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KYBERNETIKA — VOLUME 22 (1986), NUMBER 4

FENCHEL-LAGRANGE DUALITY
IN VECTOR FRACTIONAL PROGRAMMING
VIA ABSTRACT DUALITY SCHEME

TRAN QUOC CHIEN

This paper deals with a generalization of both Fenchel and Lagrange duality in vector frac-~
tional programming. In the first section the concepts of maximum and supremal are introduced
and discussed. In Section 2 a simple abstract duality scheme is presented. The last section is
devoted to the so-called Fenchel-Lagrange duality in vector fractional programming which is
built up on the basis of the abstract duality scheme and a set separation theorem.

0. INTRODUCTION

The duality questions in one-objective fractional programming have extensively
been studied by many authors. Most of dual programs are established via a trans-
formation to a convex program, see Schaible [10, 11]. In Cambini and Martein [2]
a duality of Fenchel type via a separation theorem of two convex sets is introduced.
In Tran Quoc Chien 5, 6, 7] a duality theory of Lagrange type is built up on the
basis of the so-called abstract duality scheme. In this work we introduce a more
general abstract duality scheme which secems to be able to unify all known non-
differentiable duality theories as Lagrange duality, Fenchel duality and perturbation
duality theory. One of the applications of the abstract duality scheme is just the
Fenchel-Lagrange duality in vector fractional programming given in Section 3 of
this work. Another application of this scheme will be presented in the following
paper where the perturbation theory of duality in vector optimization is built up
on its basis.

1. OPTIMALITY CONCEPTS
1.1. Basic assumptions. Throughout this work we suppose that all spaces are real
and Yis an ordered linear space if other requirements are not added. All elementary

notions as linear hull, convex hull, affine subspace, dual space, affine function,
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convex rtesp. concave function or core (cor A), intrinsic core (icr A), algebraic
closure (lin 4) etc. can be found in Holmes [9]. Basic notions concerning partial
ordering and ordered spaces can be foun in Griitzen [8]. The positive cone Y, of Y
is supposed to have nonempty core.
1.2. Notations, For elements a, b € Y we denote
azb iff a-beY,
a>b iff a—-beY,, =Y.\ {0}
a>» b iff a—becorY,
aSh iff a<hb.
For two subsets A and B in Y we define
A>B iff VaeAVYbeB:a>b

where > may be any relation of 2, >, » and .
A is said to be bounded (resp. weakly bounded) from above if there exists a point
a € Y such that
A=<a (resp. 4 2 a).

Analogously, the boundedness (resp. the weak boundedness) from below is defined.

1.3. Definition. A nonempty set Q < Yis called a Y, -quasiinterval if
Q=(Q-Y)n(Q+7,).

The cone Y, is said to be reproducing if Y, — Y, = Y.
Given a subset 4 and a Y, -quasiinterval Q in Y, an element a € Q is called
a supremal of A with respect to Q if

aelin(A—Y,) and (a+ Y,.)nQnlin(4d—Y,)=0.

A point a € A is called a maximum of A if A Z a. The set of all supremals with
respect to 2 resp. all maxima of 4 are denoted by Supg, 4 resp. Max A. Analogously,
an infimal with respect to Q, a minimum, Min A and Inf, A are defined. If Q@ = Y
then the letter Q is omitted.

1.4. Remark. (i) The notion Y.-quasiinterval is more general than the traditional
definition of interval (a set of the form {y € Y: a £ y £ b}). For example, let Y = R?
and Y, = RZ, then the parallelogram in Fig. 1 is a Y,-quasiinterval, but it is not
an interval.

(i) Generally, the inclusion Max 4 < Sup A does not hold. For example, let
Y= R% Y, = R} and (see Fig. 2)

A={(yi,y2)€R*:(0,0) = (1, ¥2) < (1, 1)} U {(0,1), (1, 0)} .
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Then
Max 4 = {(0,1),(1,0)} , whereas Sup 4 = {(1, 1)} .

In case that dim Y is finite and Y., 4 are closed, then Max A < Sup 4. Nevertheless,
we have A N Sup 4 = Max 4.

"

Yz .
| -
|
|
, e —
| 9 %
Fig. 1. Fig. 2.

1.5. Lemma. (i) Max 4 = Max (4 — Y,), Min 4 = Min (4 + Y,).
(ii) Supg A4 = Sup, (lin A) = Supp(4 — lin Yy).
(iii) Infy A4 = Inf,(lin A) = Infp (4 + lin Y,).

Proof. Since assertion (i) is evident and assertion (iii) is analogous to (ii), it
suffices to prove (ii). Obviously

lin(4 — ¥.) = lin(lin(4) — Y.)
and the inverse inclusion follows from lin(4) — ¥, < lin(4 — Y,). We have
thus proved Sup, A = Supy (lin 4). Further, we have
lin(4 — Y,) > lin((4 — lin Y;) — Y,)

for (4 — Y,)> (4 - lin ¥,) — Y,. Since the inverse inclusion is obvious we
obtain Supy 4 = Supg, (4 — lin Y,,).

1.6. Lemma, Suppose that Y is a linear topological space with int Y, = cor Y,
and A is an arbitrary subset in Y. Then

lin(Ad—-Y,)=4 -7, .

