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KYBERNETIKA —VOLUME /7 (1981), NUMBER 1

ON THE CONTINUITY OF THE MINIMAL «ENTROPY

JAN AMOS VISEK

Sufficient conditions under which the minimal a-entropy is a continuous function of para-
meters of the family of the probability measures are given. For the special case of the location and
scale parameter these conditions are specified. Moreover under the assumption f(x) is a sym-
metric density, the continuity of the minimal #-entropy at the origine for the location parameter
case is proved to be equivalent to the continuity in the quadratic mean of the square root of the
density f(x).

1. INTRODUCTION

For ii.d. random variables H.. Chernoff [l] showed that logarithm of the
minimal «-entropy is equal to the asymptotic rate of the convergence of the error
probabilities when a hypothesis against an alternative is tested. In 1972 A. Perez has
generalized Chernoff’s results for the case of stationary probability measures.

Now testing a hypothesis against an alternative and utilizing a likelihood ratio as
a test statistic one can be iterested in changes of the asymptotic rate of convergence
of the error probabilities which will occur when deviations of the hypothesis or of the
alternative happen. In the present paper sufficient conditions under which these
changes are continuous with respect to the parameters of the family of the probability
measures are found. This is made by proving the continuity of the minimal a-entropy.
The continuity of the minimal a-entropy guarantees not only continuity of the above
described changes when we use the likelihood ratio test but it enables us (it will be
done in a next paper) to prove the continuity of these changes even if an approximate-
ly best test is used.

It is intuitively clear that to prove the continuity of the minimal a-entropy one will
need to assume a continuity of the family of densities of the probability measures
with respect to its parameters. But as can be heuristically justified, the continuity
of the minimal a-entropy should not be dependent on the choice of the densities.
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It leads to an idea that the conditions should be stated in an integral form. From the
point of view of an easy utilization of the results a form of the conditions including
assumptions on local properties of densities seems to be reasonable, too. Both
demands are satisfied in the present paper.

2. NOTATIONS

Let & and @ be metric spaces with metrics g, and gg, respectively. Let Z be
a Borel g-algebra over 2 and let us have, for every 0 € O, defined on (2, 8) a probabil-
ity measure P,. Let for every 6 € © P, be absolutely continuous with respect to a o-
finite measure p. Let f(x, 6) be the Radon-Nikodym derivative of the measure P,
with respect to the measure p. Let us write ”x” instead of Q,(x, 0). Let 4" denote
the set of all positive integers.

Let 0, 8, € © and a € [0, 1]. Let H,(6;, 0,)(resp. H(0y, 0,)) denote the a-entropy
(resp. minimal a-entropy) of the measure P, with respect to the measure Py, i.e.

Ha(()l, 0,) = Jf“(x, 0)f 7 x,0,)dp, O<a<l,
Ho(0,. 0,) = lim ,(6,,0,),
a0+
H,(0,, 6,) = lim H,(0,, 0,)

a—>1-

and
H(8,,0,) = min H,(0,,6,).
0

Zas1

(These limits exist because [f*(x, 0,) f*~%(x, 0,) du is a convex and bounded function
of we(0,1).) Finally for 6*e @ and & > 0 let 0(0%, 5) = {0 € O; g4(6, 0%) < 5}.

3. ASSUMPTIONS

Let hereafter 6,, 0, € © be fixed points.

Al Let for any real K > 0 the density f(x, 0) uniformly in a set {x € Z;
|x| £ K} \# be a continuous function of 0 at the point 0, where u(#’) = 0.
(As in the following in all proofs of assertions only integration (with respect to u)
will be used we can assume to have f(x, 6) continuous at #; uniformly for all x e

e{xe; x| =K}, ie
(Ve > 0) (35 > 0) (VO € O, g(0, 0,) < 5) and
(Vxed, x| S K):|f(x.0) - f(x,0)] <&.)
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A2. Let for any ¢ > 0 exist § > 0 and K > 0 so that for every 0 € 0(0y, 6)

j fx,0)dn < e.
{xeZ; ]| x| > K}

A3. Let the density f(x, 6) (as a function of 0) be continuous in the mean (with
respect to u) at the point 0,.

4. GENERAL CASE

Lemma 1. Let Al and A2 hold. Then the a-entropy H,(0, 6) is a continuous func-
tion of @ at the point 6;. Moreover for any a, € (0, 1) the continuity of a-entropy
H,(0, 0,) is uniform with respect to o € (o, 1].

