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KYBERNETIKA —VOLUME 17 (1981), NUMBER 1 

COMBINATIONS AND TRANSFORMATIONS OF SOME 
GENERAL COALITION-GAMES 

MILAN MARES 

The general coalition-game model suggested in [2] is considered, and a few types of combina­
tions and transformations of such games are investigated. It is shown that a conjunction, disjunc­
tion, and combination of two general coalition-games is, under natural conditions, also 
a general coalition-game. Also the main relations between the solutions of the original games 
and the resulting one are derived. The general conditions under which a transformation of the 
imputation space preserves the existence of general coalition-games were presented in [5]. It is 
shown in this paper that the same conditions are sufficient for the preservation of some important 
special properties of the games like their superadditivity, subadditivity and additivity. Also the 
preservation of the convexity, concavity or linearity of the sets of available imputations is con­
nected with the same conditions. 

0. INTRODUCTION 

The concept of the general coalition-game was introduced in [2]. There are two 
kinds of problems connected with those games investigated in this paper. The first 
one concerns the properties of combinations of general coalition-games. Let us sup­
pose that the same set of players plays two different coalition-games, and that the 
sets of achievable imputations can be somehow combined (intersected, uniiied, 
convexly combined). Such situation may appear in some applications, for example 
in situations in which players optimize their decisions according to two different 
criteria or when they should respect different kinds of constrains and interests (e.g. 
the theoretical budget set and the really existing quantities of goods in a market), 
The achieved result is valued from the points-of-view of the partial games, and the 
final evaluation of the result is a combination of the partial ones. It is shown in this 
paper that the combination of general coalition-games is also a general coalition-
game, and the main results describe the main relation between the strongly stable 
solutions of the original games and their union, intersection and also combination. 

The second group of problems investigated in this paper concerns the transforma-
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tions of a general coalition-game into another one. The transformations, generally 
investigated in [5], are realized by means of one-to-one transformations of the 
imputations space onto itself. It is shown here that the game-preserving transforma­
tions of the imputations space preserve also some important special properties of the 
games like their superadditivity, subadditivity and additivity, and under further 
natural conditions also the convexity, concavity and linearity of the sets of achievable 
imputations. 

1. GENERAL COALITION-GAME 

The concept of the general coalition-game was defined in [2]. Let us denote by R 
the set of all real numbers. Let us consider a finite and non-empty set J, and a map­
ping V of 21 into the class of subsets of the space R1, such that for any set Ke2' 
the set V(K) <= R1 fulfils the following conditions. 

(IT) V(K) is closed; 

(1.2) if x = (Xi)ieI e V(K), y = (j,),e i e R1 and xt ^ y-Jor allieK then y e V(K); 

(1.3) V(K) 4= 0; V(K) = R1 <^>K = 0. 

Then the pair (7, V) is called a general coalition-game, or briefly a game, elements 
of the set J are called players, and the mapping Vis called a general characteristic 
function. 

Any set K e 21 is called a coalition, and any partition of the set J into disjoint 
coalitions is called a coalition structure. If K e 2" is a coalition then we denote the set 

(1.4) V*(K) = {x = (xi)ieI € R1: for all y = (yi)iel e V(K) is either xt > yt for 

some ieK or x{ = yt for all i eK), 

and the mapping V* of 21 into the class of subsets of R1 defined by (1.4) will be called 
a superoptimum function of the game (/, V). 

If Jt c 21 is a class of coalitions then we denote 

V(Jt) = f! V(M) , V*(M) = f) V*(M) . 
MeJi MeJC 

It was shown in [2] that for any coalition K e 21 is 

(1.5) V(K) u V*(K) = R1. 

The vectors from R1 are called imputations. An imputation x e R1 is called 
strongly stable in the considered game (/, V) iff 

(1.6) x e V(jf) for some coalition structure X cz 21, and 

(1.7) x e V*(K) for all coalitions K e 21. 

A coalition structure X <= 21 is called strongly stable iff there exists a strongly stable 
imputation x e Rl such that x e V(X). 



2. AUXILIARY CONCEPTS 

If X c Rl is a set of imputations then we denote by dX the boundary of X, i.e. 
the set of exactly those imputations x e R1 such that any open neighbourhood of x 
contains elements of both X and R - X. The imputations from the set X - dX 
are the inner points of X. 

UK e 21 is a coalition, V(K) c RJ is the corresponding value of the general charac­
teristic function, and if K # 0 then always dV(K) c V(K) as follows from (1.1), 
(1.2) and (1-3). It is not difficult to verify the following statements. 

Remark 1. If Vis a general characteristic function and Ke2l is a coalition then 
for any x e V(K) - V*(K) there exists yedV(K) such that y, > x ; for all ieK. 

Lemma 1. If K e 21 is a coalition and x e R1 is an inner point of V(K) then there 
exists y e 3V(_K) such that y{ > x ; for all i e K. 

