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KYBERNETIKA —VOLUME 7 (1971), NUMBER 2

Generalization of the Non-additive Measures
of Uncertainty and Information and their
Axiomatic Characterizations*

P. N. RATHIE

The object of this paper is to define generalized non-additive (i) entropy of order « and type 8
and (ii) information of order « and type § and to give their axiomatic characterizations. Further
generalizations are indicated towards the end of the paper.

1. INTRODUCTION AND THE GENERALIZATIONS

Let P = (py, ..., p,), n = 1 be a finite discrete probability distribution with p, >
>0, W(P) = i p: < 1. W(P) is called the weight of the distribution P. Let 4 denote
the set of all fl;l;te discrete generalized probability distributions. Introducing a para-
meter f§, we call W(P; B) = i p? <1, 8 > 0, as the generalized weight of the distribu-
tion P. Clearly, W(P; 1) =’=I/III(P).

In what follows, Z will stand for the sum i unless otherwise specified.

i=1
Now we introduce a new generalization of the non-additive entropy [2,4] as

(L1 H(P; B) = (1 — Tpi™ PSPt — 2479,

a1, >0, a+f—1>0;

which we shall call as the generalized non-additive entropy of order « and type .
Let P = (p;,...,p,)e4 and Q =(qy, ..., q,)€ 4 be the two generalized proba-

bility distributions, the correspondence between the eclements of P and Q is that given

by their subscripts. Then we define a new generalized non-additive information of

* The author is thankful to Professor A. M. Mathai of McGill University for providing
financial assistance through his N.R.C. grant No. A 3057-282-08 which made this work possible.
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order « and type f§ as
(12) LP:p Q)= (L= Xpi™ ai X — 271,
v+l, >0, a+p—-1>0.

For f = 1, (1.2) reduces to the non-additive measure of information of order « which
has recently been characterized by means of a functional inequality by the author [3].
The additive entropy of order « and type [5,6] is defined by the expression,

(1:3) HY(P) = (1 — o)™ logs (2™ /260)
a1, >0, a+f—-1>0;
where as the additive information of order « and type ﬂ»[7] is defined as,
L) EP) = (- 1) o (S el A,
a%l, >0, a+f—-1>0.

It is easy to find from (1.1) and (1.3) that*

(1.5) Hy(P; f) = (1 — 207270y (1 o1=2) .
and from (1.2) and (1.4), we get
(1.6) 1(P; ﬁ[ 0) = (1 — 26~ VIFEIO (] _ peor)

The conditions § > O and @ + f — 1 > 0 are put so that some of the p’s may be
allowed to take zero values.

The object of this paper is to prove some characterization theorems for the general-
ized non-additive measures of uncertainty (1.1) and information (1.2) respectively by
assuming certain sets of postulates. On specializing the parameter 8 (i.e‘ B = ]), one
can easily obtain similar results for the ordinary non-additive measures of uncertainty
and information.

2. CHARACTERIZATION OF THE GENERALIZED UNCERTAINTY

This section deals with the characterizations of the generalized non-additive
measures of uncertainty, H,(P; §) by two sets of postulates. The axiomatic characteri-
zations are given below in the form of two theorems which generalize the recent
results of [4]. '

Postulate 1. Lim H,(1 — p; f)fp = A4, pe 4.
p0+

* The author thanks 1. Vajda, the reviewer of this paper, for suggesting the relationship
between H(P; f) and HA(P).



Postulate 2. H,(4; f) = 1. 127
Postulate 3. If p, g € 4, then
Hy(pg; B) = Ho(p: B) + H(q; B + (2"7* = 1) H(p; B) H.(g; B) -

Postulate . 1T P = (p,, ..., p,) € 4,0 = (q,, ..., 4,,) € dand W(P; f) + W(Q; p) <
< 1, then

H(P U 0: p) = WP B H(P: ) + W(Q: ) H(0: §)
) ' W(P: ) + W(Q: B)

s

where PU Q = (Py,-os Pus 415 -1 G-
It is sufficient to assume postulate 4 for n = m = 1, the result for the general case

follows by induction.