Proof. Let a, €(0, 1) and ¢ > 0. Applying A2 let us take 5; > 0 and K > 0 so
that for any 6 € @(6,, J;)

81/41
J. f(x, 0)dp < .
(xe]ix|] > K) 4

Let us denote By = {x € &; [[x| < K}. As the (minimal) a-entropy does not depend
on the choice of the densitics we may assume p(Bx) < oo (see [4], Lemma 2.3.5.).
Considering Al, 6, > 0 can be found so that for any 6 e 0(6;,9,) and any x ¢
e{xeq; [|x” <K}

|7(x, 8) — £(x, 0,)] < % . &™ . p™Y(By).

Let 6 = min (3,, 6,). For any 8 & 0(8,, 5) we have

J}"(x, 0)f*(x,0,)dp — j Fo(x, 0,) 1 7%(x, 0,) duJ <

|H.(6, 6,) — H,(6;,6,)] =

< {J‘{fz(x, ) — f%(x, 0,)|” dy}q{.[f(x, 0,) du}l - <

(see APPENDIX, Lemma 1A)

{00 0] -

Be

= {Lx]f(x, 0 = S 0u)|ap + jsckf(x’ O+ chf(x’ 0;) dl‘}d =

sl/a; Fl/m t/ar o
S 4+ —+puBy). —% Ze.
{5 e ) o
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Lemma 2. Let Al hold. Then the a-entropy H,(0y, 0,) is a lower semicontinuous
function of 8 at the point ;. Morcover for any a, € (0, 1) the lower semicontinuity
of a-entropy H,(8y, 6,) is uniform with respect to « & (0, «;).

Proof. Let a real K > 1 be found so that

F(x. 0,) dp < <§)2

Bexe

Let €(0,4). Then

@ .J’ Bexc

= Lx[f’(x’ 0) + f*(x, 0)] /" 7 (x, 6;) du <
{J I 0 d“} ‘ {f O gz)d”} i { /(x.0) d#}a {Lc‘f (=, Oz)du}lva <

2(1-a)
<2 (& <&,
6 =3

Now let {t,‘},‘f’zl be a decreasing sequence of real numbers such that lim ¢, = 0. Then

(%, 6) — f*(x, Bl)lf““(x, 0,)du <

IIA

n—=w

{(xeZ; 0 <f(x,0,) <t} = {xe; 0<f(x,0,) <1t}
so that
lim f f(x,0,)dp =0.
n— oo J {xeZ;0 < f(x,81)<tn)
Let n, € A" be such that

2
J f(x,8,)du < (i) .
{xeZ30 < £(x,01) < tyo} 6

Now it is easy to see that for ¢ = t,, and for « € (0, 1)

© J 1750 = £ 075 0) 0 5
{xeZ;0 < f(x,81) <t}

'3 1-a
{ f A0y du} { j S dﬂ} +
{xeZ ;0 <f(x,0:)<t} {xeZ;0 < f(x,081)<t}

« t-a .
+ { f 1%, 60) du} { f 1(x 6,) dﬂ} <.
{xed;0 < f(x,0,)<1} {(xeZ;0 < f(x,01)<t} 3

Now we are going to show that for K as in (1) and for t as in (2) there exist § > 0
and a;, € (0, 1) such that for every 0 € 0(6,, 5) and x € (0, «,) we have

®) [£5(x 8) = £, 0,)| 1 *(x, 62) du =

IA

J‘Xefl x|| £K,f(x,6)21 3
{ slixll K, f(x,00)21)
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To this end, let us put C = max {(B), 1} (see the proof of the Lemma 1). Utilizing
Al let us find & > 0 so that for every

0e0(f,,5)and x,

x| £ K the inequality

Yﬂ%e)—f@ﬁﬁlgmm{i?l}

2

holds. If ze[#/2, 1] and « > 0 then (¢/2)* £ z* < 1 and

From it follows we can find &, €(0, 1) so that for every pair z,, z, € [#/2, 1] and
ae(0, )

Now for any 0 € 0(8;, 5) and a & (0, o,) the following inequality is true.