Proof. If x e V(K) - dV(K) then there exists a neighbourhood u(x) of x such 
that u(x) c V(K). As u(x) is an open set, there exists z e u(x) such that z ; > x ; 

for all ieK, and Remark 1 implies that there exists ye3V (K) such that yt > z ; 

for all ieK. D 

We say that the general characteristic function V of a game (I, V) is untruncated 
iff for all coalitions K e 21 is 

(2.1) V(K)n V*(K) = BV(K). 

In the opposite case, the general characteristic function V is said to be truncated. 

Lemma 2. If V is an untruncated general characteristic function and x e V(K) — 
- V*(K) then there exists y e V(K) n V*(K) such that yt > x ; for all i e K. 

Proof. If V is untruncated and x e V(K) - V*(K) then x e V(K) - dV(K), 

and x is an inner poit of the set V(K). Lemma 1 implies this statement immediately. 
D 

Let us consider a real-valued vector a = (a0, (a;)ie/) where at least one ah i el, 
is different from zero. Then we denote by Ha the hyperplane in R' defined by 

(2.2) Ha = {xeRI:YJaixi = a0}. 
iel 

The half-spaces defined by the hyperplane Ha will be denoted by 

(2.3) H„+ = { x e # ' : £ > ; * . • = a0} , 
iel 

(2.4) H; ={xeRl:YciiXi^a0}. 
iel 

Let (/, V) and (/, W) be general coalition-games with the same set of players. 
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They are called co-oriented iff for every non-empty coalition K e 2l, K 4= 0, there 
exists a real-valued vector o(K) e R x Rr and a hyperplane /!0(K) i n R'sucn t n a t the 
sets V(K) and PV(K) are in the same half-space defined by the hyperplane Ha(K). 

Remark 2. It can be easily verified that the relation "to be co-oriented" is reflexive 
and symmetric. 

The relation "to be co-oriented" is not transitive, as follows from the next example. 

Example 1. Let us consider three two-person games (/, V). (I, W) and (I, U) 
where I = {1, 2}, and 

U(I) = {x e R2 : x, g 0} , V(l) = {x e R2 : x2 = 0} , 

W(l) = {x e R2 : jc, = 0, x2 S 0} , 

tl({i}) = ^ W ) = ^ ( { ' ) ) = {* e R2 : x ; ,£ 0} , i = 1, 2 . 

Then (I, U) and (J, JV) are co-oriented, and the games (/, V) and (I, W) are also 
co-oriented, but (/, J7) and (I, V) are not co-oriented. 

3. UNION AND INTERSECTION OF GAMES 

The main results of this paper concern the intersection and union of general 
coalition-games. They represent certain kind of operation on the class of games with 
a common set of players defined by the conjunction or disjuntion of the possible 
pay-offs of coalitions. This conjunction or disjunction of pay-offs may be expressed 
by an intersection or union of the respective set values of the general characteristic 
functions. 

Such operations with the general characteristic function influence the values of 
the superoptimum mapping, and the validity of the fundamental conditions ( l . l ) , 
(1.2) and (1.3). That influence is investigated in this section. Further problem in­
vestigated here concerns the mutual relation between the strong solutions (strongly 
stable coalition structures and imputations) of the original games and the strong 
solution of the final general coalition-game. 

Let us consider two general coalition-games (I, V) and (/, W) with the same set 
of players. Then we denote for any coalition Ke2~ the sets 

(3.1) \Vu W] (K) = V(K) u W(K) , [VnW](K)= V(K) n W(K) . 

The first question which hould be answered here is whether the mappings [ F u W~] 
and \Vn W~\ follow the properties of the general characteristic function. 

Theorem 1. If V and W are general characteristic functions on the same class of 
coalitions 2f then [ F u W~\ and [ F n W] are also general characteristic functions. 



Proof. If Ke2' is a coalition then the sets V(K) u W(K) and V(K) n W(K) 
are closed as both V(K) and W(K) are closed. If x g V(K) n W(K) and y e RJ 

is such that yt ^ x ; for all ieK then y e V(K) and y 6 IV(K). Hence, y e V(X) n 
n IV(X). Analogously, if x e V(K) u IV(K), y e R', >>; ̂  x,- for a l i i e K then either 
y e V(K) or y e W(K), and consequently y 6 V(K) u IV(X). Let us choose x e V(K) 
and y e IV(iC) and let us construct ze R1 such that 

z ; = min (x;, >»;) for all i el. 

Then z e V(K) n IV(K) * 0. Moreover, also V(R) u W(K) * 0 as both sets 
V(R) and IV(X) are non-empty. On the other hand, if K 4= 0 then there exists x e 
e R ' - V(K) and y e R ' - IV(K). Then also x e R 1 - (V(K) n IV(K)), and V(X) n 
n IV(R~) + R'. Let us construct z e R1 such that 

z ; = max (x;, yt) for all iel. 

