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KYBERNETIKA — VOLUME 8 (1972), NUMBER 4 

Desampling Capability of Polynomial 
Interpolators 

MIROSLAV PŘEUČIL 

The paper deals with qualifying the capability of interpolating circuits to reconstruct an original 
analogue signal from a sampled-data signal. A method of comparison of the interpolators with 
an ideal low-pass filter was selected. Derived amplitude and phase frequency responses are plotted 
and compared with responses of the ideal low-pass reconstructing filter. 

1. INTRODUCTION 

For reconstruction of an original continuous form of a sampled signal, passive 
low-pass filters or active data hold circuits of the zeroth or first order are usually 
used. There is a possibility to utilize suitable properties of polynomial interpolators 
[2], [3] for such signal reconstruction. These active reconstruction filters reconstruct 
the original analogue signal by tracing parabolas through discrete values of sampled 
signal according to a given law. The quality and accuracy of reconstruction depends 
on many factors — mainly on the parabola order and on working interval selection 
(when using parabolas of higher orders than the second). Interpolating circuits are 
relatively simple. They consist of operational amplifiers, a circuit of the type "sample-
hold" and usual computing impedances (resistors and capacitors). 

Let us compare some results of the analogue signal sampling and its mathematical 
description with properties of polynomial interpolating circuits to determine a most 
convenient type of interpolator for given reconstruction requirements. 

2. SAMPLED-DATA SIGNAL AND ITS MATHEMATICAL 
REPRESENTATION. ORIGINAL SIGNAL RECONSTRUCTION 

Let us consider a sampled-data signal with fixed sampling intervals. It is given by 
a series of discrete values, for example by a series of narrow impulses or numbers, 
which can be marked f(Tt),f(T2), ...,j(T„) for discrete instants T., T2, ..., T„. For 



334 these instants Tt = T T2 = 2T, ..., T„ = nT, where T is the duration of the fixed 
sampling interval. 

For investigation of such a signal we will use a procedure which is given in [4]. The 
signal, markedj*(/) (see Fig. 1), is given by 

(1) 

Fig. 1. 

The sampling function p(t) is supposed to be a series of impulses each of finite dura­
tion X and the sampled function carrying the information to be j(f). The sampling 
process is a process of modulation, i.e. multiplication of both these functions. It is 
possible to express the function p(t) in a Fourier series 

(2) p(t) = £ Cke™т 

k = - o o 

The Q's are Fourier coefficients. After putting (2) into (l) and using the shift theorem: 

(3) •^a»)- tz -

c v[ i(0 ,"?F)]' 
where F(ja>) is the transform of the function /(/). The resulting expression is a sum 
of transforms of weighted spectra, each of which is equal the central spectrum except 
for the constant and the shift coefficient j(ct> — InkJT). The expression (3) is illustrated 
in Fig. 2. A result of the sampling process is that to the basic frequency spectrum of 



the original signal are added new spurious spectra, which are shifted by a separation 
InkjT and whose weights are decreasing with increasing frequency. 

Fig. 2. 
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For the original signal reconstruction we need to cut out these added spurious 
spectra by means of a low-pass filter. It is obvious, that even if we use a filter with 
a sharp cut-off, the resulting reconstruction will not be accurate if the original signal 
were not frequency limited. A spectrum of a sampled signal originating from a fre­
quency limited signal is shown in Fig. 3 together with the illustration of an ideal re­
construction filter transfer function. One-half the sampling frequency is W = KJT 

Fig. 3. 



If we supopse that the duration of sampling impulses is negligible with respect to 
the duration of the sampling interval T, we can imagine, the function p(t) to be 
a series of Dirac impulses d(t) 

(4) P(t) = £ ð(t- nT) = ðт(t) 

d(t — nT) represents an impulse of unite area at a time instant nT. The sampling 
process is then an impulse modulation. 

i POJl 

Fig. 4. 

