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K Y B E R N E T I K A — V O L U M E 7 7 ( 1 9 8 1 ) , N U M B E R 1 

OPTIMAL DESIGNS FOR THE ESTIMATION 
OF POLYNOMIAL FUNCTIONALS 

ANDREJ PÁZMAN 

Estimates of homogeneous polynomial functionals in regression and generalized regression 
( = infinitedimensional) experiments are investigated. Inequalities are derived showing that 
designs are to be compared according to the minimal variances of unbiassed estimates of the 
functionals under the hypothesis that the response function is zero. This is an extension of pre­
vious results by the author (cf. [6]). The corresponding new optimality criteria, based on the tensor 
power of the information matrix, are derived. A method of computation of the optimal designs 
is presented. 

1. INTRODUCTION AND RESULTS 

We recall briefly the structure of a standard regression experiment. We are given m 
linearly independent continuous functions fu ...,/,„ on a compact metric space X. 
In any point x e l a n elementary experiment can be performed whose outcome is 

assumed to be a gaussian random variable y(x) having the mean E[y(x)] = £ a ; / , (x) 
i = l 

and the variance Var [y(x)] = 1, respectively. Uncorrected observations are per­
formed in different points of X. Any probability measure £ on X supported by a finite 
set is said to be a design of the experiment (£(x) is proportional to the number of 
repeated observations in the point x e l ) . 

Usually we attempt to construct designs that are optimal for estimation of the 
parameters a1( ..., a,„ or, of some linear functions in a., ..., a,„. In the present paper, 
we consider designs for the estimation of one or of several homogeneous polynomials 
in txu ...,ocm. In this case, the variances of the corresponding unbiased estimates 
depend on the true, but unknown, values of a t , ...,a,„. Therefore difficulties arise 
when looking for optimal a priori designs. However, it turnes out that a good opti­
mality criterion is the variance of unbiased estimate of the polynomial which is mini­
mal in case a t == a2 = ... = am = 0. We present arguments supporting this ap­
proach. 
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A nonparametric description of the standard regression experiment is also possible. 
We are given a finite dimensional linear space 0 c C(X) (in the parametric case 

0 = { X « ; L ( ' ) : « e R'"})- Every 9 e 0 is referred to as a possible state of the 
i = i 

observed object, and 9 e 0 is the only a priori information about the state available. 
The role of the functions of the parameters a., ..., am is now played by functionals 
on 0. Moreover, we can drop out the assumption that 0 is of finite dimension. In 
this case we speak of a generalized regression experiment with uncorrelated observa­
tions. This general model makes the Hilbert space techniques (namely the properties 
of Wiener chaos; see [4]) effective and advantageous. 

Let qk denote a fc-linear functional defined on 0k. The polynomial pk on 0 defined 
by the properties 

(1) pk(9) = qk(9,...,9); (9 e 0) 

is said to be homogeneous of degree k. Any polynomial p on 0 can be given as 

(2) P ( S ) = - I A ( S ) ; (9eo), 
k = 0 

where the components p0, ..., p„ are homogeneous polynomials of respective degrees 
0, ..., n. 

We identify the set of all (Borel) probability measures on X with the set E of all 
designs. In particular, if the dimension of 0 is finite then every <J e E is equivalent 
to some design supported by finitely many points (cf. [2]). Within the generalized 
regression experiment this is not true. 

In Section 2 we prove the following assertion: 

Proposition 3a. A homogeneous polynomial pk of degree k is estimable without 
bias in an experiment performed according to a design c if and only if there is a func­
tion I :Xk\~* R such that 

ľ d<f < oo 
Jxk 

and 

(3) pk(&)=\ l(x1,...,xk)9(x1)...9(xk)^(x1)...^(xk); (Be©) 

The minimal variance, under the hypothesis 3 = 0, attainable by unbiased estimates 
of pk equals 

4 / 2 d < f 

if and only if the function / belongs to the I}(Xk, £,k) — closure of the linear space 
spanned by the set 

0ek = {9(-)...9(-); 9 e 0 } . 
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Consequently, a polynomial of the form p = £ pk is estimable without bias if and 
t = o 

only if (3) is valid simultaneously for all components pu ..., p„. 
The variance, Vars U, of an unbiased estimate U of a polynomial depends, in general, 

on 9 e 0 . Nevertheless, if the polynomial is homogeneous of degree k then the fol­
lowing inequalities take place (see Section 2): 

aLM. (4) Var0 (U) S Var, (U) < Var0 (U) £ U * -1 ; (3 e 0 ) 
r=0 V / r ' 

and, for any 9* e 0 , 

(5) l i m m p [ (v» .wr- (VT. . (p )y 'T < 
a^9 . f (8 - ð*)2 d£ 

^S*)2 ^/лГf^^T"1 

if J x (9 _ s*) 2 d£ tends to zero. 