Then 
z e (R' - V(K)) n (R1 - W(K)) = R1 - (V(K) u W(K)), 

and consequently V(X) u W(K) + R7. If K = 0 then both sets V(K) and !V(K) 
are equal to R1. Consequently, also their union and intersection is equal to R1. It 
means that both mappings [Vu IV] and [ V n IV] follow conditions (1.1), (1.2) 
and (1.3), and they are general characteristic functions over the class of coalitions 2'. 

a 
As the mappings [Vu IV] and [ V n IV] are general characteristic functions, it 

is possible to use formula (1.4) to define the superoptimum functions [Vu IV]* 
and [ V n IV]* corresponding to those general characteristic functions. The super-
optimum functions V*, IV*, [Vu IV]* and [Vn IV]* are mutually connected as 
follows from the next lemmas. 

Lemma 3. If V and IV are general characteristic functions on the same set of 
coalitions 21 then for any K e 2' is 

[V n IV]* (K) =) V*(K) u IV*(iC) and [V u IV]* (K) = V*(K) n IV*(K). 

Proof. If K e 21 is a coalition then, according to (1.4), is 

[V n IV]* (X) = {x = (x,.)iE, e R' : Vy e V(K) n IV(X) is either 

yt = X; for all i eK or x ; > yt for some ieK} . 

Let us consider an x e V*(K). Then for all y e V(K) is either yt = xt for all i eK 
or x; > yt for some ieK. It means that the same relations are fulfilled also for all 
y e V(X) n W(K) c V(K), and then x e [V n IV]* (K). Hence, V*(K) c 
<= [ V n IV]* (K), and, analogously, IV*(K) c [Vn IV]* (K). Consequently, 

V*(K) u IV*(K) c [Vn IV]* (K) . 
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Let us consider an x e [V u W]* (K) for K e 2'. Then either x ; = yt for all i e K 
or x ; > y{ for some i e K and for all 

y e [V u JV] (X) = V(JC) u JV(X). 

It means that x e V*(K) and x e JV*(iC), and 

(3.2) [V u W]* (K) <=. V*(K) n W*(K) for all Ke2* . 

Let us suppose, now, that x e V*(K) n W*(K). Then for all y e V(K) is either x ; = 
= )/; for all i eK or x ; > yt for some i e X , and for all y' e W(K) is either x ; = y\ 
for all i 6K, or x ; > j>J for some i eK. If z e V(it) u W(K), then necessarily either 
x ; = z ; for all i e K or x ; > z ; for some i e K, as z is an element of at least one of the 
sets V(K) and W(K). It means that x e [Vu JV]* (X), and 

(3.3) [V u W]* (K) z> V*(K) n JV*(K) for all K e 21. 

Inclusions (3.2) and (3.3) imply the equality which should be proved. • 

The relation between the superoptimum functions [V n W]*, V* and W* is much 
stronger if the considered general characteristic functions V and W are untruncated. 

Lemma 4. If Vand Ware general characteristic functions over the same set of coali­
tions 2', and if at least one of them is untruncated then for all coalitions K e 21 is 

[V n W]* (K) = V*(K) u W*(K). 

Proof. It was proved in Lemma 4 that [ V n W]* (K) => V*(X) u PV*(X) for 
all K e 2'. Let us choose a coalition K e 2 J and an imputation x e R1 such that x ^ 
£ V*(X) u W*(K), and let us suppose that the general characteristic function V 
is untruncated. Then 

x e V(X) - V*(X) and x e JV(K) - JV*(i<C), 

and x is an inner point of the set V(K). According to Lemma 1, there exists y e V(K) 
such that yt > x ; for all i e K, and by Remark 1 there exists y' e W(K) such that 
y'i > x ; all i e K, and y] > Xj for some j e K. Let us construct an imputation z = 
= (zi)isIeR' such that 

z ; = min (yt, y'i) for all i el. 

Then z e V(K) u JV(K), as follows from (1.2), and z, > x ; for all i e K , z ; > x} 

for some j e X. Consequently, x <£ [V n PV]* (iC), and 

[VnW]*(K)cz V*(K) u *V*(K) for all K e 21. Q 

If both general characteristic functions V and fV are truncated then the equality 
from Lemma 4 is not guaranted, as follows from the next example. 
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Example 2. Let us consider two general coalition-games (/, V) and (/, W) with 
the same set of players, and let K = {;,;'} e 21 be a coalition. Let 

V(K) = {x = (xk)kel : x ; < 1, x, < 2} , 

W(K) = {x = (x,) teJ : x ; < 2, x, < 1} . 