J‘ [£o(x, 6) ~ f(x, 0,)] f17*(x, 05) due £
{(xe®s{{x 1 SK.f(x,00) 2 1)

<

1£5(x, 0) — f*(x, 01 F1*(x, 04) dpe +

J‘(xeﬂf:”xh‘ SK,f(x,81)21}

175G, 0) — 7405, 62)| £ (s, 0) b +

+ .
J‘(xe&’l’;“xﬂ <K.f(x,8)21,1=f(x,01)<1}

|f“(x, 0) — 1=, 91)1f“"‘(x, 0,)dp <

J.{xex;ﬂxu <K S f(x,00)<1,f(x,0)<1}

<

J 1/ 6) — £(x, 0] 7*~*(x, 62) i +
(xes x| SK,f(x,01)21)

|7(x, 0) = £(x, 0] F27*(x, 65) dp +

+
(xeZillx|| SK,f(x,0)21)}

€ -
+ = I 'x(x: 92) dp £
3C Jixe®;lxl| SK,15 £ (x.00) <1,f(x,8)<1}

&
= —j~ 7%, 0,) dp £
3C ) ex;lixl <K 15,0020

< 5 sy {[ e 0 du}‘ st
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Let 8 € 0(0,,5) and o (0, ay). Then
H,(6,0,) — H,(0,,0,) >
= | (5, 0) = £, 0) £ 0) 1 2
{xeX;f(x,0,)>0}
as it follows from (1), {2), (3). Making use of Lemma 1 one may easy finish the proof.

O

Theorem 1. Let Al and A2 hold. Then the minimal a-entropy H(B, 6,) is a conti-
nuous function of ¢ at the point 6.

Proof. Let us suppose the theorem does not hold, i.e. there exists a positive g, such
that for every & > 0 we can find 0 € 0(6,, &) such that

“) |H(6, 0,) — H(B,,6,)| > & .

Let us put 8, = 1/n for n > 2. For every n > 2 let us find 6, so that |H(G,, 0,) —

~ H(0,,6,)| > &. Let {a}75 = [0,1] be a sequence such that H(0,, 0,) =

= H, (0,, 0,) for n 2 3. The sequence {a,}.> 5 is bounded and therefore there exists

a subsequence {o,u}il; so that lim o,y = oo € [0, 1]. The a-entropy H,(8;,8,)
k-

is a (convex) continuous function of « € [0, 1], hence there exists §; > 0 so that for
every ae(0,1), J — x| < &, we have

|61, 02) — Ho01,02)] 5 5 -
Assuming Lemma | and Lemma 2 we can find J, such that for any a e (0, 1) and
0 € 0(0;, 5,) an inequality

H(0,0,) — H,(0,,0) 2 — 2

is true. Then
Ha(g’ 02) - Ham(glx 02) = }Ii(e’ 92) - [[1(017 02) +

+ Hz(gl’ 92) - Hao(gn gz) 2 —g

for any xe(0,1), o — ao| < 6, and 066, d,). Let us find nye A4 such that
1/ny < 8, and for every k > ny we have |, — @o| < ;. Then for any k > n,;
Bu € O(65, 80} and [o,y — o] < 8 and so

H;z,,(k)(en(k)a 92) - Hzo(el: 02) = —&p .
As H,(0,, 6;) = H(0,, 6,), it follows for any k > n,
Hy o (Our 02) = H(03, 05) — £, .

n
% qk)(

Combining it with (4) we obtain for k > ng

(5) Hﬂn(k)(eﬂ(kﬂ 02) 2 H(Gl’ 62) + & .
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On the other hand H,(6, 8,) is a continuous function of  at the point 6, and for any
fixed o (see Lemma 1). So for o = «; such that H, (6,, 6,) = H(6,, 6,)

lim H,,(6, 8,) = H(0,, 6,).
06,

However H,(6,,6,) = min H,(0,,0,) and so H,(6,,6,) < H,(6,,0,). From it
0gasl
we conclude

lim sup H,,,,(agy> 02) = lim Hy,(Ougy> 02) = H(61, 65) .
k= k=0
The last inequality, however, contradicts with the inequality (5). O

Lemma 3. Let A3 hold. Then the a-entropy H,(0, 0,) is a continuous function of 8
at the point 8,. Moreover for any a, € (0, 1) the continuity of a-entropy H,{6, 6,) is
uniform with respect to a e (a,, 1).

Proof. Let 6 > 0, o, €(0, 1). Let us find 6 > 0 such that for every 0 e 0(0,, 5)
we have [|f(x,0) — f(x, 6,)| du < &'/*'. Then for « &(u,, 1) (sce Lemma 1A)

[ 1r0) = s 0015 0y 0 5
< U 7%=, 8) — (%, 01)]'" du}a S el g, O

Lemma 4. Let A3 hold. Then the a-entropy H,(6, 6,) is a lower semicontinuous
function of @ at the point 0,. Moreover for any ; & (0, 1) the lower semicontinuity
of a-entropy H,(6, 6,) is uniform with respect to « € (0, «; ).