Thus, we can specify the bounds for Vara (U) for an arbitrary $ e 0 in terms 
of Var0 (U), according to (4) and (5). 

Similarly, let us suppose that Uu ..., Us are unbiased estimates for the homo­
geneous polynomials pki, ..., pks of degrees ku ..., ks, respectively. Then the gener­
alized variance of Uu . . . , Us under 3 e 0 is given as 

(6) D,(I7., ..., U.) = det [{Cov, [U, U/]}*J= J 

and we have bounds similar to (4): 

(7) D 0 ( U 1 , . . . , U s ) ^ D a ( U 1 , . . . , U s ) ^ 

*.-!*.-.. /fc\ff92^T 
n = o rs=o i=i \riJ r;! 

(Be ) 

(cf. Proposition 4 in Section 2). 

Let U(9, £, 0) denote the unbiased estimate for pk (see (l)) having the minimal 
variance under 9. As a consequence of (4) we get the inequalities 

(8) Var0 [U(0, I, 0 ) ] ^ Vara [U(9, «J, ©)] ^ 

^Var o[U(O,í ,0)]*J^) •7fciLL ә
2dś 

; ( íeв). 
H 

Similar relations for D^U^S,1, ©), . . . , Us(9, £, 0)) are obtained by means of (7). 
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The above inequalities together with the inequality (27) below suggest the fol­
lowing approach. If we have to estimate the polynomial functional but we cannot 
evaluate the true state & e 0 before estimating, then we may base the optimality 
criteria of the design on the variance 

Var0 [17(0, £, &)] 

or, on the covariance matrix 

{Cov0 [Uf(0, {, 0), U/0,^,0)]}^. 

If the regression experiment under consideration is standard (i.e., 0 = {$ : 9(x) = 
= f'(x) a; a e Rm}) then we have good explicit expressions for those optimality 
criteria. In Section 3 we deal with Var0 [U(0, £,, 0 ) ] . The polynomial pk (see (l)) 
can be written as 

(9) P*(8) = f y , - , , . . . , ^ . . . ^ ; (!>(•) = f'(-) a e0), 
i l , . . . , ! ' k = l 

where the given coefficients yit ik may be supposed to be symmetric with respect to 
all permutations of the subscripts iu..., ik. The polynomial pk is estimable 
without bias if and only ifthere exist the numbers Sh„. ,ik;(ij = 1, ..., m; j — 1, ..., k) 
such that 

(io) yh t> = nMt)hir*j, A-
r = l 

Here, M(^) stands for the information matrix 

(11) M(e)=^ j(x)/'(x)d^(x). 

Let M^(^) denote a g-inverse of M(<f). Then 

(12) Var0 [U(0, c, ©)] * t £ * 
h,...,ik"i j , J k =l 

xfI{M-(0}Wr?, A-
r = 1 

A design minimizing the right-hand side of (12) can be computed by means of an 
iterative procedure. We start with a nonsingular design £„0. Then we add a new point 
according to 

(13) t„+l = (l --±-\zt +_L_^ ; („ = „„ + 1, B0 + 2 , . . . ) , 
V « + i j » + l 

where £Xn + 1 is the measure concentrated at x„ + 1 and x„+1 is chosen so that it gives 
the maximal descent of Var0 [U(0, £„, 0 ) ] . The convergence proof for the proposed 
procedure is given in Section 3, Proposition 7. Even the function M(£) H-> 
t-> Var0 [U(0, £,, 0 ) ] is convex and differentiable, the convergence proof does not 
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follow from the ideas used to study general algorithms that have appeared recently 
(see e.g. [ l]) . The point is that our optimality criterion is not regular (cf. also [8]) 
so that a special consideration is necessary. Especially, the following auxiliary 
proposition is used, which is an extension of the convergence theorem in [5] and 
which is important in the proof of Proposition 7. 