Proof. Obviously lin (4 — Y,) = 4 — ¥,. So it remains to prove the inverse
inclusion. Let a e 4 — Y,.. Choose a point e eint Y, and let e’ be an arbitrary point
on the segment [a — e, af. Sinceae 4 — Y, and ¢’ < a there exists a point a’ € 4 —
— Y, such that ¢ < a’. Hence e'e A —~ Y, and consequently, by definition, a e
elin(4 - Y,).

1.7. Definition. A linear functional & € Y is strictly positiveif x € ¥, , = &(x) >
> 0. A base for Y, is a nonempty convex subset B of Y, with 0 ¢ B such that every
x € Y, , has a unique representation of the form Ab where b e B and 4 > 0.
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If &Y is strictly positive and we set B = {®,1]nY,, where [0,a] =
= {x e Y: &(x) = a}, then B is a base for Y,.
From [9] (§ 6, C) it follows immediately

1.8. Lemma. If Yis a linear topological space of finite dimension and Y, is closed,
then Y, hasa compact base and every set of the form { yeY:a £y £ b}iscompact.

1.9. Lemma. Suppose that Yis a linear topological space of finite dimension, Y,
is closed and A4 is such a subset in Ythat lin 4 = 4. Then

SupAd clind.

Proof. Let aeSup 4. Fix arbitrary @ > a and @ < a. Then the set C =
=(@ + Y,)n(a — Y,) is compact (by Lemma 1.8) and a eint C. Suppose, on
the contrary, that a ¢lin 4 = 4. There exists a neighbourhood U of a such that
UnA=¢ and Uc C (for acintC). Since aelin(4 — ¥,) =4 =Y, (see
Lemma 1.6), there exist y, € A — Y, with y, — a. For each y, there exists an y; €
€Y, such that y, + ] € A. Since AU = and U = C one can choose 0 <
< t, £ lsuchthata, = y, + t,y; € Cand a, ¢ U. If C is compact one can, without
loss of generality, admit that a; — a’. We have then a’ € 4 — Y, and 4’ > a which
contradicts a € Sup A.

1.10. Definition. A set C < is said to be inside stable if
(Cc-CnY,, =90,
sup-stable with respect to A < Yif
YaeAIceC:a<Lec,
inf-stable with respect to 4 < Yif
VaeAddceC:cZa.

Obviously
1.11. Proposition. The sets Max A4, Min 4, Sup, A4 and Inf, 4 are inside stable.

If the concerned sets are, moreover, sup-stable resp. inf-stable with respect to 4
then we have the same concept of solution as the von Neumann core in game theory.
We try now to find out some sufficient conditions for Sup, A and Max A4 resp.
Inf, A and Min 4 to be sup-stable resp. inf-stable with respect to 4.

1.12. Lemma. Suppose that Y is a linear topological space of finite dimension,
Y, is closed and 4 < Yis bounded from above. Then 4 — Y, = 4 — Y,.

Proof. Let ae 4 — Y,. There exist a,e 4 and y,e Y, such that a, — y, > a
or a; = a; — y, —a - 0. Since A is bounded from above there is a point ue Y
such that a; = y; + a + a; < u for all ;. For aj — O there exist ecint Y, and
Ao such that y, <u — a + e for all 4 > A,, which, considering the compactness
of the set {ye Y, :y < u — a + ¢}, implies the existence of a subnet (y,) < (y2)
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with y,, > y,. e Y,. Thena,, - y, + ac A Wehave thus a € 4 — Y,. The inverse
inclusion is obvious.

1.13. Proposition. Suppose that Y is a linear ordered topological space such that
(1) Y,=Y, or Y., =cor?,

and A is a nonempty compact set in Y. Then Max 4 and Min A are nonempty.

Proof. Let C be a chain in 4 (i.e. Ve,deC:czdord 2 c). If C has a greatest
element then C is obviously bounded from above. If C has no greatest element then C
can be regarded as a net in A because one may write C = (x),.c and C is an oriented
direction. Then since 4 is compact there exists a limit point a € 4 of C. Condition (i)
then guarantees ¢ = x for all xe C. Our assertion follows now from the Zorn
Lemma. The proof that Min 4 + 0 is analogous.

1.14. Prepositien. Suppose that all conditions of Proposition 1.13 remain valid.
Then Max A resp. Min A is sup-stable resp. inf-stable with respect to 4.

Proof. It suffices to prove that Max A is sup-stable with respect to 4 because
the proof that Min 4 is inf-stable with respect to A is similar. The proof is divided
into two parts. Let ys 4.

(i) Y. = Y,:Put B=An(y+ Y,). Since B is nonempty and compact, Max B
is nonempty by Proposition 1.13. Obviously Max B = Max 4 and for any point
a € Max B we have a = y.

