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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 5 

A VANISHING DISCOUNT LIMIT THEOREM 
FOR CONTROLLED MARKOV CHAINS 

MONIKA LAUSMANOVA 

Finite controlled Markov chains with discounted cost criterion are considered. It is proved 
that the average cost optimal control yields the stochastically smallest distribution of the discount­
ed cost asymptotically as the discount rate tends to zero. 

1. INTRODUCTION 

Papers dealing with limit inequalities for the probability distributions of the total 
costs in controlled Markov processes as time tends to infinity were published re­
cently (see [3], [5], [7]). In the present paper analogous inequalities are derived 
for the discounted cost criterion with low discount rate in finite controlled Markov 
chains. Martingale methods are used together with the Skorokhod representation 
of random variables by means of stopping of the Wiener process (see [4], [1]). Under 
additional hypotheses (see e.g. [6]) these methods can be applied also to chains 
with countable state space. 

The total discounted cost is proved to have stochastically smallest probability 
distribution in the asymptotic sense for the average cost optimal stationary control. 
If we interpret the discounting as the means to relate a future payment to the present 
time, the paper gives asymptotic solution of the following problem. What is the 
smallest security A needed for the defrayment of random cost in the future with 
a given probability a. For low discount rate, i.e. for discount factor /3 near to 1, 
the solution is written in the form 

f) I A 
+ u„ 

1-P W2(l-/9) 
9 (resp. A) is the minimal average cost of the considered chain (resp. of an auxiliary 
chain) obtained by solving a quasi-linear (resp. linear) system of equations and ux 

is the a-quantile of the standardized normal distribution. 
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2. PROBLEM FORMULATION 

Consider a controlled Markov chain with finite set of states I, the evolution 
of which is defined by means of transition probabilities 

p(i, k, z) , z e Z(0 . i, kel. 

z denotes the control parameter. Its range in state i, Z(i), is assumed to be finite 
for i e I. Further, let Xn be the state of the chain and Z„ be the control parameter 
value at time n. In general 

Zn = zn(X0, ...,Xn). 

In the stationary case, Z„ is a function of Xn only, 

(1) Zn = *(Xn) • 

(1) will be called briefly stationary control z. 
To evaluate the trajectory {Xn} and the control {Z„} introduce the discounted cost 

00 

^ o o == }_, P" c(Xn-> Xn+i, Zn) . 
n = 0 

The function 
c(i, k, z) , z e Z(i) , i, kel, 

gives the cost from transition i -> k under parameter value z, fi is the discount factor, 
0 < fi < 1. 

The well known Abel type arguments yield the connection between 

(1 - fi) Cx , fi -.. 1 , 
and 

(2) i X e(x„,x„+1,Z„), AT-oo. 
N n = 0 

We therefore base our considerations on the optimal stationary control with respect 
to the average cost criterion (2). We make the following hypothesis. 

Assumption 1. For each stationary control z the matrix 

\\p(i>k,z(i))\\i>keJ 

is indecomposable. 

Assumption 1 implies that {Xn} is an ergodic Markov chain under any stationary 
control z. 

Let rc,(z), i el, denote the stationary distribution of the chain. The corresponding 
average cost per transition equals 

°(z) = 12> .M P(UJ, <0) c(?,'j' z(0) • 
Set 

0 = min 0(z) . 
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z is average cost optimal if 6 = d(z). 6 and z are obtained from the following opti­
mally equation (see [2]). 6 is the unique number such that constants wh i e I, can be 
found so that 

(3) min [£p(i,j, z) (c(i,j, z) + Wj) - wt - 0] = 0 , iel. 
zeZ(i) j 

Denote by cp(i, z) the expression in the square brackets in (3). Under Assumption 1 
z is average cost optimal if and only if 

(4) <p(i,z(i)) = 0, iel. 

Assumption 2. The stationary control z satisfying (4) is unique. 
In the following text z denotes the unique average cost optimal control. 