Propositions. Let {xt}T=1 c l b e an arbitrary sequence and let M„ denote the 
matrix 

(14) M„ = i f(xt) f '(*,) ; (« = 1,2, . . . ) . 
i = 1 

Then there exists n0 such that 

(15) £ [ f ' K + i ) M ; 1 f ( x „ + 1 ) ] 2 < o o 
n = no 

if al least one of the following conditions is satisfied: 

a) X is finite and det M„0 > 0; 

b)liminfdet(M„/n) > 0; 

c) lim sup n" f'(x„) M„~' f(x„) < co for some 0 e (0, l). 

2. ESTIMATES 

Let J* denote the Borel tr-algebra on X. Let ^ be a probability measure on 3F 
(a design). Consider a set {Y\F) : F e 3F} of gaussian random variables such that 

(16) E,[Y«(F)]= J \ d c ; ; (Fe3F), 

Covs [Y%F), y*(F')] = i(F n F) ; (F, F'e&), 

Y% U Fi] = I Yi(Fd a e - ; (Fi n Fj = 0 if i # ;) 
i = i > = i 

for all 3 e 0. As known, to any probability space (X, # r , £) we can associate a measu­
rable space (Q, £f), a family {Ps : 9 e 0} of probability measure on (Q, Sf) and a set 
{Yi(F):Fe§'} of gaussian random variables having the properties (16) (cf. [4] 
chapt. IV). 

We identify {Y^(F) : F e 2F} with the set of observables in a generalized regression 
experiment when using the design £. In case of a standard experiment (dim 0 < oo) 
we can specify the design by £(x.) = lV./JV, (' = 1, •••, k), N ; being the number of 

replicae of observations in xh N = £ JVf being the total number of observations, 
i = i 
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respectively. Let y(xt) denote the arithmetic mean of the values observed in .x,. 
Then 

^(F) = I Nt y(Xi) ; (E e ?) 
x,eF 

define a set of random variables satisfying (16) up to a multiplicative constant. 

Our investigation of the estimation theory within the generalized experiment will 
be based on the following results on gaussian processes (they are useful even in the 
standard situation because in problems of nonlinear estimation they allow to omit 
cumbersome combinatorial computations). 

A) There is a linear bijection T of L2(X, £) onto the Hilbert s p a c e d <= L2(Q, SF, P9) 
spanned by the set (Y%F) : E e &} such that 

£,[</)] = J" 19 d!; ; (/ e L2(£)), 

Cov3 [</ , ) , T( / 2 ) ] = f lj3 dS, ; (Z1; l2 e L2(c)). 

(Here and in the sequel we omit the integration domain in case we integrate over the 
whole space X.)x(l) can be formally interpreted as j l(x) Y^(dx) and the set Jf that 
does not depend on 9 e 0 is identified with the set of linear estimates in the experi­
ment (cf. [4, 7]). 

B) The (i-algebra SF can be chosen as the minimal u-algebra with respect to which 
all the functions Yi(F); (F e 8F) are measurable. Then Es ~ E0 and 

(17) 5 = e x p { T ( S ) - i E 0 [ r ^ ) ] } 
d r 0 

(cf. [4], chpt. VIII). 

C) Let [ L 2 ( £ ) ] G ; denote the i-th symmetric tensor power of the Hilbert space L2(£) 
(especially, L2(£)G° = R). Under the hypothesis 9 = 0 the Hilbert space 0>

i c 
<= L2(Q, £F, P0) spanned by the set of all polynomials in variables Yf(F); (F e $F) 
can be mapped by an isomorphism x onto the direct sum 

expOL 2 (£ ) :=©[L 2 (£ ) ] °* . 
i = 0 

It is worth to give a precise definition of the isomorphism %. If / e L2(£) we define 
the i-th symmetric tensor power of / by 

(18) / ° ' ' : = V ( i ! ) / ® . . . ® / . 

Let 
co JOi 

(19) exp Q / : = © — . 
; = o i! 
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Then 

(20) x[exp {</) - \ E 0 [ T 2 ( / ) ] } ] = exp © / ; (I 6 L2(£)) 

(cf. [4], chpt. VII). 