(ii) Yy, = cor Y,: If there is no y' € 4 with )’ — yecor Y, then y is evidently
a maximum of A. If there exists an y' € 4 with ' » y then consider the set C =
= A n(y + Y,). Cis nonempty and compact, hence, by Proposition 1.13, Max C +
+ 0. Obviously Max C = Max A and for any aeMax C we have a 2 y (for
a—yeY,andy — yecorY,)

1.15. Proposition. Suppose that Y is a linear topological space of finite dimension,
Y, isclosed, 4 < Yand Qis a Y,-quasiinterval with 4 = Q. If 4 is bounded from
above resp. below, then Sup,, A resp. Inf, A is sup-stable resp. inf-stable with respect
to 4. .

Proof. Suppose that A is bounded from above. Let u € Ybesuchthat 4 <« u — Y,
and @ e Y be such that {ye Y,: ®(y) = 1} is a compact base of Y,. Given y e 4
then the set § = {xeu — Y,: ®{x) = &{y)} is compact (see Holmes [9]). Conse-
quently B = (y + Y,) n 4 is compact. Hence, by Proposition 1.13, Max B = 0.
Since A4 is bounded from above, 4 — Y, = A — Y, by Lemma 1.12. We have then
Max B < Sup, 4 and every a € Max B satisfies a = .

In the same way one proves the inf-stability of Inf A with respect to 4 if 4 is
bounded from below.

1.16. Proposition. Suppose that Y, . =cor Y, =int Y,, Q is a closed Y,-quasi-
interval, A = Q and one of the following conditions holds
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(i) A isa bounded from above,
(ii) A is weakly bounded from above and Y, is reproducing.

Then Supg, 4 is sup-stable with respect to A.

Proof. Let y e A. If (i) holds there exists s € Y with s = A. If (ii) holds then there
exist ue Ywith u¢ A — Y, , and ¢,de Y, . such that ¢ — d = u — y (note that
Y, is reproducing) and in this case we take s = ¢ + y. Set M = {y + (s —-y): ¢t 2
20} nQ@nlin(d—Y,) and t, =sup{t: y + t(s — yye M}. Since s¢cor (4 —
— Y.) and M is closed, to =1 and a, = y + t4{s — y) € M. If there exists an
a>a, with ae@nlin(4 — Y,) then agecor(a — Y,) (for Y., = corY,)
and it follows that there exists t > t, with y + #(s — y)€ M which contradicts
definition of ¢,. Hence a, € Sup, 4 and a, = y.

In the same way we obtain

1.17. Propositfon. Suppose that Y., =cor ¥, =intY,, Qis a closed Y,-quasi-
interval, A = Q and one of the following conditions holds
(i) A is bounded from below,

(i) A is weakly bounded from below and Y, is reproducing.

Then Inf, A is inf-stable with respect to A.

1.18. Lemma. Suppose that Y, , = cor Y,, Q is a Y,-quasiinterval, 4 = @ and
B = Y\(4 — Y). Then Sup, 4 < Inf, B.

Proof. Let a e Sup, A then, by definition,

(i) (a+ Y. )n@nlin(4-Y,)=90
and
(i) aeQnlin(4— Y,).

Given y, € Y., we prove that
(iii) a+ y, ¢lin(4d — Y,).

Indeed, if a + y, elin(4 — Y,) then aecor(4 — Y,) which contradicts (i)
(note that © is a Y,-quasiinterval). We have then a + y, € B = B + Y, and
a+1ty, »aclin(B + Y,) as t - 0. If y e Q such that y < a then, by (i), ye
ecor (4 —~ Y,) and since cor(4 — Y,)nlin(B + Y,) = 0 we have y ¢lin (B +
+ Y,). Hence a e Inf, B.

1.19. Corollary. Suppose that Y,, =corY,,4d <Y and B= Y\(4 - Y.).
Then Sup A = Inf B.

Proof. The statement follows from Lemma 1.14 and the fact that Ac Q=Y
and B Q=Y. :

1.20. Proposition. Let (4,);., be a family of subsets in ¥ such that Max A resp.
Min A; are sup-stable resp. inf-stable with respect to 4, for all A € A. Then

(@ Max (U 4,) = Max (U Max 4,)
ieA Aed

resp.
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(ii) Min (U 4;) = Min (U Min 4,) .
ied ieA
Proof. The statement follows immediately from definitions,

1.21. Proposition. Let (4,);c4 be a family of subsets in Y and Q be a Y, -quasi-
interval in Y such that Supg 4, resp. Inf, A; are sup-stable resp. inf-stable with
respect to A,. Then

() SupQ(UASupQ A;) = Supg ( }JAA,I)

resp.

(i) Inf, (U Infg 4,) = Infy (U 4,).
ieA ieAd

Proof. From the sup-stability of Supg, 4, with respect to 4, for all 1 we have

Ud,~ Y, cUSupg 4, - Y,
ied Aed
which implies
(iii) lin(UA; — Y,) < lin{(U Supa 4, — Y,).
i A
Further, we have

Supg 4, = lin(4; — Y,) = E} Sup, 4, < Lflin (4, — Yy)=
=~ USupg 4; = Yo & Ulin (4, = Y2) < lin(Ud; = ¥.) =
' =>lin(L£ SupgA‘A - Y+)CIin(\£AA—'Y+),
which, together with (iii), gives
lin (L/;JA,I - Y,.)=lin (\A) Supp 4, — Y.).

From the last equality we obtain then the equality (i). Equality (i) is proved
similarly.

