zyQ 

and after substituting (89) into (86) we have 

<W tt<W„_„((J_^-(I02_)) + 

+ tr/(z - E l l E„SEr,''| fz - ^ P £uS£r.'\) • 



140 The first term on the right-hand side of (91) cannot be affected by any choice of Mx Y 

(and hence R). The best we can do to minimize (92) is to set 

(92) z _( / i lL!£ 1 A sE r B
i = o, 

i.e. 
AG-')"1 HM^F-.CJG-')-1 (H~')-1 , F - i _ n 

P P Z 

by (85). But 

X(G~T (H-T1
 SE-x_X°(G~')-1 

P 2 P 

because 

X-(~^E1ASEl>G~'p = 

= X -E2A
ldmg{-, - , . . . , -\sdiag{bub2,...,bs}E2B = 

[a, a2 ar) 

= X — E2A TE2B = X 

on successive application of (87), the definition of Tand 5, and (88). 

Therefore (91), and, in view of the above discussion and (80), also the tr {F'EFE} 
is minimized by setting 

(93) HMnF2C^X°. 

Substituting (93) into (80) we obtain 

(94) BC'F*F-2i~' = B"'Q*F*LL- z~dH~'XL _ yoG~, 
P 

on making use of equation (68). Now consider (77) and set / , — Kl = NlAl for some 
Atj e g^,{z - 1} to guarantee a stable closed-loop system, see (33). Then 

(95) BC'F*F21~' = BC'N.A, $*- F21~' = 
P 

=..-.-*, L ,«., BrrWl t : r rq -.-,-• - B"~'""CG" •<[ŕ] Po Po Lu J Po 
where 

N,F+ = [JVU iV. J 



and 7Vn e g ^ j z " 1 } , At12 e ^ . - . { z - 1 } . The comparison of (94) and (95) yields 

(96) B71~'At11G = Y%. 

To summarize, we have to first solve the stability equations (69) and (70) for stable 
Mt, iVj and M2, N2 and then restrict the solutions so as to satisfy the mutual rela­
tions (71). Then the closed-loop system will be stable. Further we solve the optimality 
equation (68) for X°, Y° such that 8Y° < 8z-dH~' and, in order to obtain an optimal 
as well as stable closed-loop system, we have to satisfy relations (72), (73). Moreover, 
it is necessary to require that Fv, which is given by 

SFU = KXFW , S = B ,A 2
 1 , Kt = B1M1 , 

as 

Fv = A2MxFw , 

be stable according to the problem statement and that 

FE=(I1-K1)FW = N1A1FW 

be stable to satisfy hypothesis (76). 

Then all optimal controllers are given as minimal realizations of (74) because 

SR = #,( / , - Kxy
i, 

s = 5 , A 2
1 , Kx=BlM1, I,- Kx = NxAt 

yields 

R = A^iA^N'1 = M^iA^N;1 = M^'1 

on applying (71), and 

RS = (lm - K^-1 K2, 

S = Al1B2, K2=M2B2, Im- K2= A2N2 

yields 
R = A t - 1 AJ 1 A/ 2 A 1 = N2

1A2
1A2M1 = N2

1M1 

again applying (71). 

The minimized sum of steady-state variances of the individual components of E 
is given by (75) when (76), (78), (81), (82), (91) and relations 

z-"-z-d = 1 

t r Q* = 'Q* = tr Q* = g*' = tr Q~ Q' = tr Q = 'Q 

are taken into account. Note that when r = / the Bxl is invertible and, by definition, 

B-.H-^H-r^B-rr1 =i,. 



142 Then (75) simplifies to 

INIL = tr <((H~')"1Y°T' ((H~Tl y°)> • П 

Example 4. Consider problem (2) for the system £f = S^lS
,
2 over g which is a minimal 

realization of 

I" V45/I6\z"1 1 
_ J z - ^ l - O - S z - 1 ^ 

s, = —= - -~ *=— , s, = 1 
(1 - z - (l -0-5z-

and the disturbance given by 

Fv = 1. 

The system is depicted in Fig. 8 and can be interpretted as a two-dimensional single-variable 
system in which the auxiliary output Y2 is used to improve the control. 

Fig. 8. The system in Example 4. 

