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K Y B E R N E T I K A — V O L U M E 10 (1974), N U M B E R 6 

A Real-Time Identification 
of Continuous Linear Systems 

PAVEL ŽAMPA 

The article presents the method of estimating the coefficients of linear differential equations 
based on measuring the input and output signals of identified systems. In comparison with other 
methods this method offers relatively very accurate results. It does not require a special type 
of input signal and is suitable for real-time identification under operating conditions. 

1. INTRODUCTION 

The basic requirement expected to be satisfied by the method suggested was achiev­
ing sufficient accuracy of estimation and finding a possibility of using it with an 
arbitrary, in advance undefined input signal. 

As a digital computer is able to process only data sampled at discrete time instants, 
the system was identified by means of the hybrid technique which guarantees greater 
accuracy. The analog part was used for transforming both the input and output 
signals into such variables that can be sampled discretely without affecting the accu­
racy of the solution. 

The problem of the continuous system identification was thus transformed into 
an equivalent problem which was then solved by means of the digital technique. 

The unknown parameters were calculated by means of Bayes optimal estimation 
or its modification, which in some situations offers a more simple solution while 
retaining the basic characteristics of a good estimate. 

2. EQUIVALENT PROBLEM 

Suppose the identified system is described by a linear differential equation with 
constant coefficients 

(1) rf» + &-<*-»> + ... + PlV - a^" 1 ' + ... + «.{ + *« + pkX
ik~l) + -

••• +PiX, 



where £(r) and rj(t) are input and output respectively and where y(t) is additive 
output noise. 

If we now use the symbols S£v and S£2 to denote the suitable linear differential 
operators, equation (l) can be written as 

(2) sex(n) = se2(t) + set(x). 

Let Se0 now be another stationary homogeneous linear differential operator and 
let the variables x(t), y(t) and fi(t) be defined by the relations 

(3) se0(x) = i , 

(4) se0(y) = n, 

(5) se0(n) = x • 

By inserting these equations into (2) we receive 

se^se^y)) = se2(se0(x)) + se^se^)). 

With regard to the commutativity and linearity of the operators, it is possible 
to write 

(6) se^se^y)) = se0(se2(x) + se^)) 

or 

(7) se0(s?x(y) - se2(x) - se«0)) = o. 

The general solution y of this equation can then be expressed in the form 

y = >'h + vp , 

where yh is a general solution of the homogeneous equation Seo(Set(y)) = 0 and yp 

is then an arbitrary particular solution of equation (6) or (7). If as this particular 
solution yp a solution satisfying equation 

(8) S?,(y) = Se2(x) + jSf.O) 

is chosen, then in the case when yh = 0 the solution of equation (6) or (7) is given 
by the solution of equation (8). The condition yh = 0 can be ensure by suitable choice 
of initial conditions or by making use of the equation lim yh = 0 satisfying a stable 
system. r~'co 

The identification problem of system (l) or (2) is then identical with the identifica­
tion problem of system (8) where relations (3) and (4) hold for x and y. By a suitable 
choice of operator Se0 we can then ensure that the variables x, x,..., x(fl), y, y,... 
..., yw can be measured as outputs of linear filters which are connected to the input 
and/or output of the identified system. 



Let us write equation (8) in the form 

(9) + ßkЃ + ... +ßlУ = 
_ „ „(*-i) + a..x + џ(k) + ßkџ

( 

+ + ßiV 

and let us use a matrix form for equations (3) and (4) 

(10) x = Ax + d. i , 

(11) y = Ay + d.t] 

where 

A = 

[:,;]. 
d = ~0~ x = x У = У 

J_ ' x 

X(k-D 

Ў 

ý(t-l) 

The vectors x and y respectively can then easily be measured as the outputs of the 
linear continuous system described by equations (10) and (11) respectively with 
inputs £ and r\ respectively. As % cannot be measured, its derivatives cannot be 
measured either. In equation (9) we then put 

^*> + ^<»- 1 > + . . . + / J . / X - C . 
If we further put 

a'= [au...,ak~, b~ = [/?., ..., ft] 

where symbol a~ denotes a matrix transposed to matrix a, equation (9) can also be 
written in the form 

(12) yW + yтb _ xтa + - _ 

Our task is then to find the optimal estimate [a*, b*~ of the vector [a, b~ on assump­

tion that in equation (12) the variable y(k)(i) and the vectors y(t) and x(i) can be 

measured at arbitrary time instants tpj = 1, 2, .... m . ((f) is then the noise. 