For the sampled function we can now write 

(5) f*(t)=f(t).5T(t)=f(nT).5T(t) 

because the only utilizable values of the original function are given by the sampling 
instants. The series of impulses can now be considered as a series of impulses with 
areas proportional to the signal function. In order to investigate properties in the 
frequency domain let us determine an expression for the Fourier coefficients Ck 

(6) Q = -L Г2 ðт(t)e-«2"mkdt 
T J -T/2 

The area of the impulse at the origin is unity. Therefore the integral also equals unity, 
and all Fourier coefficients are given by 

(?) Ct = 

independent of k. With respect to (3) the Fourier transform of the impulse modulated 



function f*(t) is given by 

(8) F*0«) = ^nI/D(»-»<»o)] 

where a>0 = 2ir/T. 

From this resulting expression a conclusion on the form of a sampled signal spec­

trum can be drawn. In the case of impulse sampling, spectra are added by this process 

to the basic signal spectrum, all of which have the same amplitude. They are repeated 

at intervals of ffl0 = 2nJT. A form of the spectrum of an impulse sampled signal, 

which is frequency limited, is illustrated in Fig. 4. For the reconstruction of the origi­

nal signal we need the same filter as was used in previous investigation. 

Fig. 5. 

It is obvious, that the amplitude frequency response of this filter (sometimes called 

a "cardinal data hold") has to be unity along the frequency range from zero to one-

half the sampling frequency. Above this frequency it vanishes. It is illustrated in 

Fig. 5. It implies that 

(9) E(jffl) = 1 , -W^co^W, 

F(jffl) = 0 , -W=co=W, 

where W = Ji/T. 

By means of the inverse transformation we obtain an impulse response of this ideal 

reconstruction filter: 

(10) /(') = 
W sin Wt 

л Wt 

This impulse response is plotted in Fig. 6. It is obvious that such a filter is prac­

tically unrealizable due to finite output response at t = 0, when the input pulse is 

activated. Therefore, even for signals with limited frequency spectrum, it is practically 

impossible to get ideal reconstruction. 



This ideal filter is able to be used as a prototype for comparison with implemented 

filters. In following sections we will compare it with amplitude frequency responses 

of polynomial interpolators. 

Fig. 6. 

3. IMPULSE RESPONSES, TRANSFER FUNCTIONS AND FREQUENCY 

RESPONSES O F POLYNOMIAL INTERPOLATORS 

By means of deriving a Laplace transform of the impulse response we will obtain 

a transfer function of a particular type of interpolator and after some arrangements 

we will get its amplitude and phase frequency responses. The used impulse responses 

Щ 
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1 

Fig. 7. 
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of interpolators are based on published properties of particular types (see references 

[2] and [3]). For the sake of simplicity we will consider interpolator output signals 

to be noninverted. The impulse response of the zeroth order interpolator (which is 

similar to a data-hold circuit) is obvious and is shown in Fig. 7. Let us mention it by 

way of introduction. An expression describing it is 

(П) 
н/(í) = u(t) - u(t - T) 



where u(t) is a step function. Let us put for the sake of simplicity T = 1. The Laplace 
transform of function (11) is then given by 

(12) ЗД.І-1.-.-І 

Expression (12) is the transfer function of the zeroth order interpolator (data-hold). 

First order (linear) interpolaíor 

The impulse response of the linear interpolator is shown in Fig. 8. If we apply 
a unit impulse to interpolator input at t = 0, immediately a rising linear signal appears 
at the output. At the end of the first interval it will reach unit level and then at the end 
of the next interval it will sink to zero. This means that it consists of two parts. In this 

Fig. 8. 

and next cases let us assume again that T = 1 to get rid of complicated and not on 
first sight clear expressions. This approach means that we suppose the sampling fre­
quency to be j s = 1. In frequency domain therefore all frequencies must be normalized 
with respect to the sampling frequency. It implies that 

(13) L/(0 
Ł/,(0 - 1 
- j 2 ( r )= - r + 2 

The Laplace transform of this function is 

for 0 | í < l , 

for 1 < i < 2 . 

(14) if[Lj(t)] = LҒ(s) = Г íe- s ř dí + ľ (~t + 2) e~st dí = Л ( . ~ - »>. 



340 We can reach the same result directly by considering the function f(t) to be composed 

of several shifted ramp functions. Expression (14) is the transfer function of the linear 

interpolator. 

We will substitute s = jco and use the Euler expression for further arrangements. 