2. ABSTRACT DUALITY SCHEME

2.1. Basic assumptions. In the sequel suppose that Qis a Y, -quasiinterval in Y
and 2 and 2 are arbitrary fixed sets. Further, suppose that P: Q - Zand D: Q - @
are multivalued maps fulfilling the following conditions

(i) Primal Availability:

y1 < y2= P(y1) 2 P(ys),
(ii) Dual Availability:

y1 < 2= D(y) = D).
2.2. Definition. Put
" Py ={pe?|IyeQ:peP(y)} = U Py,
yeQ
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Do = U D()
ye2

wp)={reQ|peP(y)} pe?,

and
Wd)={yeQ|deD(y)} de2,.
Problems
(22.1) Supg #(2o)
resp.
(2.2.2) Inf, ¥(2,)

are called abstract primal resp. abstract dual. The points p* € 2, resp. d* e D, are
called optimal solutions of the primal resp. the dual if p/p*)  Supg u(P,) + 0
resp. v(d*) n Inf, V(D) + 0.

Analogously are defined the abstract max-primal

Max u{P,)
and the abstract min-dual
Min w(D,)

and their optimal solutions.

2.3. Theorem. (Weak Duality.) If the condition
(iti) Weak Duality Condition:

D(y) 0= Py) =0 vy >y.
holds, then
H(Po) Z ¥(2y) -

Proof. Let y' e p(2,) and y” € ¥(%,). We have then P(y'} + § and D(y") = 0.
Hence, by condition (iii) y’ cannot be greater than y".

2.4. Corollary. (Max-Min Strong Duality.) If the weak duality condition holds then

Max u(2o) A Min WD) = (o) N v(D) -

2.5. Theorem.(Sup-Inf Strong Duality.) Suppose that Y, , = cor Y, and the weak
duality condition and the following one
(iv) Sup-Inf Strong Duality Condition:

. Vy'ecor QP(y) =0 Yy >y =D()+0Vy>y)
hold then
cor (2) N Supg p(P,) = cor (2) N Infy WD) -
Proof. If #5 = 0 or 9, =  then, by condition (iv),
cor (@) N Supg u(P,) = @ = cor (@) N Infy v(Dy).

Suppose hence that 2o + 0 and Do + 0. Let y* e cor (2) n Supe K(P;) which
means
y*e@nlin(u(®?o) — Yi) and (¥* + ¥,,) nlin (@) — Y) n R = 9.
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We have then
PO* +y)=0 Yy, eY  :)*+y,eQ,

which, by condition (iv), implies that
D(Y* + y+) +0 Vy,eY,,.

Consequently, y* € Q 0 lin ((2D,) + Y,).
For any y, € Y, , such that y* — y, € Q we have

y* — yyecor (u(Po) — Yy).
So, since (because of the weak duality condition)

cor (W(2y) — Y,) ncor (W(Z,) + Y.} =90,
one has
y* = ye ¢lin (W(Dg) + V).
‘We have thus proved that
y* e cor (Q) n Infy w(D,) .
Conversely, let
y* e cor (Q) nInfy WD),
which means
y¥*eQnlin(((Zo) + Yy) and (y* — Yy )nlin(v(Zo) + ¥,)nQ=0.
Analogously, by condition (iv), we have
y*eQnlin(u(2y) — Y.)
and
y* + yiecor (WD) + Yy)

forall y, e Y, , with y* 4 y, € Q. Hence
y* e cor (Q) N Sup, w(Py) -

3. FENCHEL-LAGRANGE DUALITY FOR VECTOR FRACTIONAL
PROGRAMMING

3.1. Definition. Suppose that X is a linear space, U, and V,, are nonempty subsets
inX, uy: Uy - Randv,: V,, — Rarereal functions forn = 1,...,Nand k = 1,...
cen k(n)‘ Further, let Z be a linear ordered space, S be a nonempty subset in X and
g: S — Z. Let Q be a nonempty RY-quasiinterval in RY = Y. Here in this section,
in order to avoid misunderstanding we accept the following notations:

If Y, = cor RY then the Max, Sup, Min and Inf, notations, which are introduced
in Section 1 will be replaced by Max¥, Supy, Min®, and Infgy respectively. If Y, =
=RY we will use the notations Max®, Sup}, Min® and Inf§ respectively. If there is
no assumption about Y, we will use the standard notations without the letters w and s.
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Now put
N K(m)

F = {xeSﬁ(nl ﬂlU,,kﬂ Vnk):g(x)ez‘r}
n=1k=

and, under the assumption that all occurring denominators do not vanish on #,
R(n

769 = (3 ) T a1

We shall consider the problem
(FP) Max-Supq, f(F)

where the notation Max-Sup, means that both maximum and supremal concepts
will be studied. Problem (FP) is called the vector fractional program.

