
Kybernetika

Jan Ámos Víšek
On the continuity of the minimal α-entropy

Kybernetika, Vol. 17 (1981), No. 1, 32--44

Persistent URL: http://dml.cz/dmlcz/124380

Terms of use:
© Institute of Information Theory and Automation AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124380
http://project.dml.cz


K Y B E R N E T I K A — V O L U M E 17 (1981), N U M B E R 1 

ON THE CONTINUITY OF THE MINIMAL «-ENTROPY 

J A N Á M O S V Í Š E K 

Sufficient conditions under which the minimal a-entropy is a continuous function of para­
meters of the family of the probability measures are given. For the special case of the location and 
scale parameter these conditions are specified. Moreover under the assumption f(x) is a sym­
metric density, the continuity of the minimal a-entropy at the origine for the location parameter 
case is proved to be equivalent to the continuity in the quadratic mean of the square root of the 
density f(x). 

1. INTRODUCTION 

For i.i.d. random variables H. Chernoff [ l ] showed that logarithm of the 
minimal a-entropy is equal to the asymptotic rate of the convergence of the error 
probabilities when a hypothesis against an alternative is tested. In 1972 A. Perez has 
generalized Chernoff's results for the case of stationary probability measures. 

Now testing a hypothesis against an alternative and utilizing a likelihood ratio as 
a test statistic one can be iterested in changes of the asymptotic rate of convergence 
of the error probabilities which will occur when deviations of the hypothesis or of the 
alternative happen. In the present paper sufficient conditions under which these 
changes are continuous with respect to the parameters of the family of the probability 
measures are found. This is made by proving the continuity of the minimal a-entropy. 
The continuity of the minimal a-entropy guarantees not only continuity of the above 
described changes when we use the likelihood ratio test but it enables us (it will be 
done in a next paper) to prove the continuity of these changes even if an approximate­
ly best test is used. 

It is intuitively clear that to prove the continuity of the minimal a-entropy one will 
need to assume a continuity of the family of densities of the probability measures 
with respect to its parameters. But as can be heuristically justified, the continuity 
of the minimal a-entropy should not be dependent on the choice of the densities. 
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It leads to an idea that the conditions should be stated in an integral form. From the 
point of view of an easy utilization of the results a form of the conditions including 
assumptions on local properties of densities seems to be reasonable, too. Both 
demands are satisfied in the present paper. 

2. NOTATIONS 

Let SC and 0 be metric spaces with metrics gx and g0, respectively. Let J1 be 
a Borel cr-algebra over SC and let us have, for every 0 e 0, defined on (SC, 3$) a probabil­
ity measure P0. Let for every 0 e 0 Pg be absolutely continuous with respect to a a-
finite measure pt. Let f(x, 0) be the Radon-Nikodym derivative of the measure Pe 

with respect to the measure /i. Let us write | x | instead of gx(x, 0). Let Jf denote 
the set of all positive integers. 

Let 0j, 02 e 0 and a. e [0, 1]. Let Hx(0ly 02)(resp. H(01; 02)) denote the a-entropy 
(resp. minimal a-entropy) of the measure P9l with respect to the measure P02, i.e. 

HX(0U 02) = \r(x, Gjf-'tx, 62) dju , 0 < a < 1, 

HO(91,02) = UmHx(01,02), 
_-o + 

# . (0 . , 02) = lim Ha(0u 02) 
upl­

and 
H(0U02) = min HX(0U G2) . 

OSctgl 

(These limits exist because \f~(x, 0I)f
1 ~*(x, 02) dpi is a convex and bounded function 

of a e (0, 1).) Finally for 0* e 0 and <5 > 0 let 0(0*, 8) = {0 e 0; g9(0, 0*) ^ <5}. 

3. ASSUMPTIONS 

Let hereafter du 02 e 0 be fixed points. 

Al. Let for any real K > 0 the density f(x, 0) uniformly in a set {x e SC; 
|x| | =. K} \iT be a continuous function of 0 at the point 0., where n("if) = 0. 
(As in the following in all proofs of assertions only integration (with respect to /z) 
will be used we can assume to have f(x, 0) continuous at 0t uniformly for all x e 
e{xeSC; \x\ ^ K}, i.e. 