From (12) we will get an expression for the zeroth order interpolator (data hold): 

(15) 
1 — e~' 1 1 

лF(jco) = — : = — sin ĹO + j — (-1 + cosco) 
}CO co co 

and from (14) for the linear interpolator: 

~F(}co) = — (—1 + 2 cos co - cos 2co) + j — (-2 sin co + sin 2co). 

When deriving impulse responses of interpolators of higher orders than 1, i.e. be­
ginning with the quadratic interpolator, we have to decide what interval to use for 
the output parabolic signal — (See [2] and [3]). For example in the case of quadratic 
interpolation we can select one of two intervals, because a second order parabola 
passing through three points is sought, and we can use either the first interval between 
the first and second points or the second one between the second and third points. 
The number of intervals available for selection equals the order of the interpolating 
parabola. 

Second order (quadratic) interpolator with the first working interval 

Its impulse response is in Fig. 9. Unused segments of parabolas are plotted in 
dashed lines. 

(17) 

rQi/.(í) = i.*2 - y for o g t s i , 
Q'f(t) |Qf2(t) = - t 2 + 4ř - 3 for 1 š t á 2 , 

[Qlf3(t) = \tz - 't + 6 for 2 | ř ^ 3 . 

Fig. 9. 



Outside the given intervals all functions vanish. 

(18) 3<Ғ(s) = - ( - f + fe-s - fe-2 s + fe-3s) + 

+ 1 ( 1 _ З e - S + З г - 2 s - e - 3 s ) , 

(19) J'F(jco) = —- (•£ - f cos co + f cos 2co - \ cos 3co) + 

H (— 3 sin æ + 3 sin 2co — sin Зco) 

fr 
+ j —- (f sin co — f sin 2co + f sin Зco) + 

H (l - 3 cos co + 3 cos 2co — cos 3co) 
_ 

Second order (quadratic) interpolator with the second working interval 

The impulse response is shown in Fig. 10. The output signal reaches unity in one. 
sampling interval. The whole response is in fact the response from Fig. 9 (quadratic 

Fig. 10. _j 

interpolator with the first working interval), which is shifted and rotated about 

a vertical axis. 

(20) Q2jt(t) = ł t 2 + ł t for 0 < t = 1 , 

Qy2(í) _ _ t
2 + 2í for 1 й t ѓ 2 , 

Qг/з(ř) = \j2 - f r + 3 for 2 ^ ř _ 3 . 



342 Outside the given intervals all functions vanish. 

(21) ^ ) = 4 ( i - t e - s + §e- 2 s -ie- 3 s ) + 

+ 4 ( 1 - З e - 2 s - e - 3 s ) , 

(22) E(jco) = —- (— \ + \ cos co — \ cos 2co + \ cos 3co) + 

H (— 3 sin co + 3 sin 2co — sin 3co) + 
co3 

+ j — (-•§ sin co + f sin 2co - \ sin 3co) + 

w 
-{—— (1 — 3 cos co + 3 cos 2co — cos 3co) . 

CO3 J 

Third order (cubic) interpolator with the first working interval 

The impulse response is shown in Fig. 11. The whole response is composed of parts 

of third order parabolas, each of which passes through four points. 

Fig. 11. 
%(t) 

rc>/,(f) = it3 -\t2 + \t for 0 _ ( _ 1 ; 

\Clft(t) = - i f 3 + \t

2 - It + 4 for 1 _ t _ 2 , 
C lj3(t) = i t 3 - i r ' 2 + 19t - 20 for 2 _ t _ 3 , 

. c f 4 ( t) = —et3 + I t 2 - " t + 20 for 3 _ t _ 4 

Outside the given intervals all functions vanish. 

(23) =1j(0 

(24) >Ғ(s) - 4 ( ł - fe-s + 2e"2s - |e-3 s + ie"4s) + 



+ - ( - 1 + 4e~ s - 6s~ 2 s + 4e~ 3 s - e~4 s) + 
s3 

+ - (1 - 4e~ s + 6 e ' 2 s - 4e~ 3 s + e _ 4 s ) , 

(25) c 'E(jш) = -— (-4, + f cos co - 2 cos 2co + f cos Зш - f cos 4ш) + 
co 

(4 sin co — 6 sin 2co + 4 sin Зш — sin 4ш) + 
ш3 

H (1 — 4 cos co + 6 cos 2co — 4 cos Зco + cos 4co) + 
co4 

+ j — ( — f sin co + 2 sin 2cu - f sin Зco + +, sin 4co) + 
ІP 

H ( — 1 + 4 cos co — 6 cos 2co + 4 cos Зco — cos 4co) + 
ш 3 

H (4 sin ш — 6 sin 2ш + 4 sin Зш — sin 4ш) . 