3.2. Remark. The duality questions of scalar fractional programming have been
investigated by Schaible [10, 11] and Sther authors. In Cambini [2] a version of
Fenchel duality in scalar fractional programming was introduced. As far as the
vector fractional programming is concerned, in Tran Quoc Chien [5, 6, 7] a duality
theory of Lagrange type is constructed via the abstract duality scheme. In this section,
on the basis of the abstract duality scheme introduced in Section 2, a unified duality
theory will be built up, which contains all old Lagrange and Fenchel duality and
gives a considerable possibility of numerical applications,

3.3. Abstract primal problem

Put N
P=Xx[[(Rx R xZ
a=1
N g
Po(y) = Po=X x [T(R, x R"") x Z, VyeQ,
feis}
Pnk(y) = {(x, ("no, e rnK(n))n:l.“N) 2ePixeSnUynVy&
K(n)
& 1y S Up(x) = Vo vu(X) & rig £ Y & 2 £ g(x)}
=1
and N K
P(y) = Pon ( . NPuy) for y=(yy...,y)eQ.
n=1k=1

From definitions it follows immediately

3.3.1. Lemma. If v,(x) = 0 for all feasible n, k and x then the multivalued map
P: Q - 2, that was just defined above, satisfies the primal availability.

Now following the approach and notations in Section 2 we obtain the abstract
primal problem

®) T Max-Sup, g(#) .
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It is easy to verify the following
332. /() - RY = u(@g) — RY..
Hence, as a consequence of Proposition 1.5, we obtain
3.3.3. Proposition. Problems (FP) and (P) are equivalent in the sense
Max® f(F) = Max® y(2,)
and
Supg f(F) = Supg u(Py) .
Now in order to establish a reasonable dual to problem (P) we recall first the
following concept of set separation.

3.4. Set separation

3.4.1. Definition. Given a family {4;:i e} of subsets in X, a family of linear
functionals on X{®;: i eI}, not all zero, is said to separate {A;:iel} (in Vlach’s
sense) if

() =0
et
(i) Y sup<P;x> =0

iel  xed;

(iif) there exists at least one j € I such that
inf (@, x> < sup {P;, x>.

xedj x€Aj
A family {4,: i eI} is said to be separated if there exists a family {@;:ie I} of
linear functionals on X which separates {4;: i e I}.

3.4.2. Theorem. A finite family {4;: i eI} of convex subsets in X is separated
(a) if and only if (Yicr 4; = 0, when icr 4; + 0 for all iel.

iel
(b) if and only if A; " ) cor 4; = 0, when cor 4; + @ VieI\{j}.

ieIN(j}
(¢) if 4;n () ior 4; = 0, when icr A; & @ VieI~{j} and codim (aff 4;) < + o0
ieI\N{j}
VieI{j}.

Proof. See Bair [1], Theorem 2.1 of Chapter 6,

3.5. Abstract dual problem
Let 2* be the dual space to 2. Every element j € Z* has the form
B = (%5 (Faos Pty ++os Fagmyhu=1...55 Z)
where Xe X*, F,eRVn=1...N a.nd k=0,1...K(n), Ze Z*.
Let {p% p™:n =1...N,k=1...K(n)} be a family of 1 + glK(n) functionals
P

in 2* of the following form
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= (x (r,,a, Fats ooy Fr?x(n))n:l,..m 2%
ﬁnk = (x"ka (FnO’ '::u cees F:Il;‘(n\)n=l...N! z"k)

3.5.2. Lemma. If sup {° p) < + o, then
pePo

() =0, -2z}
(i) 7, <0and 75, =0V¥n=1...N Vk =1...K(n).

3.5.1.

Proof. The statement follows easily from the structure of Py

3.5.3. Lemma. If s, = sup <{p"%, p)> < + o0, then
PePni(y)

(i) 7k=0Vm+nVi=0,1,...,K(m)and 2% e Z%
(i) * "‘" =~ Vie{l,....,Kn)}~{k}.

Proof The statement (i) follows immediately from the structure of P,{y). Since
¥ and 7% are nonnegative (for r,, and r,, may be arbitrarily negative) one can write

si= sup [F5x>+ Y (f:t. + ) T+
xeSAUnk NV nic i*k,0
rai€

+ (P + Fo) - (%) — yoofx)) + <2 (D]
Since r,; are arbitrary for i + k, 0, we have
FE 4+ PR =0 Vi kO

or o= Vi k,0,

From Lemma 3.5.3 it follows immediately

3.5.4. Lemma. If sup ("™, p) < + oo, then
PEPnic(y)

L PY: p € Pyl y)} = sup {<Z™, x> + (Fog + Foi) - () —
- .annk(x)) + <z™, g(x)): xeSnUygn Vuk} .

=nk

sup {<p

3.5.5. Lemma. If the family (3.5.1) separates the family {Pg, Py(y):n = t...
Nkl K(n)} then
N K@
0 5P
(ii) Foreachn=1,...,N Fg + Fif = 7" is constant for all k = 1,..., K(n)

(iii) s(y) = sup {<p"" pipe Pu(y)} = sup {2 x> + P(ua(x) — yow(x)) +
+ (2% g(x)>:xeS N Uy N V)

N K(n)

™ X ank(y) =0

Pro of. From definition of set separation and Lemma 3.5.2(i) we have immediately
assertions (i) and (iv). Assertion (iii) follows then from Lemma 3.5.4 and assertion (i).