Proof. Let us again assume the lemma is not true. Then there exist ¢, > 0 such
that for every 6, = 1/n (n = 3,4,5,...), 0, and &, can be found so that 6, € 0(f,, ,)
and «, € (0, 6,) and we have

(6) H,(0,,0,) < H,(0y,0;) — &.

As 0 < H(f6,0) =1 we can find a sequence {n(k)}, = {n}; such that
lim H, (0,4, 02) exists. Then we have from (6)
ko

:L": Hop Oy 02) — Ho(03, 0,) =
=:‘3’: [He On 02) ~ Hapo (015 65)] + :L"g ano(015 02) — Ho(0;, 0,) =

=:f§ [Hzn(k)(on(k)’ 0) — Hepio(01,05)] < —¢ .
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As lim 0,4y = 0y it follows (see A3) {f(x, 0,4,)}i%; converges in mean [y] to f(x, 6,)
k= oo

and therefore it converges also in measure u. Now from lemma 2A we have that
{f(x, 0,4}i%, converges in probability Py, and so we can choose a subsequence
{n(k)}iz1 = {n(k)}Z-1 such that {f(x,0,q,)}i%: converges to f(x,6;) Pg-a.e.
Using Egorov’s theorem we find a set A e such that P,(d) < &/16 and
{f(x, 0,4)}i%¢ converges uniformly for x € A° to f(x,0;). Let us finally denote

fori=1,2,...,0F = wkn for i = 1. Then we have

{67}2 = @, 1lim6f =6,, limf(x, 67) = f(x,0,)

uniformly in x € A and

lim H,(67, 0,) < Ho(0y, 0;) — ¢ -

i

The rest of the proof is analogous to the proof of Lemma 2 so some details will be
omitted. Let us find 1€(0,4) and &, > 0 so that for any 8€0(0,,,) and any
« (0, 1) we have

(7) |fd(x, ()) _ f’(x, 01)]fl~q(x’ 62) du < s_;.

J’(xe&';0<f(x,91)<f)

Now let K > 1 be a real number such that

& \2
x,0,)dp < [—=) .
J.zxssr;uxumf( 2) dn <16)

Then

® f 15, 0) = £, 00)| £ ~o(x, 05) de =
{xe%;||x]| > K}

1-a e\
<2 {j 1(5,0) du} <2 (,) <%
(wes || x|l > K} 16 8

In the same way we can find (using that Py, (4) < £,/16)

£

©) Llf (5, 0) = f7(x, 0|71 (x, 02) de < 3

Now it is easy to verify (see the proof of (3)) that there exist i, € A" and 5, > 0 so
that for any i 2 iy, « € (0, 3,) we have

(10) '[ |£5(x, %) — £5(x, 0.)| f2*(x, 0,) dp = 22,
(xed;| x| SK,xede, f(x,00)2 1} 8
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Further let i; € A be a number chosen so that i, = i, and i; > 571, Let us take

i = i, and a €(0, 5,). Then utilizing (7)—(10) we have

(1 1o, 0F) = 5(x, 00)] £ 75(x, 0,) du <

J.{xs&”;f(x,hPO}

< j 5, 07) — 5, 0,)] 71 ="(x, 03) dy +
{xeZ;]|x|| > K}
+ J‘A‘f"(x, 67) — f(x, 5,)[f1"”(x, 6,)du +
+ [ e, 68) = £7x, 02)] 77, 0,) du +
{xe® ;0 < f(x,81) <1}

a 7 08) = 0 742, 0) 0 5 2.
{xeZ;||x]| £K,xede,f(x,01) 21} 2

As Hy(0y, 0,) = lim H(8,, 0,) we can find 7 > 0 such that for any o € (0, 7) we
a0,

have
£
(12) |Ho(01, 62) = Ho(01, 62)] = .
Finally let us choose i, € 4/, i, Z 1o such that for every i > 4,
&