Then 
V(K) n V*(K) = {x = (x*)te, : x ; = 1, x, = 2} , 

8V(K) = {x = (x t) t e I : x ; = 1, x, ^ 1} u {x = (x t) t e / : x, = 1, x ; < 1} , 

and, consequently, Vis truncated. Analogously, also Wis truncated. It can be easily 
seen that 

[V n W] (K) = V(K) n JV(K) = {x = (xk)keI : x ; < 1, x, < 1} , 

[VnW]* (K) = {x = (x,) t e l : xt > 1} u {x = (xk)m : x, > 1} u 

u ( x = W t e / : x i = 1, x, = 1} , 
but 

V*(X) u JV*(K) = {x = (x*)te, : x ; > 1} u {x = (x*)te, : x, > 1} , 

and then 

[ V n JV]* (K) - (V*(K) u *V*(K)) = {x = (x t) t e I : x ; = 1, x, = 1} . 

Lemma 5. If V is a general characteristic function and K e 21 is a coalition then 

V(X) n V*(K) c aV(X) = dV*(K). 

Proof. If xedV(K) then for any open neighbourhood u(x) of x there exist 
y e u(x) and z e w(x) such that y ; < x ; < zt for all i eK, and y e V(X) - V*(K), 
ze V*(K) - V(K). It means that xedV*(K), too, and dV(K) c 3V*(X). It is 
possible to prove in an analogous way that d V(K) 3 d V*(K). Let x e V(X) - d V(K). 
then there exists an open neighbourhood u(x) <= V(K) — dV(K) and an imputation 
y eu(x) such that yt > xt for all i eK. It meaiis that x £ V(K) n V*(K), and the 
remaining inclusion is proved. • 

As follows from the last lemma, equality (2.1) valid for the untruncated general 
characteristic functions turns into an inclusion in the general case. The class of 
untruncated general characteristic functions is closed with respect to the operations 
of union and intersection as follows from the next statement. 

Lemma 6. If V and W are untruncated general characteristic functions over the 
set of coalitions 21, then the general characteristic functions [ V u JV] and [ V n FV] 
are also untruncated. 
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Proof. If Vand JVare untruncated then for all K e 2" is 

V(K) n V*(K) = dV(K) and W(K) n JV*(K) = dW(K) . 

For any K e 27 is 

d [Vn JV] (K) = foV(X) n W(K)) u (SPV(K) n V(/t» = 

= (V(K) n V*(K) n FV(K)) u (*V(K) n W*(K) n V(X)) = 

= (V(K) n JV(/<:)) n (V*(X) u W*(K)) = [V n W] (K) n [V n JV]* (K), 

as follows from Lemma 4. Hence, [ V n JV] is untruncated. On the other hand, as 
follows from Lemma 5 and Lemma 3, 

3[Vu W](K) = a [ V u W]*(K) = d(V*(K) n W*(K)) = 

= (dV*(K) n W*(K)) u (3H^*(K) n V*(K)) = 

= (V(K) n V*(K) n JV*(lC)) u (W(K) n JV*(K) n V*(K) = 

= (V*(K) n *V*(K)) n (V(X) u PV(K)) = [V KJ W]* (K) n [V u W] (K), • 

The relations between the strong solutions of the general coalition-games (/, V), 
(L W), (I, [ V u JV]) and (/, [ V n ^ ] ) are described by the following theorems. 

Theorem 2. Let (f, V) and (/, W) be general coalition-games, let X be a coalition 
structure, and let x e V(X) n W(X). If x is strongly stable in (/, V) then it is 
strongly stable in (l,\V r\ W]), too. 

Proof. It is supposed that 

x e V(K) n W(K) = [V n JV] (K) for all K e / , 

and, moreover, x e V*(L) for all L e 2l. It means that 

x e V*(L) u fV*(L) c [V n W]* (L) for all L e 2 J , 

and x is strongly stable in (/, [V n JV]). • 

Theorem 3. Let (/, V) and (/, W) be general coalition-games. If an imputation 
x e R' is strongly stable in (I, V) and in (/, W) then it is strongly stable in 
(/, [Vu W]). 

Proof. If x is strongly stable in (7, V) then there exists a coalition structure 
X c.21 such that x e V(X). It means that x e V(K) and also x e V(K) u W(K) 
for all K e X , hence, x e [ V u W](X). Moreover, for all coalitions L e 2l is 
x e V*(L) and x e W*(L). Then 

x e V*(L)n W*(L) = [Vu JV]*(L) for all L e 2 ' , 

and, consequently, x is strongly stable in (/, [V u W]). • 
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Theorem 4. Let (I, V) and (I, W) be general coalition-games. If x e Rl is an im­
putation such that x e V(jf) for some coalition structure J c 2 ' and if x is 
strongly stable in (I, \Vu W7]) then x is strongly stable in (I, V). 

Proof. It is assumed that x e V(x) for some coalition structure X, and that 

xe[VuW]*(L)=V*(L)nW*(L) for all L e 2'. 

It means that x e V*(L) for all L 6 27, and x is strongly stable in (/, V). • 

4. CONVEX COMBINATION OF GAMES 

If there exist two or more games with the same set of players then the final profit 
of the players may be expressed in more ways according to the actual interpretation 
of the composed game. The conjunction and disjunction of the partial sets of imputa­
tions were investigated in the foregoing section. Here, we shall consider the coalition-
game which is defined as a convex combination of two other games of the same 
players. There is no general rule describing the relation between the solutions of such 
games, but it is possible to show that any convex combination of two co-oriented 
games is also a general coalition-game. 