The set ^B. is interpreted as the set of nonlinear estimates having finite variances 
under the hypothesis 3 = 0. If 3 # 0, then such estimates can possess infinite vari­
ances. However, the polynomials belonging to SP^ are in L2(i2, $", P3) for every 
3 G 0. Therefore we use 0*. as the set containing unbiased estimates for estimating 
the polynomials pk. 

Let <, >s denote the inner product in exp OL2(£). The inner product of any two 
elements Y., Y2e0>

i equals E0(Y1Y2). We denote by {hi}fLl an orthonormal base 
of L2(£). Let / G [L2(£)]0 \ The Fourier coefficients of / are defined by the properties 

bt, „ := ahlt®...® *.,„>«• 
Thus, 

(21) /= £ bt, ikhh®...®hik 
. i , . . . , . k - i 

and 

(22) fi/||2= I bl_ik. 
ii,...,ik=i 

Next introduce the random variable 

(23) Z9(/):=i(H)-1/2(M1/2x{ £ [ £ />„,...,„ x 
r = 0 V / l . + i i f c = l i , , . . . , I , = l 

П Í M ' - f ] * . - , ® - - . ® k Ь 

Proposition 1. For every 3 e 0 ; 

E9[x(/)] = E 0[Z 9(/)] , 

Var9 [x(/)] = Var0 [Z9(/)] < oo . 

Proof. The second assertion is proved in [6]. Let us prove the first one. By the 
definitions of x and 2P$ we have E0[x(/)] = 0 for all / e exp OL2(£). Hence the 
terms in (23) that correspond to r < k are centered as well. Therefore using (17) —(21) 
we obtain 

Eo[Z»(0] = U ~) = <l ^P ©3>? = f x(/) [dP9/dP0] dP0 = £s[x(0] . D 

Now let le [L2(£)]°k and U = x(/), respectively. 

Proposition 2. The inequalities (4) and (5) are valid. 
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Evidently 

Proof. The terms in (23) that correspond to different r e { 0 , . . . , k — 1} and 
j , + 1, ..., ik are orthogonal. Hence 

(24) Var9 [*(/)] = E0[Z9(/) - E0[Z9(/)]]2 = 

= 1 ^ 0 £ [< I *«, iA®-® tV^>/]2 . 
r=0 r! W lr+l,...,fc-l i,,...,ir=l 

Apply the Schwarz inequality to the inner products in (24) and use (22). Then we 
get from 

(25) | / | 2 = Var0 [*(/)] 

(x is an isomorphism!) the right-hand inequality in (4). Since Var0 [:.(/)] equals the 
term in (24) that corresponds to r = 0, the other inequality in (4) is established as well. 
Now let 

_9(Z) = Z9(/) - E0[Z9(/)] . 

Similarly as in (24) we prove that 

E0{[_S(Z) - -S.(Z)]2} _ 

-VaroMo/l^Qll^-^II. 

| 9 ® r _ 9 * ® , | 2 = < s > 9 > r _ 2<iQ> 9 * > r + < s * 5 s # > , _ 

= <3, 9 - 3*>, [ 'f^S, 9>j <_, fl*)',"1'-1] + 
i = 0 

+ <3* - 9, 3*>< [ £ <S*, 3*>< <9, 5*/,-'"1] . 
;=o 

|| n®r n*®r||2 

lim B. -1—Mi = ,•($*, 9*/.-1 . 
8-». ||S - _t*||| ? 

HmsupM__7)_____(_]_< 
9_9<

F j(9-9*)2d<^ 

-Var0M/)/EQ^||9*||r i )-

Finally, we may write 

[(Var9[*(/)]r - (Var^K/)])1'2]2 _ 

_ E0[_9(Z) - Ml)]2 

and this completes the proof of (5). • 
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Let us consider the polynomial pk defined in (1). The random variable x(l) e &>
i 

is an unbiased estimate of pk if 

E,[x(lj] = pk(9); (3e&) 
and 

Vars [x(l)] < oo ; (9 e 0). 

Proposition 3. x(l) e <^. is an unbiased estimate of pk if and only if there exists 
/ e [L2(£)]ek such that 

(26) Pk(») = (k\yi(l,^k),; (De0). 

Proof. Let /f e [U2(£)]Gl (i = 0, 1, ...) denote the components of / in the decom­

position I = © /f. If x(l) is unbiased then both (17) and (20) entail the relations 
i = 0 

A W = f *(/) ~ <^o = </, exp O 9\ = J i </., ^ ; (3 e 0 ) . 
J ft dR0 i=o i: 

Since pft is homogeneous of degree k, we see that /; ^ 0 whenever i ^ k. 