3. THE SKOROKHOD REPRESENTATION OF A DISCRETE RANDOM 
VARIABLE 

Let £ be a random variable taking on m + m! values, E£ — 0, 

P[£ = yi] = 4>> i = 1,2, ..., m , 
p[£ = xt\ = Pt> i = 1, 2, ..., m' , 

xm, = ... = Xl<o = y i £ ... Sym. 

Proposition 1. Let W(t) be a Wiener process independent of c,. There exists a stop­
ping time T such that W(T) has the same distribution as £. Further, it holds 

(5) ET = var £ , 

(6) ET2
 = const. E£4 . 

Method of proof. Proposition 1 can be proved by applying Skorokhod's con­
struction to the random variable 

££ = £ + stj, 

where rj has uniform distribution, and by letting s -> 0 + . 
Let us present some details regarding the limiting stopping time 

Set 

X = lim т £ , 
e->0 + 

<УÒ • 
i 

= Z ЧJУJ 
J = I 

i = 1, 

h(x,) -
í 

= - ІP, 
J = I 

Pj, i = 1, 

m , 

m 

x is the minimal root of the equation 

(w(t)-z)(w(t)-a) = o, 
where I is constructed from £ by randomization. 
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Let, e.g., £ = yt and 

h(xj-i) < Kyi-i) < h(xj) < KXJ+I) < < h(xt) < .. . 

. . . < h(xk-t) < e(yt) < h(xk). 

Then the conditional distribution of E, is given by 

P[{ _ Xj\i - , j _ M_jr_l__i) _ _ _ _ _ _ _ ) , 
«Ui) - e ( - i - i ) «i. i 

-g .„ | { . - j . * ( -J-%-. )___, ,_, + 1,...,t_., 
<. i) ~ *(Yi-i) _-Vi 

?[z = Xk\z = , j = <f\ - *fa-*) -, gfa) - »(*-->. 
<Yi) - < Y i - l ) _,Yi 

Taking into account that the definition of T is analogous in other cases, we shall 
calculate P[W(r) = _y,]. The event JF(r) = j>i is possible if £ takes on one of the 
following values: 

_y,-, xk, xk- j , . . . , Xi, . . . , Xj . 

Moreover, the probabilities of reaching first £ or | by the Wiener process are inverse 
proportional to their moduluses. Consequently, 

P[1TW - ,;J = _________________ + 
« _ • i . i - . 

* + + V 4. ________ _______ + Q _______: -___*____ ______ 
i«y+i ' qji yt- xt ' qiyi yt - xk 

/i(xk_i) — e(vi) — xk
 kZ? —xt 

+ Pk ________ __i_ __ + ~] Pl _____ + 

+ P. 

Pfe^fc J>i ~ *fc »-./+- J\ - Xl 

Kxj)-e(yi-i) ___ 
- / _ • * _ >. - x . 

Щ__jý_-i) Л -*/ + Yi | + 

y% \yt - XJ yt - XJ. 

i=i+i yt \yi-Xi yi-xj 

+ _í-_______l______) / Z _ : + __ 
.Vi U i - ** Ji - xk 

KXJ) - g(j___) + ft(*--i) - _(*/) + _ 0 _ - _ _ _ _ ) = __• _ „ n 
_i • I 1 

yi yi 
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4. AUXILIARY MARTINGALES 

Consider a general control {Z„}. The investigation of the asymptotic behaviour 
of the cost Cx is performed using two martingales. Introduce the discounted cost 
up to time N, iV_1 

CjV = 2J P" C(Xn> Xn+l- %n) • 
n = 0 

Let #"„ be the Borel field of random events defined in terms of X0,XX, ...,Xn. 
The first martingale with respect to {^N} is 

*MK = V(l - P)\cN - 0^—j + wxJ»-i 

+ (1 - PYŽWZ.P-1 -^(XniZn)? 