Theorem 1. 4 function I{a(P; B) satisfying the postulates 1,2, 3 and 4 is given by
(1.1) for n = 2.

Proof. For p = 1 the postulate 3 takes the following form,
(2.1) H(GAH[L+ @ = 1)Hiqg; p)] = 0.
Taking ¢ = 4 and using the postulate 2, we find that
2.2) Hy1;8)=0.
Now with g = | — 3p/p, the postulate 3 takes the form,
(2:3) Hp: B) = Hfp ~ 8p; B) = H(1 — 8p[p; HY[(1 — 2" ") Hp; B) — 1].
Dividing (2.3) by 8p and taking limits as 5p — 0, we get
(24) dH,(p; B)fdp = (4[p) [(1 = 27 H,(p; B) — 1],
by using the postulate 1.
Solving the differential equation (2.4) under the boundary conditions given in the
postulate 2 and (2.2), we arrive at
23 Hp:p) = (" = D2~ 1).

Hence using (245) in postulate 4 proves theorem [.
Postulate 1 implies that Ha(p; p) is differentiable. We can weaken this postulate by

assuming the following postulate of continuity:

Postulate 1'. H,(p; f) is a continuous function of p e (0,1].
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Now we prove the following theorem:

Theorem 2. A function H,(P; B) satisfying the postulates 1', 2, 3 and 4 is given
by (1.1) forn 2 2.

Proof. Let
(26) 9(p; B) = 1+ (2'7* — 1) H(p; B),
then from postulate 3, we have
@7 9pa; B) = g.(p; B) 9.(a: B) -

Since H,(p; f), by postulate 1’, is continuous in (0,1] and therefore g,(p; B) is also
continuous. Hence the only non-zero continuous solutions [1, p. 41] of (2.7) are
given by )

(29) 9p: By = 1°,
where a is a real arbitrary constant which may depend on « and 8.

Now the use of postulate 2 yields @ = o — 1 giving (2.5). Hence as before, the
postulate 4 proves the theorem.

3. CHARACTERIZATION OF THE GENERALIZED INFORMATION

In this section we characterize the generalized non-additive measure of information
of order « and type f. We start by assuming the following postulates.

Postulate 1. Lim I(1; [)’] L —q)lg =4, qe 4.
g-0+

Postulate 2. L(p; f I 1) is a continuous function of p e (0,1].
Postulate 3. I(1; ] %) = 1.
Postulate 4. I,(3; B | ) = 0.

Postulate 5. If py, P2, 41, 42 € 4, then
L(p:1P2; B| 9192) = Lps; B| 41) + 1{p2; B| a2) +
+ (@7 = 1) I(ps; B a:1) 1(p2; B| 22) -
Postulate 6. If P, Q € 4, then
W(Ps; B L(Pi; B] Q1) + W(P2; B L(P2; 8] Qo)
W(Py; B) + W(P,; B)
where P = P, U P;and Q@ = Q, U Q,.

1(P; B| Q) =




Theorem 3. A function Ia(P; B ] Q) satisfying the postulates 1, 2,3, 4,5 and 6 is
given by (1.2) for n 2 2.

Proof. Taking p; = p, p, = g, = 1 and ¢, = g in postulate 5, we have

(1) L:Bla) =L B 1) + LBl g) + (7" = D L(p: B D L(L: B g)
Postulate 5 for p, = p, = 1 gives

(32 L(: B 9192) = L(L; B| 41) + 1(1; B | a2) +
‘ + @7 = DL B a) 1L B q2) -

Now for g, = 1, (3.2) yields

(3.3) I(1; ﬁ] DL+ (7t = DI ﬁl‘h)] =0.
Taking ¢, = % and using the postulate 3, we have
(34) L g1y =0.

Again taking g, = ¢, g, = 1 — 3g/q in (3.2), we get
I(; 8] q) = I(1; B|a — 8q) = L(1; B| 1 — 8q/q) [(1 — 2>’“’)IK(1; Bla)—11;

which on dividing by 8¢, taking limits as 8¢ — 0 and using the postulate 1 gives the
following differential equation

(35 dr(1; B g)fdg = (4fa) [(1 — 27 ) I,(1; B q) — 1].