1
T ¢
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So it remains to prove (ii). Fix an ne{l,...,N}. From Lemma 3.5.2(ii), Lemma
N K(n)

3.5.3(i) and condition p° + Y. Y. p"™ = 0 we obtain

n=1k=1
K(n)
ZF:’(; = —fgo z0
k=1

and K(m)

V=0 Vk=1,..,K(n).
i=1

Now combining Lemma 3.5.3(ii) and the last equality we have
, Feo .
Pk - N =Y =20 forall k=1,..,K(n).
i*k,0 i=1

The lemma is thus proved.
3.5.6. Definition, We introduce now the following set

D ={d=(F%2% Forny |FeX* 2%eZ}, Vn, k (F,..,i")eR], &
k=1...K(n)
N K(n)
&Y Y- o)
n=1k=1
and the multivalued maps
N K(n)
DY(y)={de@:} ¥ su(d,y) =0}
n=1k=1
and
D(y)={deD"y): >0 Vn=1..N},
where
suld, y) = sup {<Z, x> + F(u(*) — yoou(x)) +
+ & g(x)ixeS Uy n Vyl .
3.5.7. Lemma. If v, (x) 2 O for all feasible n, k and x then both maps D*(y) and
D*(y) satisfy the dual availability.

Proof. The statement follows immediately from definition.
3.5.8. Assumption. In the sequel we suppose that

vu(x) Z 0 for all feasible n, k and x .

3.5.9. Lemma. If Y, = {(ys,..., yy)€RY: y, > 0 V¥n=1...N}, then the maps
P(y) and D*(y) satisfy the weak duality condition.

Proof. Let y*eQ such that D(y*) # 0. Let y > y* which means y, > yr
for all n = 1,...,N. Suppose, on the contrary, that P(y) # §. Choose p’ = (%',
(Fros -+ rr:K(n))n:l...I\'v g(xl)) € P(y). We have

K(n)
3 (#a(x") — Yavulx)) = 0 for all feasible n, and
© k=1
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9(x)ez, .
K(m)
Since v,,(x) = 0 for all feasible n, k and x and v(x) # 0 for all n, there exists,
k=1

for each n,a ke {1, ..., K(n)} with vu(x") > 0. So we have, for all n,
K(n) K(m)

Z(u"k(x') - »Vj Unk(x,)) >kzl(unk(xl) ) vnk('x,)) =20.
k=1 =
Hence, for a d e D*(y*) we have
Znk

02 ¥ su(d, y) 2 ¥[8 %D + Fluy(x) =y oulx)) + <2%, g(x)>] >
nk

nk
> 5 Plual) = yooa(x)) 20
which is absurd. We have thus proved P(y) = 0.
Analogously we have
3.5.10. Lemma. The maps P(y) and D¥(y) satisfy the weak duality condition
3.5.11. Definition. Denote
(i) 2*=U D*(y) with v(d) = {ye Q:de D*(y)}
and .
(i) 2¢°= [E)QD"(y) with v(d) = {y e Q:d e D¥(y)}.
Accordir:g to Definition 2.2 we will have the following dual problems to the

fractional program (FP):
Min*-Infy v*(2")

and
Min*Infg, y(2%) ,

which are called Fenchel-Lagrange duals to program (FP).
Now we shall prove some duality principles for this duality.
3.6. Theorem. (Weak Duality.) We have
N(#) 2 v(2")

and
f(F) 2 v(2°).

Proof. The statement is a consequence of Theorem 2.3, Lemmas 3.5.9 and 3.5.10
and relation 3.3.2.
3.7. Theorem. (Max*-Min® Strong Duality.) )
Max® f(F) n Min®* v(2*) = f(F) n v\ D)
Proof. The assertion follows from Corollary 2.4, Proposition 3.3.3, relation
3.3.2 and Lemma 3.5.10.
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3.8. Fenchel-Slater constraint qualification
(i) Fenchel constraint qualification:

Nicr [Sa UVl +0 and icrZ, 0
nk

(ii) Slater constraint qualification:
VZeZ%, IxeSn(NUyn V) E g(x)> > 0.
nk

It is easy to prove the following
3.9. Lemma. If the Fenchel constraint qualification holds then
icr Po & 0 and icr Pu(y) =9 for all feasible n, k and y .

3.10. Lemma. Suppose that S A Uy N ¥, are convex and ux) — y,,(x) are
concave for all feasible n, k and y and g{x) is concave on S. Then the Fenchel-Slater
constraint qualification implies the Sup®-Inf™ strong duality condition.

Proof. The sets P, and P,(y) are convex and have nonempty relative core for all
feasible n, k and y by Lemma 3.9. If P(y) = 0 then by Theorem 3.4.2(a) there exists
a family {p° p™:n=1...N,k=1...K(n)} = #* which separates the family
{Po, Pu(»)in =1...N,k=1...K(n)}. Put

K(n)
=Y Yn=1..N
=1
and
d = (7% 2% )2

Then by Lemma 3.5.5
z Snk(‘L y) <0.
nk

Suppose, on the contrary, that d ¢ 2 which means / = 0 for all n. Then, in virtue
of Lemma 3.5.3 and the fact that 75 = 0 for all k, we have ¥ = 0 for all feasible
n, k and i. If there is 2" e Z%, then by the Slater constraint qualification there
exists xe (S AU, nV,) with <™, g(x)> > 0 that leads to the following ab-
surdity  ™F

0> };snk(ds y)z Zk<2"", g(x)> > 0.