(Ve > 0) (38 > 0) (V0 e 0, ge(0, 0,) < 8) and 

(Vx e SC, \x\ < K) : \f(x, 0) - f(x, 0,)\ < e .) 
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A2. Let for any e > 0 exist <5 > 0 and K > 0 so that for every 0 e &(QU S) 

I f(x,9)dfi<e. 
J{«3-;||x]|>K} 

A3. Let the density f(x, 9) (as a function of 0) be continuous in the mean (with 
respect to /i) at the point Qx. 

4. GENERAL CASE 

Lemma 1. Let Al and A2 hold. Then the a-entropy Ha(6, Q2) is a continuous func­
tion of 0 at the point Qv Moreover for any a t e (0, 1) the continuity of a-entropy 
Ha(9, 92) is uniform with respect to a e(a1 , 1]. 

Proof. Let <xt e (0, l) and e > 0. Applying A2 let us take Sx > 0 and K > 0 so 
that for any 0 e 0(0,, dx) 

f e1 / o" 
/ ( x , 0 ) d / x < ~ - . 

J{xea-;]|*||>X) 4 

Let us denote BK = {x e 3S; \\x\\ gJC}. As the (minimal) a-entropy does not depend 
on the choice of the densities we may assume n(BK) < oo (see [4], Lemma 2.3.5.). 
Considering Al, 52 > 0 can be found so that for any 6e&(61,S2) and any xe 
e{xe3S;\\x\\<K} 

\f(x,Q)-f(x,91)\<i-.E^'.n-i(BK). 

Let 6 = min (5lt 82). For any 0 e &(9X, 6) we have 

\Ha(Q, Q2) - Ha(Qu 92)\ = I (/"(*, 9)fx~\x, Q2) d/x - [f\x, 91)f
l~\x, Q2) d/i < 

< |J |r(x, 0) - /*(*, Q ^ d^Ja||/(x, e2) d^J1_a ^ 

(see APPENDIX, Lemma 1A) 

-^J/MWMOId/j*-

= [ j j / (* , 0) - /(*, 8.)| d„ + j ^ |/(x, 0) - /(*, 0X)| d̂ J" ^ 

- {L , / ( x ' e )" / ( x ' 0 i ) 'd / i +L / ( x ' 0 ) d;u+1- /(X> 0I) d4" -
^ )__ + ! _ + / ,(B)._L_^( < e . D 

- 1 4 4 ^ *;
 2 ^ K ) { - U 
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Lemma 2. Let Al hold. Then the a-entropy HX(9U 02) is a lower semicontinuous 
function of 0 at the point 91. Moreover for any a. e (0, 1) the lower semicontinuity 
of a-entropy Hjf)x, 92) is uniform with respect to a e (0, a0-

Proof. Let a real K > 1 be found so that 

Let a e (0, i ) . Then 

(1) I | j t x ) 0 ) - j a ( x , 0 i ) | j 1 - ! ( x , 0 O d / i 5 i 

< f [/"(x, 0) + j*(x, 00] j 1 - ( x , 02) d» <. 
J«°JC 

=? {[j(*, di) d 4 7 L / ( x ' *-) d 4 ' " + { J / ( x ' e ) d4"{L / ( x> °2) d 4 ' " -

Now let {t„}"=i be a decreasing sequence of real numbers such that lim t„ = 0. Then 

{XB9C; 0 < f(x, 00 < t„+i} <= {x e if; 0 < j(x, 0X) < t„} 

so that 

lim j(x, 02) d/. = 0 . 
n-oo J{xea";0</(x,9,)<l„) 

Let ?j0 e ./F be such that 

Í, j(X,02)d/i< i . 
{XE3-;0</(x,9,)<t„0} \ 6 / 

Now it is easy to see that for / = t„0 and for a e (0, i) 

(2) f |/°(*, 00 - j"(x, 0) | j J - ( x , 02) dn < 
J{xe3-;0</(x,9,)<t) 

^{f j(x,0OdJ7f f(x,92)dfiV * + 
(J{xE2-;0</(x,9,)<t} J (J{xE2-;0</(x,9,)<r} J 

+ {f /(x,fl)dJ'ff j(x,02)dX~"<i. 
(J{xe!T;O</(x,0,)<r} J (J {xeaT;0</(x,9,)<t} J 3 