Let us consider two general coalition-games (I, V) and (/, W) with the same set of 
players, and a real number X e [0, 1], Let U be a mapping of the set of coalitions 21 

into the class of subsets of R1 such that for any coalition K e 27 is 

(4.1) U(K) = {x e R7 : 3y e V(K), z e W(K) such that x = Xy + (1 - X) z} , 

and let us denote 

(4.2) U = XV +(\ - X)W. 

Then we say that vis a convex combination of the general characteristic functions V 
and W. It is shown in the following theorem that if the games (I, V) and (I, W) 
are co-oriented (c.f. section 2) then any convex combination of their general charac­
teristic unctions is also a general characteristic function. 

Theorem 5. Let (/, V) and (7, W) be co-oriented general coalition-games, and let 
X e [0, 1] be a real number. Then the pair (I, U), where U = XV + (1 - X) W is 
a convex combination of V and W, is also a general coalition-game. 

Proof. The closedness of the sets U(K) for all K e 27 follows from the closedness of 
V(K) and W(K) and from (4.1). Let us consider an imputation x e U(K) for some 
JCe27, and x' e R1 such that x\ = xt for all ieK. Let us suppose that y e V(K) 
and z e W(K) are such that x = Xy + (1 — X) z, and let us denote for a l l ; e I 

y'i = yt + x'i - xt = y-i > z\ = z ; + A - xi = z.- • 
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Then y' = (y't)ieI e V(K), z' = (z%eI e W(K), and 

Xy'i + (1 - X) z\ = Iv; + (1 - X) Z; + *;• - x ; = x\ for all i e I. 

It means that x' e U(K) if 0 g A g 1. (For A = 0 or A = 1 is (1.2) fulfilled im­
mediately.) As both sets V(K) and W(K) are non-empty for all K e 2', the sets U(K) 
are also non-empty for all K e 2'. If K + 0 is a non-empty coalition then there exists 
a hyperplane HK such that both sets V(K) and W(K) belong to the same half-space 
according to HK. It means that also U(L) belongs to that half-space and, conse­
quently, U(K) + R1. If, on the other hand, K = 0 then both, V(K) and W(K) 
are equal to R1, and then also U(K) = R1. Hence, the mapping U fulfils conditions 
(1.1), (1.2) and (1.3), and the pair (I, U) is a general coalition-game. • 

Remark 3. It follows from the previous proof immediately that if (J, V) and (/, W) 
are co-oriented general coalition-games, A e R, 0 ^ A <j 1, and if (7, U) is a general-
coalition-game such that U = AF + (l — X) W then the general coalition-game is 
co-oriented with both games (/, V) and (/, W). 

If the general coalition-games forming the convex combination (/, U) are not 
co-oriented, then the pair (I, U) need not be a general coalition-game, i.e. the map­
ping Udoes not generally fulfil the conditions (IT), (1.2) and (1.3). It is illustrated 
by the following example. 

Example 3. Let us consider two general coalition-games (/, V) and (/, W) with the 
set of players I = {1, 2} containing exactly two elements. Let 

V(I) = {y = (yu y2) e R2 : -2Yl + y2 = 0} , 

W(I) = {z = (Zl, z2) e R2 : - z . + 2z2 g 0} . 

Let us consider A = ^. Then 

U(7) = [ A F + ( l - A ) * V ] ( / ) = 

= {x = (xu x2) eR2 : 3y e F(/), z e W(/) such that 

Xi = >>./2 + Z./2, x2 = j;2/2 + z2/2} = R2 = Rf. 

It means that the set U(l) does not fulfil condition (1.3) and the pair (/, U) is not 
general coalition-game. 

5. GAME-PRESERVING TRANSFORMATIONS 

It was already mentioned in the introduction that this work is a free continuation 
of the author's paper [5]. It is useful to repeat here a few notions and results intro­
duced there. They are presented here without comments and explanations which 
were already done in the referred paper [5]. 
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Let us consider a one-to-one transformaion T of R1 onto R1. If x = (xt)iel e R1 

then (Tx); are components of the transformed vector Tx e R1. If M c R1 is a set of 
imputations then 

(5.1) TM = {x e R1 : 3y e M /or w/iic/i x = Ty} . 

The transformation Tis called a game-preserving transformation iff for any general 
coalition-game (I, V) the pair (I, T V), where T V(K) are sets of imputations defined 
from the sets V(K) by (5.1), is also a general coalition-game. The transformation T 
is called coordinatewise strictly increasing iff for all i el and all x,yeR' the ine­
quality X; > yt implies (Tx); > (Ty);. The transformation Tis called coordinatewise 
decomposable iff there exist transformations T, iel, of R onto R such that for 
every x = (x,)ieI e R1 is Tx = (T;x;)ie/. 