3. OPTIMAL ESTIMATION 

Let us assume now that the system of equations (12) for different time instants 
tpj = 1, 2, ..., m can be written in the form 

(13) , w = Z.c + t; 

where w is an m-dimensional vector, Z is an m x n-dimensional matrix, c is an 
n-dimensional vector of unknown parameters and £ is an m-dimensional random 
vector. The vectors c and ~ are assumed to be mutually independent with a priori given 
probability densities p(c) and p(Q. 



If we now call the positive definite function Q(C* — c) a risk, it is natural to choose 519 
the estimate c* of the vector c in such a way as to minimize the risk. Under relatively 
general conditions [3], [4], [l l ] such optimal estimate c* can be expressed 

(14) c* = \c . p(c | w, Z) dc 

where the a posteriori probability density p(c | w, Z) is given by Bayes equation 

p(c\w,Z)= ^\^c)p(c\Z) 
)p(w I Z, c) p(c J Z) dc 

where the probability densities p(w | Z, c) and p(c \ Z) can be calculated from the 

a priori probability densities p(c) and p(Q. Assuming that c is independent of the 

measured data Z 

p(w \Z,c) = p^w - Z. c) 

and 

p(c j Z ) = p(c) . 

The calculation of the optimal estimate c* of the vector c according to equation 
(14) would on this level of generality be rather complicated. We shall therefore 
further assume that the necessary probability densities have a normal distribution. 
Let then 

(15) p(w \Z,c) = /<, exp [-2-(w - Zc)T N~\w - Zc)~\ , 

(16) p(c) = k2 exp [ - i ( c - c0)
r P0 \c - c0)] . 

The optimal estimate c* according to equation (14) is then given by equation 

(17) c* = (P,1 + ZrN-1Z)~1 (P0c0 + ZrN-'w) 

or the equivalent relation 

(18) c* = P0Z
r(ZP0Z

r + N)'1 .w + (1 - P0Z
r(ZP0Z

J + N)-'Z) c0 

The optimal estimates (17) and (18) respectively are thus linear functions of the 
vector w. In the case of a distribution other than normal the optimal estimate (14) 
would become a nonlinear function of the measured vector w. The estimates (17) 
and (18) respectively would, however, remain the best estimates of the whole set 
of linear estimates [11]. 

It can easily be proved that the optimal estimate has the following properties 

Sc* = c 

(19) S(c* - c) (c* - c)T = ( V + ZrN-1Z)~1 =d e f P 



520 where the symbol Sx denotes the expected value of the matrix x. The optimal estimate 
c* is thus an unbiased estimate of the unknown vector c with the covariance matrix P, 
for which in all practical cases 

lim P = 0 . 

Thus the estimate c* is also a consistent estimate. 

4. RECURSIVE SOLUTION 

Let us now divide the measurements into two series in which the noises will be 
mutually independent. Let then 

"1i;],2iai13/1XJ. 
By inserting these equations into (17) we obtain 

(20) c* = (P"1 + Z\N-'ZX + ZlN^Z,)-1 (ZjN^w, + Z1N~2
1w2 + P^c0) 

With regard to (19) we define 

(21) PO1 + ZJN:% = d e f p 1 - 1 

where Px is apparently a covariance matrix of the estimate of the vector c calculated 
from the first series of measurements. Let the symbol cy denote this estimate c*. 
Analogically, let the symbol c2 denote the optimal estimate after two series of me­
asurements and the symbol P 2 its covariance matrix. Equation (20) will then be of 
the form 

c2 = (/Y1 + ZjN^Z,)-1 . (ZjN^w, + Po'co + Z2
T7V2-V2). 