Conversely, assume that (26) is valid. By Proposition 1, Var9 [x(lj] < oo. Finally, 
using again (17) and (20) we get 

Elx(l)] = (kl)-1a9^), = Pk(9). • 

Since J Z2 dg* = ||/||2 = Var0 [x(l)] and </, S®*>« = J /(xl5 ..., xk) 9(Xl)... 9(xk). 
. d^(xx) ... d£(xk), Proposition 3a of Section 1 follows. At the same time, Propositions 
2 and 3 imply that (4) and (5) remain valid for every unbiased estimate of pk. The 
inequalities (8) follow then from (4). 

Now let us consider the simultaneous estimation of s homogeneous polynomials 
p ( 1 ) , . . . , p(s) of the same degree k. Let Ef designate the covariance matrix of the 
unbiased estimate for p(1), ..., pU) that has the minimal variance under 3. As a corol­
lary to Proposition 2 and 3 we get 

(27) 

Consequently, 

(28) 

92dţ 

_r=o V 7 r! 

>»fe(:M det(Eg)gdet(E|)á[det(E§)] 

If we allow the polynomials p_, ..., ps to have different degrees, say fcls ..., ks, then 
bounds similar to (28) can be obtained as shown in the following 

Proposition4. If U1;..., Us are unbiased estimates of px, ..., ps, respectively, then 
the inequalities (7) take place. 
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Proof. Let lte[L2(Z)]°k' and write U, for x(lt). Take Z9(/,) as in (23) and put 
A»(lt) = zs(lt) ~ E0[Z9(/,)]. We use the symbol A9(lt) A ... A A^(1S) to designate 
the antisymmetric tensor product 

( S ! ) - " 2 ^ / i 9 ( i d ) ® . . . ® ^ ( g , 

where the summation is taken over all permutations a := (a\, ..., as) of the set 
(1, ..., s) and sa = ± 1 , respectively. With 

(29) SJLU) = yrl[A,(lt)] - ' i W 1 ' 2 ( f c ; ) 1 / 2 x 

, , . . . , i , c t =l І1,...,І,-1 

we have 
0,(1/., ..., U.) = Eo^.OO A ... A A,(ls)]2 = 

- l ^ A . - . A ^ i J . 

The equation (29) can be rewritten in the form 

where cp/s are orthogonal elements like hir+l ® ... ® h1It and c^'s are the cor­
responding coefficients in (29). Thus 

\Hh)-h(h)\\t = 

= I W! }--5?r|^A...A-,j j*i i (cE'.-.tfr* 

Sп[ï(н)-^)||Sp]. 
The last inequality has been obtained by application of Schwarz inequality to the 

inner products in (29). This proves the right-hand inequality in (7). If 9 = 0, only the 

terms with r = 0 occur in (29) so that we get easily also the left-hand inequality in 

Cl)- D 

3. DESIGNS MINIMIZING Var0 [1/(0, (, 0 ) ] 

Throughout this section we consider the standard regression experiment with 

0 = {S:S(x) = a! f{x), <teRm}. 

Proposition 5. A polynomial pk of the form (9) is estimable if and only if (10) is 
valid. In this case Var0 [U(0, £, 0) ] can be expressed by the formula (12). 
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Proof. Consider an experiment with the set Xk of controlled variables, the set 0 G * 
of states, and the design £*, respectively. Let a linear functional g on 0 ° * be defined 
by the properties that 

(30) g($°k) = p($); ( 8 e 0 ) . 

Apply Proposition 3 to the experiment specified above and to the homogeneous 
polynomial g. We see that (26) is a necessary and sufficient condition for the esti-
mability of both pk (under £) and g (under £*). Similarly, using Proposition 3a of 
Section 1 we deduce that Var0 [U(0, £,, ©)] is but the variance of the BLUE for 
( /d) - 1 g in the new experiment. From (9) it follows that 

0(<p) = E Yt> iu(P(xh,---,xtk); (<peQQk) 
. i , . . . , « k - i 

so that the variance of the BLUE for g is proportional to 

I t r«. J[M(^)]-}il,...,,-jJ-1 jk, 
i1,...,ik=ij1,...jk=i J, Jk 

where M(<f) stands for the information matrix of the new experiment. The expression 
(12) is now obtained using the symmetry of y......)fcl with respect to iu ..., ik. Q 