It was proved in [5] that a one-to-one transformation of R1 onto R1 is a game-
preserving one if and only if it is coordinatewise strictly increasing ([5], Theorem 1), 
and that any game-preserving one-to-one transformation of R1 onto R1 is coordinate-
wise decomposable ([5], Theorem 2). 

If (I, V) is a game and if Tis a game-preserving one-to-one transformation of R1 

onto R1 then we denote for every K e 2l, analogously to (5.1), the set 

(5.2) T V*(K) = {x e Rl: 3y e V*(K) such that x = Ty} . 

It is also possible to define for every coalition Ke2l and every set TV(K) the set 
[T V]* (K) derived from T V(K) by means of (1.4). It was shown in [5] (Lemma 5) 
that for every K e 21 is 

(5.3) T V*(K) = [T V]* (K). 

The relation between the strong solution of a general coalition-game and its trans­
formation was derived in [5] and formulated in the following way. Let us consider 
a game (I, V) and a game-preserving one-to-one transformation T of R1 onto R1. 
Then an imputation x e R1 is strongly stable in the game (/, V) if and only if the 
imputation Tx is strongly stable in the transformed game (I, T V) ([5], Theorem 3). 
Moreover, a coalition structure K c 2' is strongly stable in (/, T V) if and only if 
it is strongly stable in (/, V) ([5], Theorem 4). 

The following auxiliary statement concerns the monotonicity of the game-
preserving transformations. 

Lemma 7. Let (/, V) be a general coalition-game, and let T be a game-preserving 
one-to-one transformation of R1 onto R1. If Jf and J? are coalition structures such 
that V(jtT) => V(<£) then also 

T V(tf) = fl T V(K) => T V(<£) = f]T V(L). 
KeXT LeSC 

Proof. Let us consider y e T V(<£), i.e. y e T V(L) for all L e i f . It means that 
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there exists x e R1 such that y = Tx, and x G V(L) for all L e S£, because Tis a one-
to-one mapping and T V(L) fulfil (2.1) for all L e if. Then x e V(K) for all K e X, 
as V(if) c V(Jf ), and, consequently, y = Tx e T V(K) for all K e / . 

6. ADDITIVITY AND TRANSFORMATIONS 

The general model of games represented by the pair (I, V) includes also a wide 
scale of more special games. One of the most important specialized subclasses of the 
class of general coalition-games is formed by the games with general characteristic 
functions fulfilling certain kind of the additivity assumptions. Such games and their 
properties were investigated in [4], and their main property concerning the game-
preserving transformations, namely the fact that such transformations preserve 
also the additivity, is proved in this brief section. 

Before introducing the main result of this section, it is useful to remember here 
the additivity concepts for the general coalition-games. 

Let us suppose that (I, V) is a general coalition-game. It is called super additive 
iff for all coalitions K, L e 21 such that K n L = 0 is 

(6.1) V(K U L ) D V(K) n V(L). 

It is called subadditive iff for all coalitions K,Le2' such that K n L = 0 is 

(6.2) V*(K U L ) D V*(K) n V*(L). 

The game (I, V) is called additive iff it is superadditive and subadditive. 

Now, the result concerning the transformations of those types of general coalition-
games may be formulated. 

Theorem 6. Let (I, V) be a general coalition-game, and let (I, T V) be its transfor­
mation by means of a game-preserving one-to-one transformation T of R7 onto R7. 
Then (I, V) is superadditive, subadditive or additive if and only if (I, T V) is super-
additive, subadditive or additive, respectively. 

Proof. If T is a game-preserving one-to-one transformation of R7 onto R7 then (5.1) 
and (5.2) imply that for any pair of coalitions K, Le 27, such that K n L = 0, and any 
x G R7 is 

(6.3) x G V(K) oTxeT V(K), x e V(L) o Tx e T V(L), and 

(6.4) x G V(K \jL)oTxeT V(K u L ) . 

Analogously, 

(6.5) x e V*(K) oTxe[T V]* (K) , x g V*(L) O TX e [T V]* (L), 

(6.6) x e V*(K u L) <* Tx G [T V]* (K u L ) , 
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as follows from (5.2) and (5.3). It means that 

V(K u L) => V(K) n V(L) o T V(K u L) => T V(K) n T V(L), 

and 

V*(K u L) = V*(K) n V*(L) ^ [T V]* (K u L) = [T V]* (K) n [T V]* (L). Q 

7. CONVEXITY OF TRANSFORMATIONS 

A special class of general coalition-games including the games with convex, concave 
or linear sets V(K), K e 21, will be considered here, and the transformations of such 
games will be investigated. 

Let us suppose that (/, V) is a general coalition-game with the general characteristic 
function V. Then Vis called convex iff for allcoalitions K e 2' the set V(K) is convex, 
i.e. 