The problem can be recast in terms of Fig. 7 by setting 

Z 

\-Ѓ 
Ш Y, Z 

\-Ѓ 1-0,5/' 

~Уz 

Г V^^/lб^z-1 -] Г V45/1ЦZ"1 -1 

5 _ Lz-ҷi - o-sz- j _ Lx-Ҷi - o-sx- j 
(1 - z - 1 ) ^ - 0 - 5 Z - 1 ) ' ^ (1 - z - x ) ( l - 0 - 5 Z - 1 ) ' 

Computing the canonical decomposition 

pisMz- 1 "| = rV45/i6 o-irz-n, 
Lz-J(l - OSz"1)] L1 - 05Z-1 l j L° J 

B1=pV45/l6\z-1 1, A^a-z-^Cl-O-Sz-1), 
Lx"»(l - 0-5«--)J 

^ = 1 7 1 6 / 4 ^ ( 1 - z - 1 ) (i-o-5z-*) on, B 2 = r z - n 
L -viwa-o-sz-1) ij Lo J 

by (26) and also 

Q,=\^ЪЏ\z-x 1, p = (1 - z - (l -0-5Z" 1 ). 

L 
/45/Цz"1 -1 
j-Ҷl -0-5Z- J 

It is seen that 

1 = 2, m — tj = 1, r — s = 1. 



We shall first guarantee the closed-loop stability by solving equations (69), (70) and (71). 143 
Equation (69) becomes 

pV45/l6\ z-1 1 Mt + At. ryi6/45\ (1 - z"1) (1 - 0-5Z"1) 01 = Tl 01 , 

Lz-^ l - O-Sz-^J L - Vl6/45\(1 - 0-5Z-1) l j |_0 l j 

and it is equivalent to the polynomial equations 

z _ 1 A}i + « ! , ( 1 - z - J ) ( l - 0 - 5 Z - 1 ) = 1 , z~lm\2 + n\2 =0, 

« 2 1 ( 1 - z - 1 ) ^ - 0 - 5 z " 1 ) = 0 , n22 = l 
where 

Mi- [* ! i -» ! a ] [ V16/45 01, 
L-V^sUi-o-sz-1) lj 

At. =["V45/16 01 p } . H } 2 1 . 

L i - o - sz - 1 l J L * i i * i a J 

We obtain 

m\t = 1-5 - 0-52"1 + (1 - z'1) (1 - O^z"1) r... , m\2 = f12 , 

" u = 1 — z r n , n12 = —z f12 , 

»2i = 0 , n22 = 1, 

for arbitrary /11; r12 e g + {z"1}. 
Equation (70) becomes 

(1 - z"1) (1 - 0-5Z"1) At2 + M2 p - H = 1 

and it is equivalent to the polynomial equation 

( l - z - ^ ^ - O - S z - ^ ^ + A ^ z - ^ l 
where 

At2 - [ * ? . ] , M2 =[»**, r . J . 

We obtain 

*?. =1 - z A l , 

iftj. = 1-5 - 0-5Z"1 + (1 - z - x ) ( l - 0 - 5 z _ 1 ) » n 

for arbitrary vlt, vl2 e g + {z~1}. 
The mutual relations (71) then yield 

c n = ' n . 

»12 = ( 1 - Z ^ K I - O ' S Z - 1 ) * , . -



144 and, finally, 

Mx =[Vl6/45\(l-5 -0-5Z-1) + 

+ Vl6/45\ (1 - z-1) (1 - 0-5Z"1) tn - Vl6/45\ (1 - 0-5Z"1) t12 t12] , 

At. =rV45/16\-V45/I6\z"1r1 1 - V45/16\ z~UX2 1 , 

|_1 - 0-5Z-1 - z~\l - 0-5Z-1) fn 1 - z~\\ - 0-5z-J) *12J 

and 

M2 = [ l - 5 - 0 - 5 z - x + ( 1 - z - 1 ) ( l - 0 - 5 z " 1 ) f 1 1 (1 - z " 1 ) ( l - 05Z"1) tl2] , 

N2 - 1 - z " 1 .^ . 