Let us consider the mapping 

(iu...,ik)i-+yh ik:{l,2,...,m}k^R 

as an element y of the fc-th tensor power [Rm]®\ If we denote by y'S the inner product 
in this space, the relations (9) —(12) take on the following simple forms: 

Pk(&) = y'x®k; (9(-) = f ' ( • ) « £ © ) ; 

y = [M(i)rkS, 

Varo[U(0,£, 0 ) ] « y ' [ M - ^ ) ] ® k
V . 

On the set Jl of all information matrices we define a function $ by 

<P(M) = log y'[M-]®" y , if there exists S e [Rm]®* 

such that y = M®*<5; 

= oo otherwise . 

The formula <P(A) = log y'(A_1)®'t y extends $ to the set of all nonsingular m x m 
matrices. The gradient V$, 

{V$(M)} ( , :=^(A)/5{A}, . , |A = M 

is well-defined for all nonsingular M e JL 

Proposition 6. The function $ is convex on Jt and, moreover, it is strictly convex 
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and differentiate o n l t : = {M : M e I , det (M) > 0}. Its gradient can be expres­
sed as 

(31) {V<KM)};; = - f c ( j j [M"1]®^1 ' ( ^ ' [ M " 1 ] ® ' y 

(i,j = 1,..., m), where e; is the i-th unit vector in Rm, ({e;}y = <5;j-). 

Proof. The expression (31) is obtained by a direct computation using that 

V{M-% = - M - ^ M " 1 , 

where {I(y)}r>s = 0 if r # i or s # j and {l(y)}r,s = 1 if r = i, s = j . 
To prove the strict convexity of _ on .#+ take M., M0 e „#+, P e (0, 1). Denote 

M„ := (1 - j3)M0 + 0M, and f(M) := / [ M " 1 ^ . We have 

f32) _!_____) - _____ U M ^ _!l__k) _ (
/ _ M i )YI 

Using again that 

l í M r ^ - M ^ - M o j M ; 

we obtain 

^ M = - f c y ' ^ - ^ M . - M^M; 1 ] ® [M,- 1 ] 8 *" 0 ? . 
dfi 

^ M _ 2ky'[M;1(M1 - M0)M,"1(M1 - M^M,"1] ® [ M , - 1 ] ^ - " y + 

+ (fc - i) fc Y{M;1(M1 - M0) M^1] ® 

® [MJ^M. - M0) M;1] ® [M;1]®^-2 ' y . 

This allows to prove that 

_____ 
dp2 

(using the Schwarz inequality), thus d2^>(Mp)jdp2 > 0. The function <P is strictly 
convex on {Mp : /? e (0, 1)} and therefore also on Jf + . 

If M.,M0e*#, «_(M0) < oo, .(Wd) < oo, take MJ = lim(M; + el)"1; (i -
£-»0 

= 0, 1). Hence the inequality &(Mp) g (1 - j8) _ (M0) + P $(M.) follows from the 
convexity of _ on Ji + . If $(M.) = oo of $(M0) = oo this inequality is evident. • 

Next we shall consider the algorithm proposed in Section 1. Let M„ be as in (14), 
M(Q = Mjn, and write f„ for f(x„). Let 

d(x,M(^)):=f'(x)M-1(c:)f(x). 
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Then, according to the relation M„ + 1M„"+1 = I, we can prove that 

(33) M;+\ = M ; 1 - [1 - d(x„+1, M(Q)jn]~i M;1f„+1f„'+1M;1 . 

Now use the symmetry of yily...jk and (33); then we get 

(34) Y[M-((„.,)r'j-

- Cv1)' I 0 b^^d,8,"tM_'(or"*" -' 
where 

the component f„+1 being repeated i times. Using the Schwarz inequality 

[ £ (f-+i)i{M-1(a«yry,«1....J2^ 
u = i 

g f ; + . M - U ) ^ i I r,-,i2,...,i,{M-1fc)}iJ7J>J-2 A 
i,j=l 

we obtain 

(35) « < ^ M - U ) ] 8 < * + V ° _ 

^(fU1M-\Qfn+l)
!y'[M^(Qr"y. 