Now we are going to show that for K as in (l) and for t as in (2) there exist <5 > 0 
and a2 e (0, l) such that for every 9 e <9(01; d) and a e (0, a2) we have 

(3) í \r(x,e)-f«(x,e1)\f
1-«(x,e2)d»se-

J{x6a-;i|x||SJi:,/(x,9,)gt} 3 
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To this end, let us put C = max {n(BK), 1} (see the proof of the Lemma l). Utilizing 

Al let us find 5 > 0 so that for every 

0 e 0(0u 5) and x, ||x|j ^ K the inequality 

" e t 
\f(x,e)-f(x,91)\^min 

holds. If z e [f/2, 1] and a > 0 then (tj2f | z ' ^ l and 

i f - I 
•<>• \2 

From it follows we can find a2 e(0, l) so that for every pair zu z2 e [f/2, 1] and 

a e (0, a2) 

Now for any 0 e 0(6u 5) and a e (0, a2) the following inequality is true. 

f \r(x,9)~r(x,el)\f
i-(x,e4)d^ 

J{xeX;\\x\\<K,f(x,e1)^,) 

S \ \f%X, 0) - f\x, B^f'-^X, 0 4) d/l + 
J{xEX;\\x\\<K,f(x,eo^l} 

+ \ • \P(X, 0) - f«(X, 0 1) | / 1-='(X, 62) d/1 + 
J{xeX;\\x\\<K,f(x,B)^l,t<f(x,9i)<l} 

+ \ \f*(x,e)-r(x,el)\f-(x,e2)d^ 
J{xe%;\\x\\<.K,t<f(x,el)<l,f(x,t>)<l) 

^ \ | /(x,0)- /(x,01)|/1-tx,02)dp + 
J{xeSC;\\x\\<K,f(x,e1)^l} 

+ \ \f(x,6)-f(x,e1)\f-(x,e2)dfi + 
J {xe£;\\x\\ <K,f(x,6)^l) 

+ ^ \ fl-(x,92)d^S 
3C J{xe«V;\\x\\<K,,<f(x,eo<l,f(x,9)<l) 

^~\ f-(x,e2)d^ 
iC J{xeX;\\x\\<K,f(x,ei)^t} 

^^{KBK)Y^f(x,e2)d^ <^ -

з 
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Let 0 e &(BU 8) and a e (0, a2). Then 

Ha(e,e2)~ Ha(eue2)^ 

^ f (f(x, 9) ~ f*(x, 0,)) f»- «(x, 02) d ^ - £ 
J{xea-;/(x,8,)>0} 

as it follows from (l), (2), (3). Making use of Lemma 1 one may easy finish the proof. 

• 
Theorem 1. Let Al and A2 hold. Then the minimal a-entropy H(6, 02) is a conti­

nuous function of 0 at the point 9U 

Proof. Let us suppose the theorem does not hold, i.e. there exists a positive e0 such 
that for every <5 > 0 we can find 0 e 0(9u <5) such that 

(4) \H(9, 92) - H(9U 92)\ > e0 . 

Let us put <5„ = l/« for n > 2. For every n > 2 let us find 9„ so that \H(9„, 92) — 
- H(9U 02)| > £0. Let {a„}^=3 c [0, 1] be a sequence such that H(9„,92) = 
= Han(9„, 02) for n ^ 3. The sequence {a„}^=3 is bounded and therefore there exists 
a subsequence {a„w}™=1 so that lim a„(t) = a0 e [0, 1], The a-entropy Ha(0u92) 

* - > C O 

is a (convex) continuous function of a e [0, 1], hence there exists 8X > 0 so that for 
every a e (0, l), |a — a0| < 8t we have 

\Ha(9u 92) - Hao(9u 02)| < & . 

Assuming Lemma 1 and Lemma 2 we can find 50 such that for any a e (0, 1) and 
0 e (9(9u <50) an inequality 

Ha(9, 92) - Ha(9u 92) ^ - -± 

is true. Then 
Ha(9, 92) - Hao(9u 92) = Ha(9, 92) - Ha(9u 92) + 

+ Ha(9u 92) - Hao(9u 92) 2= ~s0 

for any a e (0, 1), ja - a0| < <5, and 0 e (9(9U <50). Let us find n0 e JV such that 

l//i0 < <50 and for every k > n0 we have |a„(fc) - a0| < 8U Then for" any k > n0; 

6,m e Q(8i> §o) and K m - ao| < <5i a n d s« 

H«nW(0nik), e2) - Hao(9u 02) £ - e 0 . 