However, according to (17) and (21) 

ZlNy'w, +Polc0^PIic1 

and thus 

c2 = P2(P:1cy +Z\N2
1

W2) 

where 

p2 = (p-1 +z\N2
1z2y

1. 

If we now make several series of such measurements, the estimate of the unknown 
parameter c and its covariance matrix can be calculated from the following equations 

cr = Krwr + (1 - KrZr)cr_y , r = 1,2, ..., q 



and 

Pr = (1 - KTZr)Pr_1, r = l , 2 , ..., q 

where 

Kr = (P;_\ + ZTAT %)~x ZTN;l , r = 1, 2 , . . . , q 
or 

A ; = P r_jZ^At . + zrpT_lz
1

r)-' , r = 1,2, . . . ,g . 

The expected value c0 and the covariance matrix P0 of the a priori probability den­
sity of the vector c are supposed to be given. The noise covariance matrix At, r = 
= 1, 2 , . . . , q is also considered known. It can be shown that the estimate does not 
require a precise knowledge of the a priori characteristics. If we do not know them, 
we can choose for example c0 = 0, P0

 l = £ . 1, where e -* 0, and Nr = 1 [11]. 

5. OPTIMAL ESTIMATION MODIFICATION 

In the above given optimal estimate of the unknown vector c it is supposed that 
the structure of the identified system is given by equation (13) where the vectors c 
and £ are independent. This equation applies to the case when the identified system 
is described by a special type of differential equation or when the use of filter allows 
us to neglect the dependence of the vector t, on the vector c. In a more general case 
it is, however, necessary, to consider even the more general structure of the identified 
system which can be written in the form 

(22) w + Yb = Xa + £(_.). 

It could easily be shown that the classical application of Bayes estimate to this 
case does not lead to a solution suitable for practical use. We shall, therefore, pre­
sent a substitute solution which, although it does not offer an estimate minimalizing 
the expected risk, has one great advantage — simple calculation. 

Let us assume then that in equation (22) b is the given constant. Then only the 
vector a is left to be determined. Let us add the vector X+a + , a+ = 0 i.e. the zero 
vector to the right side of equation (22) and let us, at the beginning, regard a+ as 
unknown. 

We obtain 
w + Yb = [X, X+] fa "I + C,(b) . CJ 

As the vectors a and a+ are independent of £(£•), it is possible to use relation (17) 
for their estimation. With the denotation 

Z + = [X, X+] ; c+ = 

:J 



we obtain 

(23) c*+ = (P-+
1

0 + ZlN-'Z+Yx {P+0c + 0 + ZlN-\w + Yb)) 

where c+0 and P+0 are the expected value and the covariance matrix of the a priori 
probability density of the vector c+ respectively. 

If, however, we consider the vector a+ given and if, on the contrary, we do not 
know the vector b, under suitable conditions the estimate of the vector a and b 
can be calculated form equation (23) and written 

(24) |-fl*-| = p - 1 + XTN-'X; -X^N^Yl-1 Í[XT1N-Iw + rP0>0T\ 
H [xlN-^X; -XlN^Y]. \\_Xl] \0 ]) 

where a0 and P0 l are the expected value and the covariance matrix of the a priori 
probability density of the vector a respectively. Practically, it is possible to choose 
P~} = 0. Then we obtain 

(25) c* = ( Z + / V - 1 Z ) - 1 Z Ï Л t - 1 и 

where 

"tД *"[-?]. 
Putting N = = a2l yields 

(26) c* = џ\zyx z > . 

It could easily be proved that estimate (24) and thus even estimates (25) and (26) 
are consistent and asymptotically ubiased. 

6. NOTES ON PRACTICAL APPLICATION 

When using the above mentioned method of identification it is necessary to connect 
continuous linear filters satisfying relations (10) and (11) to the input and output 
of the identified system. This can be done by means of an analog computer. 

In practical cases it is necessary to make sufficient use of the range of the analog 
computer in order that measurements might be carried out with sufficient accuracy. 