ш4 J 

Third order (cubic) interpolator with the second working interval 

See the impulse response in Fig. 12. 

Fig. 12. - í 

(26) c y( í ) 

íC2Л(t) = it3 - ¥ for 0 _ ř „ 1. 
c y 2 ( ř ) - _ i ř

3 + 2/2 - Џ for 1 _ ř _ 2 : 

C2jз(t) = ł t 3 - 4t2 + " t - 6 for 2 _ ř „ 3 . 
lc%(t) = - i / 3 + 2/2 - Цt + 10 for 3 _ / _ 4 



344 Outside the given intervals all functions vanish. 

(27) clF(s) = 4 (-* + * e _ S - Є~2S + 2 e _ 3 s - ł e " 4 s ) + 

+ 4 (1 - 4e-s + 6e~2s - 4e~3s + e" 4 s ) , 

(28) c'T(jco) = — (i - | cos co + cos 2co - f cos 3co + £ cos 4co) + 
co2 

-I (1 - 4 cos co + 6 cos 2co — 4 cos 3co + cos 4co) + 
t o 4 '' • 

+ j —- (I sin co - sin 2co + § sin 3co - \ sin 4co) + 
L© 

+ -— (4 sin co — 6 sin 2co + 4 sin Зco — sin 4co) 

Third order (cubic) interpolator with the third working interval 

The impulse response is shown in Fig. 13. Let us mention that it is similar to the 
response given in pig- 11. (the cubic interpolator with the first working interval), 

Fig. 13-

which is shifted in time and rotated about a vertical axis. 

íC3fi(0 = if3 + ¥2 + ¥ for O á í á l 
cy2(f) = -it3 + \t2 + t for 1 < t < 2 ; 
C3f3(0 = it3 ~ It2 + 3i for 2<t<3, 

lf3f4(0 - " i t 3 + I<2 - T ř + 4 foť ; 3 < t < 4 

(29) : з f(0 



Outside the given intervals all functions vanish. 

(30) c*E(s) = 1 (J - f e - s + 2 e " 2 s - f e - 3 s + }e~4s) 4 

+ - (1 - 4e~ s + 6 e " 2 s - 4e~ 3 s + e~4 s) + 
s3 

+ 1 (1 _ 4 e ~ s + 6 e ~ 2 s - 4 e ~ 3 s + e " 4 s ) , 

(31) C з E(jco) - — ( - ^ + f cos co - 2 cos 2co + f cos Зco - i cos 4co) + 
co2 :;' 

-I ( - 4 sin co + 6 sin 2co — 4 sin Зco + sin 4co) + 
co3 

H (1 - 4 cos co + 6 cos 2co - 4 cos Зco + cos 4co) + 
co* 

+ j I — ( — t sin co + 2 sin 2co — f sin Зco + | sin 4co) + 

H (1 — 4 cos co + 6 cos 2co — 4 cos Зco + cos 4co) + 
co3 

H (4 sin co — 6 sin 2co + 4 sin Зco — sin 4co) . 
co4 J 

Let us now limit ourselves in deriving transfer function and frequency responses 

to the cubic interpolator. 

All expressions (15), (16), (19), (22), (25), (28) and (3.1) are functions of a complex 

variable and both their real and imaginary parts are sums of sine and cosine functions 

of frequency harmonics up to the (m + l)-th order, if m is the order of interpolation. 

This form is suitable for computing particular amplitude frequency responses R(co) — 

— |E(jco)| and phase frequency responses tZ'(co) = arctg [E(jco)]. The responses of 

both kinds are plotted in Fig. 14. The amplitude frequency response of an ideal re­

construction filter is also plotted for comparison there. 