(7.1) xeV(K), y e V ( K ) , Ae [0, 1] -> Ax + (1 - A) y e V(K) . 

Analogously, Vis called concave iff for all KG 2' the set V*(K) is convex, i.e. 

(7.2) x e V*(K) , Y e V*(K), X e [0, l ] =* Ax + (l - A) y E V*(K). 

The general characteristic function V is called linear iff it is convex and concave. 

Remark 4. It is obvious that the convexity of general characteristic functions 
introduced here is of completely different nature than the convexity of the coalition-
games with side payments known from the literature, e.g. from [7] and [6]. 

It will be shown here that there exists a strong connection between the convexity, 
concavity or linearity of a general characteristic function, and the analogous pro­
perties of the considered game-preserving transformation. 

Let us consider a set of players / and a game-preserving one-to-one transforma­
tion T of R1 onto R1. Then T is coordinatewise decomposable as follows from [5], 
Theorem 2 (see also Section 5), i.e. there exists a set of mappings Tt, i e I, of R onto R 
such that for any x =.(jc,)lsi 6 R1 and any i el is (Tx)t = Tx,. The transformation T 
is convex iff all transformations Th iel, are convex, i.e. for arbitrary xh yt e R 
and X e [0, l ] is 

(7.3) TlkXi + (1 - X) yt) ^ XTiXi + (1 - X) Tj,. 

Analogously, Tis concave iff all T;, iel, are concave, i.e. for arbitrary xt, yteR 
and X e [0, l ] is 

(7.4) Ti(XXi + (1 - X) yt) ^ AT;x; + (1 - X) TiVi, 
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and T is linear iff all T;, i el, are linear, i.e. for arbitrary xh v; 6 R and A e [0, l ] is 

(7.5) T;(Ax; + (1 - A) y.) = AT;x; + (l - A) Ty;. 

The transformation Tis linear if and only if it is convex and concave. 

Theorem 7. If (I, V) is a general coalition-game with convex general characteristic 
function V, and if Tis a concave game-preserving one-to-one transformation of R1 

onto R1, then the transformed game (I, T V) is also a game with convex general 
characteristic function T(V). 

Proof. Let us consider a coalition Kel1 and arbitrary x, y e V(K). Then the 
convexity of V(K) implies that for any A, 0 ^ A ^ 1, is 

Ax + (1 - A) y e V(K). 

It follows from (5.1) that 

(7.6) TXGTV(X), TYeTV(K), T(Ax + (I - A) y)e T V(K). 

As Tis a concave game-preserving transformation, the inequality 

AT;x; + (1 - A) T;y; S T(Ax; + (1 - A) y) 

holds for all i el. It means, according to (1.2) and (7.6), that 

ATx + (1 - A) Ty e T V(K) 

and, consequently, the general characteristic function T V is convex. • 

Theorem 8. If (/, V) is a general coalition-game with a concave general characteristic 
function V, and T is a convex game-preserving one-to-one transformation of R1 

onto R1, then the transformed game (/, T V) is a game with concave general charac­
teristic function T V. 

Proof. Let us consider a coalition Kel1 and arbitrary x, y e V*(K). Then the 
concavity of V implies for any A, 0 ^ A :£ 1, the relation 

(7.7) Tx e [T V]* (K), Ty e [T V]* (K), T(Ax + (1 - A) y) e [T V]* (K). 

As T is a game-preserving convex transformation, the inequality 

XTiXi + (1 - A) TiVi 2i T;(Ax; + (1 - A) yt) 

holds for all i el. Then, according to (1.4) and (7.7), is 

ATx + (1 - A) Ty e [T V]* (K) 

and, consequently, the game (I, T V) is a game with concave general characteristic 
function TV. • 
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Theorem 9. If (I, V) is a general coalition-game with linear general characteristic 
function, and if T is a linear game-preserving one-to-one transformation of R1 

onto R1 then the transformed game (I, T V) is a game with linear general characteristic 
function T V. 

Proof. The statement follows immediately from Theorems 7 and 8, and from the 
definitions of the linear general characteristic function and linear game-preserving 
transformation. • 

8. CONSTRAINED GAMES 

The class of general coalition-games described by the model suggested in [2] 
includes also such special types of games which can be hardly expected in the classical 
interpretations of the coalition-games models. It concerns, for example, also games 
in which the total profit of coalitions is not limited, i.e. in which the profit of one or 
more players can increase up to infinity without any proportional change of the 
profit of other members of the same coalition. Such games represent a rarely 
appearing sort of situations. More interesting are games of the opposite type in which 
the profits of players are constrained by some mutual connections. Such constrained 
games are briefly mentioned in this section, and it is shown here that their con-
strainedness is also preserved by any game-preserving transformation of the im­
putations space. 

A general coalition-game (7, V) is said to be constrained iff for any coalition 
Ke2', any imputation x e V(K) and any player ieK there exists an imputation 
yeR1- V(K) such that 

(8.1) ys = Xj for all j el, j =¥ i, and yt > xt. 