So 7" = 0 for all feasible n and k. In this case there exists, at least one ™ = 0.
Then the family {x™:n =1...N,k = 1... K(n)} separates the family {S n U,
A Vuin=1..N,k=1..K(n)} which, in virtue of Theorem 3.4.2(a), contradicts
the Fenchel constraint qualification. The lemma is thus proved.

3.11. Theorem. (Sup”-Inf™ Strong Duality.) Suppose that the following conditions
hold:

(i) g(x)is concave on convex set S,
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(ii) uu(x) — ¥, vu(x) are concave on convex set S A U, N ¥, for all feasible n, k
and y,
(iii) the Fenchel-Slater constraint qualification.

Then
Supy (f(#)) n cor @ = Infy (v*(2™)) N cor Q.

Proof. The statement follows from Lemma 3.10, Proposition 3.3.3 and Theorem
2.5.

In the sequel we will transform the Fenchel-Lagrange duals to the so-called
canonical Fenchel-Lagrange duals which are more suitable for the numerical
calculation.

3.12. Assumption. In the sequel we suppose that v,,(x) are positive for all feasible
n, k and x and @ is of the following form
Q=[ay, b} x ... % [a,b,] x ... x [ay, by]
where a,, b,e R U {— 00, + 00} and the notations [ — o resp. + 0] are equivalent
to (— oo resp. + o).
3.13. Definition. Putting

P = {d = (2", 2, 7, §),-, (RRe X*, 7%e 2%, P > 0,
I8 n N +
k=1...K(n)

M eR Vnk, Y =0& Y& =0},
nk nk

we define the following function L: ¥ — Q
L{d) = (y1, .- Yn)

where
—nk =n Snk _ ank
y, = max {a,, sup sup AT u"k_(x) * gl = 5
k=1...K(n) xeSAUnknV nk 7 v(x)
The problem

Min-Inf, L{Z)
will be called the canonical Fenchel-Lagrange dual to program (FP).
3.14. Lemma.
L(Z) + RY = v(2°) + RY. |

Proof. Obviously L(#) < v{(2°), hence L(#) + R} = v{2*) + RY. Conversely,
let d = (X", 2™, ) € 2° and y € v(d) which means

Y su{d,y) £ 0.

nk
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Then one can choose §%* 2 s,(d,y) for all n,k such that Z’"" =0 and
L(z™, 2™, ¥, 5") < y. So we have y e L{%) + RY.

3.15. Lemma.
Min*Inf, L{.¥) = Min®Inf, v{2°) .

Proof. The statement follows from Lemmas 1.5 and 3.14.
Combining Theorem 3.7 and Lemma 3.15 we obtain
3.16. Theorem. (Max*-Min® Strong Duality.)

Max® f(#) n Min® (&) = f(F) n L(Z).
The following two lemmas are evident
3.17. Lemma. If v*(2") n cor Q < lin v¥(Z°) then

Infy v*(2™)  cor Q@ = Infy v(2°) n cor Q.
3.18. Lemma. If N = 1 then 9" = 2° and

w(D") = (2.

3.19. Lemma. Suppose that the following conditions hold:
(i) VyeQ IM Vn Vk VxeS Uy 0 Vgt uy(x) — yo04{x) < M,
(i) Vn Ik 3Ic>0VxeSnUyn Vysvglx) = c.
Then

v(9™) o cor Q < lin v¥(2°) .
Proof. Let y & v*(2") n cor Q. There exists d = (3™, 2, ") e 2" with

Z;(s,,,‘(d, y) 0.

Without loss of generality we can suppose that 7! > 0 and v;,(x) Z ¢ for all
xeS n U, NV, Fix an arbitrary 5 > 0 and choose an ¢ > 0 such that

N
ZK(n).c.M<F1.5.c

Now it is easy to verify that do = (%", 2'%, 7}), where

fo=F and Fa=F+¢ Va1,

belongs to 2° for (y1 + 8, ¥a, ..., ¥a) € vi(do) .
So, by a limit passage (3 | 0), we obtain y e lin v¥(Z°).

Summarizing Theorem 3.11, Lemma 3.15 and Lemma 3.17 we obtain

3.20. Theorem. (Sup™-Inf” Strong Duality.) Suppose that the following conditions
hold:

(i) g(x) is concave on the convex set S,
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(i) uu(x) — y, v4(x) are concave on convex set S n U, N ¥, for all feasible n, k
and y,
(iti) The Fenchel-Slater constraint qualification,
(iv) v(2") n cor Q@ e linv(2F).
Then
Supyy (f(F))  cor @ = Infy (L(Z)) N cor Q.

3.21. Proposition. Suppose that u,,,‘(x) are concave on U, for all n and k. If for
each n = 1,..., N one of the following cases holds:

(i) vu(x) are affine for all k = 1, ..., K(n) and [a,, b,] = (— o0, + )
(i) vau(x)are convex for all k = 1, ..., K(n) and [a,, b,] = [0, + o)
(i) .(x) are concave for all k = 1,...,K(n) and [a,, b,] = (-0, 0],
then condition (ii) of Theorem 3.20 is fulfilled.