У?Xo + 

л = l л = 0 

, N = 1,2,...,, 

where q>(i, z), wt, i el, 9 were introduced in Section 2. It holds 
i V - 1 

XMN = Y, lY„, 

n = 0 

'Yn - V(- - l5) [l5" C(*»>*»+1> Z*) " ^ + WXn + 1P" ~ 
-*xjn-<p(Xn,ztt)n = 

= V(i - fi) \fr c(xn, xn+1, zn) + wXn+ip» -

- F Zp(Xn, k, Z„) (c(X„, k, Z„) + wk)] . 
k 

From here it is seen that 
E ( 1 Y „ | ^ „ ) = 0 . 

Further, it is computed that 

EOY2 | * . ) - P2n c2(X„, Z.) (1 - /3), » - 0 , 1 , . . . , 
where 

c2(i, z) = Y,p(U k, z) (c(i, k, z) + wk)
2 -

ft 

- E K 1 " ' f c ' z ) ( c ( f » ^ ' z ) + wfc)]2 ' ieI' zEz(0 • 
Denote N_x 

cN = H P2n c2(Xn, z„). 
n = 0 

We shall associate to {CN} an analogous martingale {MN} as in the case of {CiV} 
• {2MN} will be a sum of {MN} and of another martingale {M*}. 

Let the constants A, vt, i e I, fulfil 

A = S Z^iW K'»1» z (0) C2(UJ» z(0)» 
«• j 

Jjtiu j> z (0) (c2(^ u z (0) + UJ) - vt - A = ° > * e 7 • 
J 
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Set 
H** z) = ZK*» h z) fefc J> z) + Vj) - vt - A , ze Z(i) , i e I . 

j 

We define 
iV- l r o2N _ ] 

MN = Z]Yn = (l-p)\CN-A P——± + 
n = 0 l_ P 1 

+ VxJ2iN~l) - vXo + (1 - WZvjJ3*-" - i V f c Z„)/?2"l , 
n=0 n=0 J 

N= 1,2,.... 
Letting N -• oo it follows 

W XMM = £ *Y„ = V(l - P) (c„ - - ? - \ + 
„ = o \ 1 - pj 

oo oo 

+ V(- - P) [ - ^ o + (i - P)Z "-.J8"-1 - 1 <K*», z.) /?"], 
n = l n = 0 

(8) M „ = | O 7 „ = ( 1 - / ! ) ( C „ - I ^ ) + 

00 00 

+ (1 - P) I- vXo + (1 - /52) I %„/52 ( n-1 } - Z HX„, Z„) p2"] . 
n = l n = 0 

Applying successively the Skorokhod representation to the martingale differences 
of {1Miv} we obtain 

oo oo 

(9) 1 M 0 0 =I 1 Y„ = W(lT„), 
n = 0 n = 0 

where T„ is the stopping time corresponding to the martingale difference1 Y„, and 
it holds according to (5) 

E(T„ I j g = E(̂ Y„2 I <Fn) = p2"(l - p) c2(Xn, Z„). 
Further, let 

K = Z k - - h I *g] = !>« - Z W - fl C-(*»> z„) = 
n = 0 n = 0 n = 0 

=* 2 > . - (1 - / * ) C* , N = l , 2 , . . . . 
n = 0 

Using (5), (6) it can be verified that 
oo oo 

(10) E(M£) 2 = E[ Z (T„ - E(Y„21 #"„))2] _ (1 - /?)2 const. Z P4" • 
n=0 n=0 

From (8) it follows 
00 

(11) - E(M00)2^(1 -pf const. Z/94 ?4n 

n = 0 
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By Assumption 2 <p(i, z) > 0 for z + z(i). Consequently, 

(12) \\l/(i, z)\ = const. cp(i, z), ZG Z(i), iel 

Finally, define 

(13) 
lмж =мl + Mx - £ v 

i + Д + 

+ (i - ß) ( - %0 + (i - Я Z %„/52("_1)) - (i - / 0 I Ф(xn, z„) ü2" 

5. STATEMENT OF RESULTS 

$ will denote the distribution function of the standardized normal distribution. 