4. DISCUSSION OF RESULTS 

The judgement on the desampling capability of particular interpolators will be 

based On the plotted amplitude and phase frequency responses. It is obvious that the 

quality of reconstruction increases with the order of interpolation. The higher the 

order of interpolation, the better the approximation of the ideal amplitude response 



obtained. This fact fits the results of the computation of sine function reconstruction 
accuracy which were published in [3]. These results are shown in Fig. 15. The re­
construction error is £ = [sin Qt — fr(Qt)\, where sin Qt (Q < W) is the original sine 
wave ax\dfr(Qt) is the reconstructed signal. The error is plotted there as a function of 
the number of samples N per period T = 2n/Q of the original sine wave. The meaning 
the of different line-types is there the same as in Fig. 14. 

Fig. 14. Plot of the amplitude and phase frequency responses of the polynomial interpolators 
( linear interpolation; — quadratic ((a) first or (b) second working interval); 

cubic ((a) first or (b) third working interval); cubic (second working inter­
val); ideal low-pass filter). 

If we compare the amplitude frequency responses of interpolators with their relevant 
impulse responses and the same thing with the ideal filter responses we can judge 
roughly the quality of reconstruction from the very form of the impulse response. 
We can see that with increasing order of interpolation we get a better approximation 
to the ideal filter impulse response and therefore, of course, a better approximation 
to the relevant amplitude frequency response. 

The reconstruction capabilities of both types of quadratic interpolators are the 
same (independently of the phase shift). The same property is in cubic interpolators 
with the first and third working interval. These pairs of interpolators have impulse 
responses which enclose the same area, in spite of their shift and rotation. The fact 



is reflected in different phase frequency responses only, or in other words, in different 347 
phase shifts of their output signals. 

The same statement will always be valid for pairs of interpolators with working 
intervals symmetrically situated with respect to the center of the traced group of dis­
crete values. Interpolators whose working intervals are situated in the center of this 
group are worth more interest. The impulse responses of these types are strictly sym­
metrical. Let us discuss from this point of view the cubic interpolator with the second 
working interval. 

ł í i г c * ß n s y в s г ) 

Fig. 15. Plot of the error of sine wave restoration by means of the first, second and third order 

polynomial interpolators versus the number of samples per period ( linear interpo­

lation; — quadratic (first or second working interval); — •— •— cubic (first or third 

working interval); cubic (second working interval)). 

Of all types discussed this type give the best approximation (ignoring the phase 

shift again) to the impulse response of the ideal low-pass filter. As expected, this type 

also has a relatively flat amplitude frequency response for lowest frequencies. Further­

more, it gives the best suppression of frequencies in the neighbourhood of the central 

frequencies of added spectra, i.e. of frequencies close to wh = 2TT/< (where k = 1, 2,...). 

Therefore its reconstruction capability is the best of all presented types. 

This fact is verified by the computation of the sine reconstruction accuracy (see 

the diagram in Fig. 15). Let us, for example, demand sine reconstruction accuracy 

better then 1%. Then, using the lineal interpolator, we need at least 23 samples per 

period of the reconstruction sine wave; for both types of quadratic interpolators 

12 samples; for cubic types with the first or third working intervals 10 samples; but for 



the cubic interpolator with the second (i.e. central) working interval only 8 samples. 
For this computation, all possible shifts of sampling instants with respect to the period 
of the reconstructed sine wave were taken into account. 

In this paper we have limited ourselves to the reconstruction capability derivation 
of interpolators of order not higher then 3. From the qualitative point of view with 
respect to impulse responses of interpolators with the central working interval, we 
can estimate that the approximation of the shifted impulse response of the ideal 
low-pass filter will be much better in the case of higher order symetrical inter­
polators (for example for the fifth order interpolator with the third working interval). 

If we summarize facts on central working interval interpolators from previous 
paragraphs, supported by results from Fig.' 15, we can say: An ideal low-pass filter is, 
of course, unrealizable. Interpolating circuits introduce the possibility of achieving by 
relatively simple means a sufficient approximation to the ideal low-pass filter impulse 
response. This approximation is, however, shifted in time. In this way, we can imple­
ment a reconstruction filter (desampler) with an amplitude frequency response which 
approximates that of the ideal filter more and more closely as the order of interpolation 
increases. 

There exists, however, some limitation in increasing the order of interpolation. 
Noise decreases the accuracy of higher order interpolation, when differences of higher 
orders are used. We must take into account not only the noise originating in quantiza­
tion of the signal in the sampling process, but also a random noise originating in the 
interpolator itself. 