Further we shall solve equation (68) to minimize the optimality criterion. Computing 

£-. = rV45/l6\ z-1 "I, B2
+ = 1 , B-' = [V45/16\ z"1 z"1 - 0-5], 

Lz-^l-O-Sz-^J 

H - . 2 - 0 - 2 5 Z " 1 , H~' = 2 z _ 1 - 0-25, d = 1 

Q+ = rV45/i6 on, Q- = p - n , QJ. = z-1, 
[l - 0-5Z"1 l j |_0 J 

L = 1, Q* = [V45/16 ] 
Ll - 0-5.--J 

and 

anđ 
F = 

G = 1 , Po = 1 , 
equation (68) becomes 

z " 1 ( 2 z - 1 - 0-25)X + Y ( 1 - z - : ) ( l - 0-5Z- 1) = 

- [V45/16\ z " 1 z " 1 - 0-5] [745/16 1 = -0-5 + f fz" 1 - 0-5z~2 

|_1 -O-Sz^J 
Its general solution is 

X = 2-75 - z - 1 + ( 1 - z " 1 ) ( l -0-5z~l)t, 

Y = -0-5 + 4Z- 1 - z- 1 (2z~ 1 - 0-25) t 

for arbitrary polynomial t e g[z _ 1], and the solution X°, Y° satisfying 8Y° < 2 reads 

X° = 2-75 - z " 1 , Y° = -0-5 + 4 z - 1 . 



Now we have to satisfy relations (72) and (73) thereby putting the conditions of stability and 145 
optimally together. Computing 

Mu = 1-5 - 05Z-1 + ( 1 - z _ 1 ) ( l - O-Sz'1)^, 

Nlt =rV45/l6\- V45/16\z-1ř11 1 
[ l -0-5Z-1 - z _ r ( l - O ^ z " 1 ) ^ ] 

by (79) and (80), we obtain 

0-25 

2 - 0 - 2 5 Z - 1 ' 

' i 2 e & + { z - 1 } a r b i t r a r y . 

Ml = [ V 1 6 M 2 2 - 5
0 .25z^ ~ V16/45^(1 " °'5Z_1) tl2 h 2 ] ' 

ЛГi = J45/16\ — 
V ' ' 2 - 0-25z" 

1 - 0 - 5 Z ' 1 

2 - 0 - 2 5 z _ 1 

- V45/16\ z-Hx2 

1-Z-Ҷ1-0-5Z- 1 )/,, 

and 

M2 = 

лt, = 

-[ГГӢ£ (i-Od-^-)...]. 

2 - 0-25Z" 1 

_ . . . 2-75 - z- 1 

Ľ " 2 - 0 - 2 5 Z " 1 . ғE = 2z 

2: 

-x V45/16 
2 - 0-25Z" 1 

_j 1 - 0 - 5 Z - 1 

2 - 0-25Z- 1 

As the above matrices are stable, our problem has a solution. The optimal controller .is not 
unique and all optimal controllers are given by (74) as minimal realizations of 

(97) ^ = [iVl6/45\(2-75-z- 1 )-

- i v/16/45\(l - 0-5z"1)(2 - 0-252-*) r i a i(2 - 0-25Z"1) r1 2] . 

All these controllers give the minimized sum of steady-state output variances equal to 

w_-f+s-« 
by (75). 



The nonuniqueness of optimal controller can be utilized to meet additional requirements. 
For instance, choosing 

2 
ti, = 

2 - 0-25z_1 

in (97), the resulting controller 

Ro = [I V16/45 i ] 

has the least possible dimension (equal to zero) among all optimal controllers. 
Choosing 

1 2-75 - z" 1 

í i , = 
1 - 0-5Z"1 2 - 0-25z" 

we get 

and choosing 

*,=Гo ' * g — 1 1 . 
1 - 0-5Z"1 2 - 0-25Z' 1] 

-12 = 0 
we get 

(99) / ? 2 = [ W l 6 / 4 5 \ ( l l - 4 z - 1 ) 0 ] . 

Therefore, the controller 3t0 is the simplest one to reaiize, while the controllers ^ t and 3t7_ 
might be used as emergency controllers in case of breakdown of the first and second control 
channel respectively. Of course, all these controllers give the same optimal performance. 

(Received May 20, 1974.) 
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