Proposition 2. Let Assumptions 1,2 hold. Under arbitrary control {Z„} 

(14) lim sup P Гv(i - ß) c„ -
1~Д 

< v < ф{щ)' ,,e(^'æ) 

Proof. According to (7) and (9) it holds for S > 0 

(15) V(i-/0 c 
l - Д 

= У < P W 
1 + / 3 

<: >> + <5 + 

= p 

+ p 

w 

MгЬH^-Ч^-AИ 
1 + ß 

= y + s •n-ь - ^(St„)x5 + 

oo oo " 1 

+ V(i - ß) K , - (i - ß) S ^ - 1 ) + V(i - Й I <K*»> z«) /5" • 
л = l п=0 J 

Further, as /? -> 1. 

(16) F IҒ 
1 + /? 

< y + S W[-) = y + S ] 
Now, we prove the neglibility of the second probability on the right-hand side of (15). 
For /J close to 1 this probability is majorized using (13) by 

(П) £ + P 

A 
K-+ />/ п = 0 2 п = 0 

1 + P n = 0 

(10), (11) imply 

(18) 

- I t . <|2Mœ | + £ + 1 (1 -0 )1 W 
n = 0 

lim E( 2 M œ ) 2 = 0 . 

, £ > 0 . 
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From here and from (12) it follows that (17) can be further estimated by 

(19) 2s + P [ sup (W(±A) - W(t)) >id + y ( l - fi) _T <pfl = 

\±A-t\£2e + const . (1-P)2cpp2n 

oo 

2a + __. P [ sup (W(iA) - W(t)) > \b + j] = 
7 = 0 | z l i - t | g 2 E + const . (7+l)v / ( l - i«) 

2в + І 4 
i=o 

1 - Ф 
à\2 + j 

X2s + const.(j + l)J(l-p)y/2J] 

In the last step we used the well known relation for the Wiener process (see [1] 

§ 1.3) 

P[mp W(t)> a] = 2(1 - * ( 4 ; ) Y 

The last term in (19) converges to zero as /? —> 1, s —> 0. 
From (16) we conclude that 

lim sup P [ y ( l - fi) (c„ - -?—\ = y~\= ?{W(\A) = y + 5 ] 
t-i L V 1 - /?/ J 

and letting <> -> 0 we get (14). 

Proposition 3. Let Assumptions 1,2 hold and let 

(20) 

Then 

lim y ( l - fi) £ <p(Xn, Zn) p" = 0 in prob. 
ß-*i 

lim P 
ß-»i 

Proof. With regard to Proposition 2 we have to verify 

From (7) and from (9) it follows for 3 > 0 

(2!) R^l-^-^S^pf^^S-.l]-

-P [V(W)(C„-^)-^)>,] = 

"pKr+i)s'-']-p['f(l.^-,r(r + jS1 J |_ „ = o V1 + ß 

^ * - WjГo y(i - ß) + y(i - д (ì - /o "E w^"-1 -
n = l 

oo 

-V(--ДI^-*.).-*•]• 

D 
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Asß-» 1, 

Wi (-A-\šy-S - P[IF(i__) __ J - c5] 

The second probability on the right-hand side of (21) will be proved to be negli­
gible. With regard to assumption (20) it holds for e > 0 

oo 

py(i-p)TJ<p(Xn,zn)^id]<^ 
n = 0 

Moreover, using (13) and neglecting small terms it is seen that the last probability 
in (21) does not exceed for /J close to 1 

Zт« < (22) . + p[lTQ>„) - W ^ _ * . r . i + f 

\2M„\ + * + \(l-P)WQ. 
Finally, (12), (20), and (18) are used to majorize (22) by 

2e + P [ sup (W(t) - W(\A)) __ i<5] ^ 2e + 4[1 - #(<5/(4e))] . 
| f - £ _ | g 2 E 

As e -> 0, 2e + 4[1 — <p(<5/(4e))] converges to zero. 
Letting 5 -> 0 we infer that 

(Received November 11, 1988.) 
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