Denote 

ÔФ(M, ff) := A Ф [(l _ /,) M + /řff'] |ß = o< 

and use the fact that lim d(x„+1, M(<Q)/n = 0 (cf. [6]). Using (34) and taking (35) 

into account we get 
(36) log <P[M(Zn+1)] - log <P[M(Q] < 

<k\d2(xn+1,M(Q)} < log 2 | l + дФ[M(Q, f„+1f„'+1] + ; І Q 

The algorithm in Section 1 leads to an f„+1 that minimizes d<P[M(Q, ff']. Since * 
is convex, 3<£[M(£„), f„ + 1f„'+1] < 0 whenever %„ is not (^-optimal. If at least one of 
the assumptions of Proposition 8 is valid then the inequality 

lim log *[M(4 + 1)] - log *[M(«J] < 

< log 2 fl j l + d<t>[M(Q, fn+1fU,] + i ff) I f c l i ^ l 
<l = »0 [ i=2 V / « J 

28 



necessarily entails 

0>=£ ^[M(^),fB+1f„'+1] > - c o . 
„ = „0 

Hence 
lim5*[M(Uf»+if»'+i] = ° -

On the other hand, again from the convexity of <t>, it follows that d$[M(Q, 
f„ + if„'+i] > - e implies $[M(£„)] g inf #[M(£)] + e. We have just proved the 
following 

Proposition 7. The iterative procedure (13) converges to a ^-optimal design, i.e. 

Iim*[M(0] = inf«P[M({)]. 
»~00 i 

Finally, let us prove Proposition 8. 

a) Suppose that the set X is finite. Take x eX and consider the constant (finite 
or unfinite) subsequence of {f„}™=1: 

fnk = f(x); (fc = l,2,...,L(x)). 
Then 

X.(x) " k - l 

k=l i = l 

=LZ[f'W(M„0 + (fc - l)f(x) f'(x))"1 f(x)f ^ — 1 — < oo . 
ft= 1 fc=l ( / c — l ) 2 

Thus 

I [fn'+l ( I MIT1 f„+1]2 < Z T 7 , - ^ < » • 
„ = „o i = l xeXJl=l (fc — 1) 

b) Suppose that the assumptions b) or c) in Proposition 8 are satisfied. Using (33) 
we may prove that 

f M _ 1 f - f"+iM"+ if"+i 
r„+1 JVI» r„+1 - - — - — T T T T T — • 

l-f„+iM„+
1

1f„+i 

It follows that the series (15) converges if and only if 
(37) Z [ f X ' f J ^ oo. 

n = „0+ 1 

Let us introduce a mapping q> : (0, oo) H-> Rm: 

<p(t) = f(xn); ( t e ( n - l , n > , n = 1, 2,...) 
and denote 

(38) M, = [9(u)<p'(u)du. 
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Evidently 

- log det ( J <p(u) <p'(u) du J = - p ' ( ' ) M,_1 tp(.). 

Hence in order to prove (37) we have merely to prove that the integral 

J;=r [ A log det M, I df 
J»o+iLdt J 

is finite. Denote 

(39) u ( . ) : = d e t M , . 

Then 

(40) J = f ^(OM,-1^)!,-^)--
Ju<no+l) U 

The set X is compact, hence |<f»(t)| S C for some C < oo. We may write 

det M(i) i,j = i 

where Ml
t''

j) := det M,{M,~1} ;j- may be written as 

M ^ - I X n [V'(M)M")d«-
a l*i JO 

o(I)*J 

Hence 

| M P | < ( m - l ) ! C 2 ( m - 1 ¥ " - 1 ) . 

It follows that 
• / A I V „ - I ' / \ ^ C2m(m-1)! <p(t)Mt >( f ) < • i >- . 

^ W VK)~ tdet(M,/r) 
Setting 

u(t) = f det (M./0 

in this inequality, we obtain 

r V \ » « - l / \ / C 2 m ( m - ! ) ! -
ffl'm M, <p(t) < i L . . 
V U V U - [ l i m i n f d e t ( M „ / n ) ] < 1 - 1 / m > ullm(t) 

It follows that 

J < const M-<1 + 1/m) dw < oo . 
Analogically, from assumption c) it follows that 

[u(t)ylm 

ß/n 

where £,* is the D-optimum design. The integral J is finite again. • 

(Received March 20, 1980.) 
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