Up to the last paragraph we have investigated the reconstruction signal from the 
point of view of its amplitude accuracy. Let us investigate now its phase shift with 
respect to the sampled data input signal. 

The phase shifts, as shown in Fig. 14 are high for all types of interpolators. Relative­
ly smallest phase shifts we get in the case of linear, quadratic with the second and 
cubic with the third working interval. These three phase responses create a bunch 
and for the lowest frequencies they practically fuse. Another bunch of phase responses 
is made by the quadratic interpolator with the first and the cubic with the second 
working interval. Relatively the highest is the phase shift in the case of the cubic 
interpolator with the first working interval. It is worth to notice that at symmetrical 
types of interpolation (linear and cubic with the second working interval) the phase 
frequency responses are linear. 

The all frequency responses reach the phase shift tp(a)) = n at relatively low fre­
quencies. This fact is important especially in the case when the interpolator is used 
in a larger feedback system. Phase shifts originating in such a system, together with 
the phase shift introduced by the interpolator, can give rise to undesired oscillation. 
The danger is increased when using higher order interpolators with working intervals 
at the beginning of the traced group of points. 

Therefore, the interpolators (and especially of higher order) are more suitable 



to be used in open-loop systems. There their capability to reconstruct the analog 
signal from a relatively small number of discrete values can be fully utilized. 

Finally let us mention some practical difficulties in implementation of interpolators. 

5. REMARKS ON IMPLEMENTATION OF INTERPOLATORS 

Let us consider the problem of the highest practically realizable order of inter­
polation. All three types of cubic interpolators were implemented without any serious 
difficulty by means of an all-purpose analogue computer. It is convenient to use an 
electronic contact, and a current amplifier in addition to the usual operational am­
plifier for radical shortening of the setting time of the memory capacitor in the hold 
circuit. Then one can shorten the sampling impulse and many difficulties relevant to 
the nonnegligible time duration of this impulse with respect to the sampling interval 
are overcome. In the case of higher order interpolators, there is no limitation on the 
output of the sample-hold circuit due to higher order differencies, as was stated in 
[2] and [3]. The sampling frequency must, of course, be selected appropriately. The 
step input signal is suitable for use only as a test signal for final adjustment of the 
whole circuit (computing impedances and sample-hold circuit). 

An advantage of interpolating circuits is that they can be very easily switched to 
different types of interpolation and, of course, to different sampling frequencies as 
well. Their implementation by temporary technology of integrated operational am­
plifiers is not a difficult task. Suitable sample-hold circuits are offered in miniature 
version. From this point of view the interpolators are more suitable than passive RLC 
filters, using expensive and sizable elements. 

6. CONCLUSION 

It can be said that use of interpolators as active low-pass filters for sampled signal 
reconstruction is convenient, especially there where the primary demand is to recon­
struct the original analog signal from the lowest possible number of samples. The 
whole system in which such an interpolator is used must not be sensitive to phase 
shifts of the reconstructed signal. 

(Received September 26, 1971.) 
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Rekonstrukční schopnost interpolačních obvodů 

MIROSLAV PŘEUČIL 

Článek se zabývá hodnocením schopnosti interpolačních obvodů rekonstruovat 
původní analogový signál ze signálu vzorkovaného, tj. diskrétně definovaného. Byla 
zvolena metoda srovnání interpolátorů s ideálním dolnofrekvenčním filtrem. Z im­
pulsních odezev jsou vypočteny frekvenční amplitudové a fázové charakteristiky 
jednotlivých typů interpolátorů, jsou vyneseny a porovnány s charakteristikou ideál­
ního dolnofrekvenčního filtru. Nepřihlížíme-li k fázovému posuvu výstupního sig­
nálu, stoupá restaurační schopnost interpolátorů se stoupajícím stupněm interpolační-
ho polynomu. Výhodné se jeví zejména typy se symetrickým umístěním pracovního 
intervalu v prokládané skupině bodů. 

Ing. Miroslav Přeučil, CSc, Ústav výpočtové techniky ČVUT (Institute of Computation Tech-
nique, Czech Technical University), Horská 3, Praha 2. 
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