(13) |1, (6%, 6,) — lim H, (67, 6,)] £ T
j=o

Let § = min {d;,0,,7} and iy = min{ie #; i 2 i, i> 571}, Now for ie .,
i = iy from (11), (12) and (13) it follows:

lim Hau(o;‘k, 0,) — Ho(0y, 0,) = { lim H,(07,05) - H, (67, 0,)} +
e o
+ {H,(0F,02) = o0 0} + {Ho(01.02) = H,(o,,0,)) 2
z {lim H,(07, 0;) — H.(0F, 62)} +
j
Al L7 0= £ 001 0) ) +
{xe2;0 < f(x,00)}

+ {Hae(ola 0,) = Ho(8;, 0,)} = — % -

-] 77 02 = £ 0 0 g o 5
(X620 < £(x,01)} 4 = o
But it contradict with (6). 0o
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Theorem 2. Let A3 hold. Then the minimal a-entropy H(6, 0,) is a continuous
function of 6 at the point 6.

Proof of the theorem is analogous to the one of the Theorem 1 and will be
omitted.

5. LOCATION AND SCALE PARAMETER

Remark 1. In the next two corollaries we will consider a continuous density f(x).
From Lemma 3A (see APPENDIX) one can easy find out that Corollaries 1 and 2
hold under an assumption of a.e.-u continuity of f(x)*), too.

Corollary 1. Let f(x) be a continuous density defined on the real line R and let us
construct a set {f(x, 0) = f(x — 0)}gcx. Then for {f(x, 6)}4.x the minimal a-entropy
H(6, 0,) is a continuous function of 6.

Proof. It is easy to see that Al holds. Now let us find K > 2]01| (now Z =R,
hence 0, is a real number) such that ,‘.{xeR;Ix|>K/'4)f(x) dx < candlet 0 e R, [01 <K[4.

Then
.[ f(x—01—9)dx§f flx)dx <e.
{xeR;|x| > K} {xeR;|x|>K/4}
So the proof of A2 is a straightforward one, too. O

Corollary 2. Let f(x) be a continuous density defined on the real line R and let us
consider a set {f(x, 0) = 0. f(x.0)}s>o (i.c. 0 € R, 0 > 0). Then for {f(x, 8)},>, the
minimal a-entropy is a continuous function of 0.

Proof. Let ¢ be a positive number. As f(x.0,) is a continuous function (on
[—K, K], where K is any positive number) let us put M, = max f(x . 8,). Let us

JxlsK
find 6, > 0 so that for any pair x, ye[—0,K, 0,K], [x - y] < 8; we have
|£(x) — f(»)] < £/30,. Let 6 = min {5,/K, ¢/2M, ,/2}. For any 6 6(0;, ) and
X€ [——K, K] the following inequalities hold:
[F(e 0) — (%, 0,)] = 16 f(x . 6) = 0, . f(x. 6,)] <
S [OL7Ge- 0) = f(x - 0] + |0 = 0,) S(x - 0.)] =
3 g g
S0 .
21730, oM,
It proves that Al holds. The proof that A2 is fulfilled is a simple one and that is why
it will be omitted. 0

1-

Lemma 5. Let f(x) be a density defined on the real line R and let us suppose that
for any real x, f(x) = f(—x) and that f'/%(x) is continuous in quadratic mean with

*) We say f(x) is a.e.-u continuous if there exists a set W such that (W) == 0 and f(x) is
continuous on R\ W.
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respect to Lebesgue measure. Let us again construct {f(x, 0) = f(x — 0)}ecr- Then
the minimal a-entropy H(6, 0,) is a continuous function of @ for all points 0 € 6.

Proof. It is easy to see that
(14) HE.0) = .0 0°)
(for any pair 0, 8” € R). A proof can be given as follows. Let « € (0, 1). Then

H(0,0") = J.f“(x — 0) 17 (x — 0") dx = ffm(_z)fl—i(_z 40~ 8)dz =

- j P oz — 0+ 07)dz = j Pz = ) 1oz — 0)dz = H,_(0,").
And finally
Hyp(0,07) € HYH0,07). Hi%(00,07) = H(6/,07).
That proves (14). Now we can finish the proof of the lemma. Let 6, 0’ € R.

|Hy)2(6, 65) — Hy12(0, 65)] £ {Jf(x —8,) dx}”2 X

{ [t o= opad [ o o af”

O
Lemma 6. Let us consider a set {f(x — 0)}r, Where f(x) is a symmetric density
on the real line R. Let moreover the minimal a-entropy H(6, 0) be a continuous
function of @ at the origine. Then the function f/*(x) is continuous in quadratic
mean with respect to the Lebesgue measure.
Proof. To prove the lemma it is sufficient to verify the equality:

[H(4,0) — H(0,0)] + [H(—4,0) — H(0,0)] =
= [ = ) = 1 x4 [ 1 4 ) = 7P 0 0 =
= [t = )= RN [0 - s = ) o o

Theorem 3. Let f| (x) be a symmetric density defined on the real line R. Let us define
a family {f(x, §) = f(x — 0)}ocr- Then the minimal o-entropy H(0, 0,) is a continu-
ous function of § at the point 8, iff the function f'/*(x) is continuous in quadratic
mean.