As Hao(9u 92) ^ H(9U 02), it follows for any k > n0 

HXnm(em, 92) ^ H(9U 92) - e0 . 

Combining it with (4) we obtain for k > n0 

(5) HXnJenm,62)^H(due2) + e0. 
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On the other hand Ha(9, 92) is a continuous function of 9 at the point 9t and for any 
fixed a (see Lemma l). So for a = a. such that Hai(9t, 02) = H(9t, 92) 

lira Hai(9, 92) = H(6t, 92) . 
0-0, 

However Han(9n, 92) = min Ha(9„, 92) and so HXn(9„, 92) < Hai(9„, 92). From it 
o=*si 

we conclude 

lira sup Hanm(9nik), 92) g l i r a Hai(9„m, 02) = H(9t, 92). 

The last inequality, however, contradicts with the inequality (5). • 

Lemma 3. Let A3 hold. Then the a-entropy Ha(9, 92) is a continuous function of 9 
at the point 9t. Moreover for any at e (0, 1) the continuity of a-entropy Ha(9, 92) is 
uniform with respect to a e (a l5 1). 

Proof. Let e > 0, at e (0, l). Let us find 6 > 0 such that for every 9 e 0(Ot, 6) 
we have | \f(x, d) - f(x, 9t)\ d/i < e1'"1. Then for a e (a1; 1) (see Lemma 1 A) 

f |/*(x, 9) - fx(x, 9t)\ r-%x, 92) d,x g 

< | f \f'(x, 9) - f%x, 6JY* dX < e^-'Z s . a 

Lemma 4. Let A3 hold. Then the a-entropy Ha(9, 02) is a lower semicontinuous 
function of 0 at the point 0t. Moreover for any at e (0, l) the lower semicontinuity 
of a-entropy Ha(0, 92) is uniform with respect to a e (0, a^. 

Proof. Let us again assume the lemma is not true. Then there exist e0 > 0 such 
that for every d„ = 1/n (n = 3,4, 5,...), 0„ and a„ can be found so that Q„ e 0(91, 8„) 
and a„ 6 (0, <5„) and we have 

(6) Han(9n,02)<Han(9t,02)~Eo. 

As 0 5£ Ha(9, 9') S 1 we can find a sequence {n(fc)}f=1 <= {n}"=3 such that 
lim HaMk}(0„(k), 92) exists. Then we have from (6) 

rimHanj9„(k),92)-Ho(0t,92) = 
fc-CO 

= lim [HanJOn(k), 02) - Hanik)(9t, 92)] + lim H^JBU 92) - H0(9U 92) -
fc-CO f t—CO 

= ; ™ [ H ^ - w . O2) - HaHk)(9t, 62)] < - e 0 . 

38 



As lim 0„ ( k ) = 0j it follows (see A3) {f(x, 0„(fc))}r=i converges in mean [/i] t o / ( x , 0.) 

and therefore it converges also in measure /i. Now from lemma 2A we have that 
{/(x, 0„(fc)}k°=i converges in probability P 0 2 and so we can choose a subsequence 
{n(ki)}T=i c {Kk)}k = i such that {/(x, 0„(fcl))}r=i converges to f(x, 0,) P f l 2-a.e.. 
Using Egorov's theorem we find a set 4 e i such that P01(A) < e0/16 and 
{/(x, 0,,(ifc,))}."Li converges uniformly for x e A c to f(x,Ol). Let us finally denote 
for i = 1, 2, ..., 0f = 0B(fc l ) for j = '. Then we have 

{0f}r=1 c 0 , lim 0f = 0j , lim/(x, 0f) = f(x, 6,) 

uniformly in x e Ac and 

lim HДØf , 2) < H0( U 2 ьo 

The rest of the proof is analogous to the proof of Lemma 2 so some details will be 
omitted. Let us find t e ( 0 , ^) and 8X > 0 so that for any 0 s 6(9^5^) and any 
a e (0, i ) we have 