Solving the differential equation (3.5) under the boundary conditions given in (3.4)
and the postulate 3, we have

(3) S Bla) = (¢ - Dl - ).
Taking g, = ¢, = 1 in postulate 5, we get

G7) L(pp2s B 1) = I(pss B 1) + L2 B] 1) +

+ (21_1 - ])Ia(I’xi B I 1)Ia(1’2§ ﬁl 1) .

Let

(3.8) g Bl ) =1+ 2" =D)L B 1),

then from (3.7) we have

(39) 9.p.p2; B| 1) = gpss B| 1) gp2; B 1)

By postulate 2 the continuity of I(p; B | 1) implies the continuity of g,(p; #| 1)
and hence the non-zero continuous solutions of (3.9) are given by [1, p. 41],

(3.10 a/p; B 1) = 1%,

129
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where a is a real arbitrary constant. Hence

(3.11) Lp: Bl 1) = (p" = Dj(2" ' = 1).
Thus (3.1) on using (3.6) and (3.11) gives

(3.12) Lp:Bla) = (pg" ™ = Dj2* = 1).
The use of postulate 4 yields a = o — 1 giving

(3.13) LipsBla) = (" g™ = Dj 7t - 1)

Theorem 3 can now be obtained on using (3.]3) and the postulate 6.
Now we replace the postulate 1 by a weaker postulate assuming the continuity of

L(1; | 9).
Postulate 1'. I,(1; B | g) is a continuous function of g & (0,1].

Theorem 4. A function Ia(P; [i| Q) satisfying the postulates 1', 2, 3,4, 5 and 6 is
given by (1.2) for n = 2.

Proof. As done in the later part of the proof of theorem 3, it is easy to prove in
this case that

(3.14) L gl =" - j@ " -1
and

(3.15) L Bla) =@ - i@ ~1)
giving

(3.16) L(p: Bla) = (00" = D)2 ~1).

The use of postulate 3 and 4 yields ¢ = 2 — 1 and b = 1 — « giving (3.13) from
which theorem 4 follows by postulate 6.

4. FURTHER GENERALIZATIONS

In this section we give some further generalizations of the non-additive measures
of uncertainty and information. They are:
(i) The generalized non-additive entropy of order « and type { £},

(-1 H(P; B:| @) = (1 = X" Ep)I(1 — 2179,
a1, f;>0, a+p,-1>0.



(ii) The generalized non-additive information of order a and type {£}, 131

(2) LP: Bi| @) = (1 = X" lar~ [Ept)I(1 — 271,
a+1, £;i>0, a+ B, —1>0.

Clearly (5.1) and (5.2) yield (1.1) and (1.2) respectively for §; = fforalli = 1,... n.
It is proposed to study (5.1) and (5.2) in subsequent papers.

(Received August 12, 1970.)
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VYTAH

Zobecnéni neaditivnich mér nejistoty a informace a jejich
axiomatické charakteristiky

P. N. RATHIE

Budiz P = (py, ..., p,) koneené diskrétni rozloZeni pravdépodobnosti pro p; > 0,
ZPi < 1. Nechf 4 znamena mnoZinu viech kone¢nych diskrétnich rozloZeni pravdé-
podobnosti. Pak zobecnéna neaditivni entropie fadu « a typu f je definovana vztahem

(L1 H(P; By = (1 = Xpi* 7 ypDi(l — 2179,

a1, f>0, a+pf—1>0.

RovnéZ pro P = (p,, ... p,)ed a @ =(qy,...,4,) € 4 je definovina zobecnina
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neaditivni informace fadu « a typu B vztahem
(12 I(P; Q) = (1 — Xpi™" i [Xpl)(1 — 2277),
a1, B>0, a+pf—1>0.

Pro (1.1) a (1.2) jsou dokazany &tyfi charakteriza&ni véty pii uvazeni uritych
soubori postulatd. Je naznateno dalsi zobecnéni (1.1) a (1.2). Prvni dvé véty zobec-
fiuji vysledky ziskané 1. Vajdou.

Dr. P. N. Rathie, Visiting Scientist, Department of Mathematics, McGill University, Montreal
110, Quebec. Canada.
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