Proof. The statement follows easily from the properties of concave functions.

Now we shall consider some special cases where the Fenchel-Lagrange duality
can be considerably simplified.

3.22. Fenchel duality. If the constraint g(x) e Z,. does not occur in program (FP),
then g(x) may be regarded as g(x) = + oo for all x € X. The dual to program (FP),
defined in Definition 3.13, is called now the Fenchel dual. Put

Ly = (T, T eXY, P> 0, eR, Vi, k, ¥ =0, ¥ 5% = 0}

k=1...K(n) nk nk
and
L(x"™ 7, §™) = (y1, .o ¥w)
where

ok = ik
X x> + P ug(x) —§
y, = max Ja,, sup sup < ’ > - nky )
k= 1...K(n) XeUnkn Ve 7 U X)

The Fenchel dual has then the form
Min-Infy L' %) .
Theorem 3.16 and Theorem 3.20, where the Slater constraint qualification is
automatically fulfilled, hold for this duality.
3.23. Lagrange duality. If in program (FP) all function are assumed to be defined
on all space X, then the canonical Fenchel-Lagrange dual attains the form
Min-Inf, L(Z,)

where
Ly = {(Z% 7, 5): 2% e ZY, 7 > 0,§%eR, Y & = 0}
nk
and LE 7,59 = (3300 )
with

wn =nk — ank
¥, = maxJa,, sup sup P () + <2 g(x)> = § .
k=1..K(n) xeX F o,(x)
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This dual is called the Lagrange dual to program (FP). Theorem 3.16 and Theorem
3.20, where the Fenchel constraint qualification is reduced to cor X # §, also hold
for this duality.

3.24. Scalar Fractional Programming

Let us consider the program
K K K
(@) a=sup{Y u(x)/ Y v(x):xeSa(NU,"V)&g(x)eZ,}.
2 k=1 k=1 k=1

For program (=) we suppose the following assumptions
(i) g(x) is concave on convex set S,
(i) wx) are concave on U, forall k = 1,..., K,

(iii) vy(x) are all affine on ¥, and Q = {—c0, +00) or v(x) are all convex on V,
and Q = [0, +o0) and a > 0 or v(x) are all concave on ¥, and Q = (- oo, 0}.

3.24.1. Lemma. The Fenchel-Lagrange dual to program (o) is
— - e
®) f—inf sup  sup G xd 4 u(x) + <2 g(x)y — §F

Fo k=1..K xeSnUrnVi Uk(x)

where

M=

K
Lo ={(z2,8): % ex*, ez}, FeR k=1,..,K, ) x*=0, Y §=0}.
k=1

k

It

L

Proof. According to Definition 3.13 it suffices to prove for Q = [0, + )

=k =k ok
y=sup sup <& x4+ wlx) + L g(x)y - § >0 v
k=1...K xeSnUxnVi ,(x)

(%, 2, M e2,.
K
Indeed, let x" be a feasible solution of program (o) with Y. u(x’) > 0, then we have
¥=1
youx) = & xD + u(x) + Eglx)y - Yk=1..K=>
K K K
=yYu)zYu)+ Y Eg)y>0=>y>0.
k=1 k=1 k=1

Summarizing Lemmas 3.18, 3.21, 3.24.1 and Theorem 3.20 we obtain ‘

3.24.2. Theorem. (Strong Duality.) If the Fenchel-Slater constraint qualification
holds then o = f.

Finally we shall consider a more special case of program (a):
K K
(oto) a = sup { Zluk(x)/v(x): xeSn¥n (kﬂlUk) &g(x)ez,}.
o k= =
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Put ,(x) = vx)/K and V, = V for all k = 1,...,K. Then the Fenchel-Lagrange
dual to program (o) is (by Lemma 3.24.1)

(Bo) B = infy(=, 2% &)
20
where
W(FE, 2, §)=sup sup K CFx) + ux) + <2 g(x)> - &
T k=1...K xeSnVnUk U(x)
and
K K
Lo ={(F 2 §): T eX, P ez, FeR Y =0 Y§=0}.
k=1 k=1
Put
o7 2, ) = f: sup CE x> + ux) + (E g(x)) — 5".
e k=1 xeSnV nUk v(x)
Obviously
3.24.3. o(=F, 2 §) < Y(E 25 5 V(E5 2%, ) e 2.

3.24.4, Lemma. For any feasible solution x of program (oo) and any (%% 2%, i) e 2,
we have x
@725 ) 2 T w(x)fo(x) -
k=1
Proof. Indeed, one has

o s b ED )+ gty =t B4

) R

v

Program
(89 B = inf p(%*, 2, §%)
Lo
is called the revised Fenchel-Lagrange dual to program (ot)-
From Theorem 3.24.2 and the relation 3.24.3 it follows

3.24.5. Theorem. (Strong Duality.) If the Fenchel-Slater constraint qualification
holds, then o = f’.

3.25. Remark. In Cambini, Martein [2] a dual similar to (8’) has been established
for program (at,), where K = 2.
(Received August 26. 1985.)
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