(7) f |r(x, 0) - r(x, e^r-^x, e2) d^ < 5 . 
J{iea-;0</(x,9i)<r} 8 

Now let K > 1 be a real number such that 

í f(x,e2)dn<(^\. 
J {*<=£•;||x||>K} \ 1 6 / 

Then 

(s) f \r(x, 0) - r(x, Bt)\r^(x, e2) dn = 
J{xe%;\\x\\>K) 

<2J[ /(x )02)d,r^2(^YU"^|. 
U{^ar;|]x||>Ji:} J \ l 0 / 8 

In the same way we can find (using that P<,2(A) < e0/l6) 

(9) f \r(x, 0) - r(x, 01)|j1-^, 02) d̂  < ^ . 
J /i 8 

Now it is easy to verify (see the proof of (3)) that there exist i0 e J/r and 82 > 0 so 
that for any i 2: i0, a e (0, <52) we have 

(10) f |/«(x, 0f) - f'{x, 0.) | Z 1 - ( x , 02) d^ < £ . 
J{xe%;\\x\\AK,xzA°J(x,e1)^t} 8 
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Further let i* eJ 7" be a number chosen so that i. _ i0 and fx > <5X
 l . Let us take 

i _ ix and a € (0, <52). Then utilizing (7) —(10) we have 

(11) f \f(x, 0?) - f(x, 0O| f~\x, 02) dM _ 
J{j;sa";/(x,e,)>0} 

= f |/1x, 0*) - f(x, e,)\f-\x, 02) d̂  + 
J{xeX;\\x\\>K) 

+ [|r(X, 0*) - f(X, 0O| / '"(x , 02) d^ + 

+ f IjV, 0*) - f(x, 001 j 1 -«(*> e2) d^ + 
J{xeaf;0</(x,9,)<,} 

+ [ \f(x, 0*) - jtx, 0O| f -*(x, 02) d^ _ ^ . 
J{xeX;\\x\\<K,xeA',f(x,eO^) 2 

As Ho(0 l 5 02) = lim Ha(Qx, 02) we can find T > 0 such that for any a e (0, T) we 

have 

(12) \Ha(dt, e2) - H0(eu e2)\ _ ^ . 

Finally let us choose i2 e J/', i2 _ i0 such that for every i ;> \2 

(i3) \Ha,(ef, e2)~ lim Haj(e%e2)\^
eJ>. 

j-*a> 4 

Let <5 = min {<51;<52, T} and i3 = min {i e Jf; i = i2, i > <5-1}. Now for ieJ/~, 
i _ i3 from (11), (12) and (13) it follows: 

limHaj(eJ, 02) - HQ(6U 02) = { lim Haj(0*, 02) - H^e*} Q^ + 

+ {Hai(ef, 02) - Hai(et, 02)} + {Hje. . e2) - _ o ( 0 i ) ^ > 

_{limi/aj(0*,02)-Jr/ai(0*,02)} + 
j->CO 

+ {f [r^^-r^^/^^eodpU 
U{xeS-;0</(x,eI)} J 

+ {HK i(0i , 0 2) - H0(BU 02)} _ - £ i _ 
4 

- \ \r(x, 0*) - r ( * . 0Olf1_"(x. 0a)dM - ££ > _£n 
J {xe2T;0 </(*,»,)} ^ 4 = b° ' 

But it contradict with (6). n 
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Theorem 2. Let A3 hold. Then the minimal a-entropy H(0, 02) is a continuous 
function of 0 at the point 0.. 

P roof of the theorem is analogous to the one of the Theorem 1 and will be 
omitted. 

5. LOCATION AND SCALE PARAMETER 

Remark 1. In the next two corollaries we will consider a continuous density f(x). 
From Lemma 3A (see APPENDIX) one can easy find out that Corollaries 1 and 2 
hold under an assumption of a.e.-jU continuity of f(x)*), too. 

Corollary 1. Let f(x) be a continuous density defined on the real line R and let us 
construct a set {f(x, 0) = f(x — 9)}0eR. Then for {f(x, 9)}0eR the minimal a-entropy 
H(9, 02) is a continuous function of 0. 