It is not difficult to see that any classical coalition-game with side-payments is 
a constrained general coalition-game such that for any coalition K e 2l is 

V(K) = {x = (xi)ieIeRI:YJ*i^<K)} 
ieK 

where v is the classical von Neumann-Morgenstern characteristic function map­
ping 2' into R (cf. [1], [6]). 

Lemma 8. If a general coalition-game (/, V) is constrained and convex then there 
for any coalition structure / c 2 ' exists a hyperplane 

(8.2) Hb(Sf) = {x e R1 : £ btxt = b0) , 
iel 

b = (b0,(bi)ieI)eR x R', bi>0, iel, 

such that 

(8.3) V(^)cz{xeR':YJbixiSb0} and V(X) n Hb(jf) * 0 . 
iel 
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Proof. Since the game (/, V) is convex, the sets V(jf) are convex for all coalition 
structures Jf, and (1.1) implies that the sets V(tf) are closed. It means that there 
always exists a real valued vector (b0, (b,-),e/) e R x R1 and a hyperplane Hb(jf) 
defined by (8.2) such that (8.3) is fulfilled. Assumption (1.2) implies that the hyper­
plane should be constructed so that bt ^ 0 for all i el, and the constrainedness of 
the considered game (/, V) means that the vector (fc,)i6, may be chosen in such a way 
that bt > 0 for all i el. • 

Theorem 10. If (/, V) is a constrained general coalition-game and T is a game-
preserving one-to-one transformation of R1 onto R1 then the transformed game 
(/, T V) is also constrained. 

Proof. It follows from [5], Theorem 2 (see also Section 5) that any game-preserving 
transformation T of R1 onto R1 is necessarily coordinatewise strictly increasing. If 
K e 2', xe V(K), i eK and y e R1 - V(K), where y} = xs for all j el, j 4= i, and 
>-,. > X,. then TxeT V(K), Ty e R1 - T V(K), and Tyj = Txy for all j el, j * i, 
Tyt > Tx;. These relations are true for arbitrary Ke2I,xe V(K) and / e K. It means 
that the transformed game (/, T V) is also constrained. • 

9. CONCLUSIONS 

It was shown here that different kinds of combinations of the general coalition-
games, as well as their game-preserving transformations do not violate their funda­
mental properties and that they do not change the structure of their natural sub­
classes. The fact that the considered class of games is closed under the operations of 
union, intersection, and for co-oriented games also under convex combination 
means that it is sufficiently "rich". On the other hand, it is also sufficiently "homo­
geneous" in the sense that it includes naturally related objects. Moreover, the main 
properties of the general coalition-games can not be broken by the game-preserving 
transformations. 

It is obvious that the concept of the convex combination investigated in Section 4 
can be easily substituted by more general linear combination where for some games 
(/, V) and (/, W) and any coalition K e 21 is 

U(K) = A V(K) + j . W(K) = 

= { x e K ' : 3 y e V(K), z e W(K) such that x = Ay + bz] 

for positive real numbers 1 and /(. It is not difficult to verify that the results of Section 
4 would keep unchanged. 

It was also mentioned in Section 4 already that there exists no general and suf­
ficiently strong relation between solutions of the original games and their convex 
combination. However, there probably exist some relations of such kind which are 
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valid for special classes of games. These results can be derived if the application of 
such special games is desirable. 

It is probably possible to derive that the game-preserving transformations preserve 
also some other special properties of the games in addition to the ones which were 
considered here. However, the properties investigated here belong to the most im­
portant ones. Some results analogous to the presented ones can be obtained for 
particular properties and classes of games if it were useful for actual applications of 
the general model. 

(Received April 28, 1980.) 

R E F E R E N C E S 

[1] R. D. Luce, H. Raiffa: Games and Decisions. Introduction and General Survey. J. Wiley & 
Sons, New York 1957. 

[2] M. Mareš: General coalition-games. Kybernetika 14 (1978), 4, 245—260. 
[3] M. Mareš: Dynamic solution of general coalition-games. Kybernetika 14 (1978), 4, 

261—284. 
[4] M. Mareš: Additivity in general coalition-games. Kybernetika 14 (1978), 5, 350—368. 
[5] M. Mareš: Transformations of general coalition-games. Problems of Control and Informa-

tion Theory 9 (1980), 2, 103—110. 
[6] J. Rosenmüller: Kooperative Spiele und Märkte. Springer-Verlag, Berlin—Heidelberg— 

New York 1971. 
[7] J. Rosenmüľler: Extreme Games and Their Solulions. Springer-Verlag, Berlin—Heidelberg— 

New York 1977. 

RNDr. Miìan Mareš, CSc, Űstav teorie informace a automatizace ČSAV (Institute oflnforma-
tion Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou v ží 4, 
182 08 Praha 8. Czechoslovakia. 

61 


		webmaster@dml.cz
	2012-06-05T08:39:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