It can be demonstrated, however, that completely controllable filters can be connect­
ed to the input and output of the identified system 

(27) u = Eu+fţ 

and 

(28) i> = Gv + hц 



which are mutually bound by the relations 

(29) QG = EQ 

and 

(30) Qh = / 

where Q is the arbitrary regular matrix. The matrices E, f G and h must then be 
chosen so that the filters would operate with satisfactory accuracy and at the same 
time be sufficiently simple [11]. As the vectors u and v can be regarded as the trans-

Fig. 1. 

4 t ť ^ ?" ' ц t ! "2- t v ' t 
J COUJtR"ґR 

t 
1 Dюrд: 

formed vectors x and y, it is necessary to transform the relations for the calculation 

of the optimal estimate as well. It is sufficient to use this transformation at the 

beginning and at the end of the calculation only. 

In identifying the system described by the equation 

(31) >ľ + ßkn(k l) + ... + ßtf = <xkÇ
(k l) + ... + a^ + v 

on assumption that the noise v is negligible after passing through the output filter, 
it is possible to proposeed according to Fig. 1 where the symbol £f denotes the iden­
tified system and J^, and J5", are the input and output filters respectively described 
by relations (27) to (30). 

For the calculation of the optimal estimate it is necessary to form the square 
matrix F defined by the relation 

(32) E = fT 

f£T 

f-.£т 

where E and /are the matrices from equation (27) and the column matrix dfor which 

(33) dT = [0,0, . . . ,0, 1 ] . 



On the basis of the row vector rv given by the relation 

(34) r\ = F~ld 

the square matrix R is formed 

(35) R = ••il = pi 
r2 rxE 

rk\ \rk-xE 

and the S matrix calculated 

(36) S = RQ 

where the matrix Q is taken from equations (29) or (30). Next we form the matrix T 

' • _ - _ ] • 
If now symbol Z r 

Z„ = "litr.)). 

«l(*V.2). 

И*(t„,), -^ l( tr . l ) , 

W*(tr,2) - » l ( ' ғ , 2 ) . 
-»*('„.)' 
- » - ( ř r . - ) 

"l(t„m)> ••-. «*(t„m), - » l ( * , . „ ) . ••-. ~ ^ ( t „ m ) 

is used to denote the matrix obtained from the measured values of the output variables 
of the filters $PX and 3F 2 i n the r-th measurement series, and the symbol wr to denote 
the matrix for which 

where 

(37) 

w1 = [Чí.,l)>Чí„2).---.W(f„m)]. 

w( řr.;) = siMtr.í) + '/(!,,.) ' i = 1, 2, ..,, 

where sfc is the /<-th row of the matrix S, and if the symbols c 0 and P0, which are 
assumed to be given, are used to denote the expected value and the covariance 
matrix of the a priori probability density of the vector c respectively, then the charac­
teristic of the a posteriori probability density after the g-th measurement series can 
be obtained from the relations 

(38) c 0 = TTc0 , 

(39) P0 = TTP0T 

(40) Kr =- Pr^ZT
r{Nr + Z r P , _ , Z r V ; r _. 1, 2,.. ., q 



or the equivalent equation 

Kr = (Pr\\ + ZjN- xZry
x ZJ

rN~' ; r = 1, 2 , . . . , q 

where 

(41) Nr = S1^ , r = 1,2,..., q 

is the noise covariance matrix. Next we compute the matrices 

(42) cr = Krwr + (7 - KrZr) cr_j , r *. 1, 2, ..., q 

and 

(43) Pr = (7 - KrZr)Pr„l , r = l , 2 , ..., A 

which can be used as a priori information for the following estimate calculation 
or as a basis for computing the a posteriori characteristics of the vector c 

(44) cr = ( T - ' ) T c r , r = l , 2 , ..., q 

and 

(45) 7>r = ( r - 1 ) T P r J - 1 , r = 1,2, ...,q. 

In the case when the influence of the noise on the output vector v(t) cannot be 
neglected, it is possible to proceed according to Fig. 2. 

Fig. 2. 