Proof. It is easy to see that Al holds. Now let us find K > 2|oa| (now 3E = R, 
hence 0! is a real number) such that j{xeR-1\x\>Ki4}f(x) dx < e and let 0 e R, \Q\ < KJ4. 
Then » » 

f(x - 91-e)dx< f(x) dx < e . 
J{xeR;\x\>K} J{xsR;\x\>KI4} 

So the proof of A2 is a straightforward one, too. • 

Corollary 2. Let f(x) be a continuous density defined on the real line R and let us 
consider a set {f(x, 9) = 0 .f(x. 9)}g>0 (i.e. 0 e R, 9 > 0). Then for {f(x, 0)} e > o the 
minimal a-entropy is a continuous function of 0. 

Proof. Let E be a positive number. As f(x . 9^ is a continuous function (on 
[—K, K], where K is any positive number) let us put Mj = maxj(x . 0j). Let us 

\x\£K 

find 5t > 0 so that for any pair x, y e [ — 0 ^ , 0.K], \x — y\ < dt we have 
|/(x) -f(y)\ < e/30!. Let 5 = min {($./£, e/2M., 0./2}. For any 9e&(9u 5) and 
x 6 [—K, K] the following inequalities hold: 

\f(x, 0) - / ( * . 0O| = |0 -f(x .9)-9, .f(x . 0O| ^ 

^ |0[/(x . 0) - f(x . 0O]| + |(0 - 00 • / ( * • 0i)| = 

g - 0X . - - - + - ? - . M t . 
2 30! 2M. 

It proves that Al holds. The proof that A2is fulfilled is a simple one and that is why 
it will be omitted. • 

Lemma 5. Let f(x) be a density defined on the real line R and let us suppose that 
for any real x, f(x) = / (—x ) and that j1 / 2(x) is continuous in quadratic mean with 

*) We say/0) is a.e.-jU continuous if there exists a set W such that ft(W) = 0 and f(x) is 
continuous on R\W. 
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respect to Lebesgue measure. Let us again construct {/(x, 9) = f(x — 9)}eeR. Then 
the minimal a-entropy H(6, 62) is a continuous function of 8 for all points 9 e 0. 

Proof. It is easy to see that 

(14) H(6', 6") = H1/2(6', 6") 

(for any pair 9', 9" e R). A proof can be given as follows. Let a e (0. l). Then 

Htf, 9") = JV(x - 9')f'-«(x - 9")dx = [f\-z)fl-\-z + 9' - 8")dz = 

= [ .TX-)/1"^ ~°' + e")dz = j"/«(z - 9")f'-\z - 8')dz = Ht.Jp, 9"). 

And finally 
H1/2(9', 9") g Hl/2(8', 9") . H\'lx(9', 9") = Hjfi, 9"). 

That proves (14). Now we can finish the proof of the lemma. Let 8, 9' e R. 

\H1/2(9, 92) - H1/2(9', 92)\ < | f / ( x - 02)dxl1/2 x 

x |[[/1 /2(x - 9) - / 1 / 2 (x - 9')Ydx\U2= | f[/1/2(x - 8) - / 1 / 2 (x - 9')f dxV'2. 

D 
Lemma 6. Let us consider a set {/(x — 0)}9sR, where /(x) is a symmetric density 

on the real line R. Let moreover the minimal a-entropy H(8, 0) be a continuous 
function of 8 at the origine. Then the function /1/2(x) is continuous in quadratic 
mean with respect to the Lebesgue measure. 

Proof. To prove the lemma it is sufficient to verify the equality: 

[H(A, 0) - H(0, 0)] + [H(-A, 0) - H(0, 0)] = 

= f[/1/2(x - A) - /1 / 2(x)]/1 / 2(x)dx + [[/1/2(x + A) ~/ I /2(xY]p/2(x)dx = 

= f [/1/2(x - A) - /1/2(x)] [/1/2(x) - /1/2(x - A)] dx . • 

Theorem 3. Let/(x) be a symmetric density defined on the real line R. Let us define 
a family {/(x, 9) = f(x — 8)}0eR. Then the minimal a-entropy H(9, 92) is a continu­
ous function of 8 at the point 82 iff the function/1/2(x) is continuous in quadratic 
mean. 

Proof follows from the Lemmas 5 and 6. 