Proof follows from the Lemmas 5 and 6.

Remark 2. In the Theorem 3 the assumption of symmetry of the density f(x) is
shown to guarantee that the continuity of the minimal a-entropy is equivalent to the
continuity in the quadratic mean of the square root of the density. From the con-~
tinuity in the mean of the density we can find the continuity in the quadratic mean
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of the square root of the density, but the opposite must not be generally true. So the
assumption of the continuity in quadratic mean of the square root of the density
may be weaker than the continuity in the mean of the density and therefore the theo-
rem 3 may occur useful.

6. APPENDIX

Lemma 1A. Let a, b 2 0,0 < a < 1. Then
|a"‘—b"l§\a—b

Proof. If @ = b, then lemma holds. Let @ > b. Then a # 0. So we would like to

prove {— %< (1= X

L3

where x=b/a, ie. 0x<1,0<a< 1. From 0 £ x <1 follows x* 2 x and
also 01— x =1 and finally (l - x)‘z = 1 — x. Taking sum of the left and
right sides of the second and the fourth inequality we obtain x* + (1 — x)*
21—x+xie (1 —x)=1— x%It was to be proved. The case b < a is a sym-
metric one with respect to the above case. a

Lemma 2A. Let P be a probability measure absolutely continuous with respect
to a measure 4. Then convergence with respect to the measure u implies convergence
with respect to the probability P.

Proof. At first let us show that
(Ve > 0) (36 > 0) (VA e %, p(A) < 8); P(4) <e.
Let us assume it is not true. Then
N 1
3(eo > 0) V(ne ) E(A,, € B) (A < n7> but P(4,) > & .

@

Let B, = U 4, and B = () B,. Then
k=n =1

n
u(B) £lim u(B,) < lim Y u(4,) =0
B noo k=n
and P(B) = lim P(B,) = &,. But it contradicts with P < y. Now let a sequence
n—w R
{f,,},’,"’=l converge to f with respect to the measure y, i.e.
V(e >0and 6 >0) ngeN) V(ned, n2n,)
w{xeZ; |f(x) — f(x)] > 6}) <e.
Let @ and v be positive numbers. Let us find y so that for any 4 € 4, p(4) <y we
have P(4) < w. Let us finally choose ng € A", ng = no(w, v) so that for any ne A",

n = ny, we have

u({xe s |f(x) = F()| > v}) <.
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Then
P({xex:;

(%) = f(x)| > v)) <@ O

Lemma 3A. Let f(x) be an a.e.-i (Lebesgue measure) continuous and bounded
density defined on the real line R and let us construct a family of densities {/(x, 0) =
= f(x — 8)}per. Then for ¢ > 0 there exists g(x) continuous on R and § > 0 so that
for any 0 € 0(;, 5) and o € [0, 1]

15) |H.(6, 02)—fg’(x —0)g' {x— 0,)dx| <.

Proof. Let M be a real number such that f(x) < M for any real x. Let us take
K e Rand § > 0so that for any 0 € 0(8,, 5)

(16) J f(x 0)dx < £
(xeR;|x]>K) 3
and
(17) J f(x,0,)dx < 2.
(xeR;|x]>K} 3

Now let D; denote a set of measure zero and the function f is continuous on R\ Dy.
Let D = D, n [~K,K]. Let us find an open set G such that D = G and A(G) <
< g/6M. As G° n [—K, K] is a compact set we can find a continuous function g(x)
such that for x € G° n [—K, K] we have g(x) = f(x), for x € R |g(x)| < M and

(18) _[ g(x)dx < .
{xeR;|x|>K} 3
Now using the fact that
R e (-0, -K)u Gu{G° n[-K, K]} U(K, +©)
and (16), (17) and (18) one can easy conclude the proof of the lemma. O

Remark 3. To prove (15) uniformly with respect to « € (0, 1) both (16) and (17)

must be used. (Received April 21, 1980.)
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