•: j u l o - i i i - _i" ::_____ i _ i 
A - 0 CONVERTER 

< ~  
lofGiTA!. COMPC/IEwl 

Suppose that the identified system is again described by the differential equation 
(31) and that relations (27) to (30) hold for the filters &\ and J^2. Moreover, there 
is the filter J^Q here, for which 

x+ = D,x+ + D2u + gq 

where the basic requirement is that the vector x+ be linearly independent of the 
vector «. The most advantageous course would then be making these vectors ortho­
gonal, which can be done by a suitable choice of the matrices _), , D2 and g. 



If we then use the symbols 

xi = [x+(t1),x+(t2), ..., x + ( g ] , 
UT =[u(t[), u(t2), ...,u(tm)] , 

VT = [»(..), v(t2), ...,v(Q] , 

wT = [w^), w(t2), ..., w(tm)] , 

to denote the matrices of the measured values where relation (37) holds for w(f,), the 
estimate [a*, b*] of the vector [a, b] is given by the relations 

«0 = Rra0 , 
I 

P0l=RTP0[R, 

[«*] = [Poi + UTN~lU; -UN-*V T1 (VUTlN~\' + r^Hci.A 
[b*\ [xlN-*U; -XlN~lv\. \[xT

+\ [o J ) , 

where a0 and P01 denote the excepted value and the covariance matrix of the a priori 
probability density of the vector a respectively and where the matrices R and S are 
given by relations (32) to (36). 

If we now put P0^ = 0 then by using the relations 

T=fR, 01, Z = [U,V]; Z+ = [U, X+] ; c = Val 
[o, s\ [b\ 

we obtain 
c* = (T-'f^iN-'zy ZTN-'w 

and in the case when N = a2 .1 we obtain 

c* = (T-1)T(ZT
+Z)-]yZ\w. 

7. EXPERIMENTAL TESTING OF THE METHOD 

The above mentioned method was tested in identifying a, given linear dynamic 
system modelled on the analog computer MEDA T and described by the differential 
equation 

ClZ + ... + ck?
k-» = ck + [(p + ... + c ^ * " 1 ' + <?<*>. 

The input £(f) obtained from the random generator and the signal t](t) given by the 
relation 

ri{t) = <p{t) + X{t) 



were measured on the identified system. In the above given equation x(t) is the addi- 527 
tive corruptive noise simulated by means of another, independent random generator. 
The unknown coefficients were calculated according to relations (38) to (45) by the 
digital computer ODRA 1204. 

Table I presents the actual and estimated coefficients of the fourth order system 
the output of which was not corrupted by any noise. The actual and estimated step 
responces are shown in Fig. 3. The whole calculation took about 50 seconds. 

Fig. 3. 

/lít) 

c 0,500 1,000 1,000 1,000 0,500 1,000 2,000 1,000 

c* 0,511 1,020 1,017 0,966 0,513 1,027 2,055 1,006 

Fig. 4. 

c 0,500 1,000 1,000 1,000 0,500 1,000 2,000 1,000 

c* 0,469 1,310 0,868 1,094 0,484 1,320 2,070 1,128 



Table II and Fig. 4 show the results of the identification of the same system the 
output of which, however, was corrupted by the noise % of approximately the same 
level as that of the signal q>. In order to suppress the influence of the corruptive 
noise it was necessary to calculate the estimate for about two hours. 

Fig. 5. 

C 0,500 1,000 1,000 1,000 0,000 0,000 0,500 1,500 3,500 4,000 4,000 2,000 

c* i 0,444 

! 
0,436 ! 0,379 -0,098 

1 
- - 0,446 0,890 2,095 1,029 - -

Table III and Fig. 5 present the results of the identification of the sixth order 
system, which was approximated by a fourth order differential equation. The corrup­
tive noise was zero and the calculation took about 50 seconds. 

8. CONCLUSION 

Judging from the principle and the testing experiments it can be said that the 
presented method of identification of linear systems with constant parameters offers, 
in comparison with other methods, relatively very accurate results and can even be 
used to identify the higher order systems. It is of great advantage that this method 
does not require a special type of input signal and allows the system identification 
to be carried out directly under opetation without impairing its normal function. 
It can be used for real-time estimation, even in the case of high-speed systems identi­
fication. The principle of the method allows its use even in identifying multivariable 
linear dynamic systems. 

(Received October 3, 1973.) 
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