Remark 2. In the Theorem 3 the assumption of symmetry of the density f(x) is 
shown to guarantee that the continuity of the minimal a-entropy is equivalent to the 
continuity in the quadratic mean of the square root of the density. From the con­
tinuity in the mean of the density we can find the continuity in the quadratic mean 
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of the square root of the density, but the opposite must not be generally true. So the 
assumption of the continuity in quadratic mean of the square root of the density 
may be weaker than the continuity in the mean of the density and therefore the theo­
rem 3 may occur useful. 

6. APPENDIX 

Lemma 1A. Let a, b >. 0, 0 < « < 1. Then 

\a" - b"\ < \a - b\". 

Proof. If a = b, then lemma holds. Let a > b. Then a *- 0. So we would like to 

P r o v e 1 > ^ M v* 

I. — x < (1 — xf 
where x = bja, i.e. 0 < x < 1, 0 < a < 1. From 0 g x < 1 follows x" >. x and 
also 0 < 1 - x < 1 and finally (1 — x)" >. 1 — x. Taking sum of the left and 
right sides of the second and the fourth inequality we obtain x" + (l - xf >. 
^ 1 — x + x i.e. (1 — xf >; 1 — x". It was to be proved. The case b < a is a sym­
metric one with respect to the above case. • 

Lemma 2A. Let P be a probability measure absolutely continuous with respect 
to a measure /.. Then convergence with respect to the measure [i implies convergence 
with respect to the probability P. 

Proof. At first let us show that 

(Ve > 0) (35 > 0) (VA e St, \x(A) < 5); P(A) < e . 

Let us assume it is not true. Then 

3(e0 > 0) V(n 6 Jf) 4A„ e ^),V(A„) < --j J but P(An) > e0 . 

Let Bn = (J Ak and B = f) #„. Then 
fc=n n = l 

K*) Slim/.(*„) glim I>(A) = 0 

and P(5) = lim P(B„) >. e0. But it contradicts with P < p. Now let a sequence 

{fn}n = i converge to j with respect to the measure \x, i.e. 

V(e > 0 and 8 > 0) 3(n0 e Jf) V(n e Jf, n ^ n0) 

/z({x£ir; | j „ ( x ) - j ( x ) | > 5 } ) < £ . 

Let co and v be positive numbers. Let us find y so that for any AeS&, /((A) < y we 

have P(A) < co. Let us finally choose n0 e yT, n0 = n0(co, v) so that for any n e Jf, 

n J> n0 we have 
M { x e ^ ; | j „ ( x ) - / ( x ) | > v } ) < y . 
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Then 
P({xe%;\f„(x)-f(x)\>v})<<0. • 

Lemma 3A. Let f(x) be an a.e.-l (Lebesgue measure) continuous and bounded 
density defined on the real line R and let us construct a family of densities {f(x, 0) = 
= f(x — 9)}eeR- Then for e > 0 there exists g(x) continuous on R and § > 0 so that 
for any 6 e 0(0„ 5) and a e [0, 1] 

(15) \Ha(6,62) - J g"(x - 0) g^\x - 02) dx[ < e . 

Proof. Let M be a real number such that j(x) < M for any real x. Let us take 
K e R and 8 > 0 so that for any 0 e 0(0,., (5) 

(16) í f(x,9) 
J{xeR;\x\>K) 

dx < -
3 

and 

(17) f(x, 9Z) dx < ± . 
J{xsR;\x\>K) i 

Now let D1 denote a set of measure zero and the function j is continuous on R\ Dl. 
Let D = !>! n [-K, K]. Let us find an open set G such that D <= G and 1(G) < 
< e/6M. As Gc n [-K, K\ is a compact set we can find a continuous function g(x) 
such that for x e Gc n [—X, X] we have a(x) = j(x), for x e R \g(x)\ < M and 

(18) [ a (x)dx<i . 
J{xeR;\x\>K) J 

Now using the fact that 

R <=(-oo, - X ) u G u { G c n [ - X , X ] } u ( X , +oo) 

and (16), (17) and (18) one can easy conclude the proof of the lemma. • 

Remark 3. To prove (15) uniformly with respect to a e (0, l) both (16) and (17) 
must be used. .„ . . . .. _, i n o „ . 

(Received April 21, 1980.) 
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