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K Y B E R N E T I K A — VOLUME 13 (1977), N U M B E R 5 

On Dimensioning of Samples 
in Testing Hypotheses 

FERDINAND ÖSTERREICHER, HEINZ STADLER 

The aim of this paper is to find upper bounds for the number of independent observations, 
which are necessary in order to test the probability measure P against Q with given error proba­
bilities. Geometrical considerations concerning the risk set of the testing problem lead to such 
bounds. A further bound is obtained by use of the central limit theorem. An example shows the 
applicability of the results. 

1. INTRODUCTION 

Let P and Q be two probability measures on a measurable space \Q, 21) and 

(a, 0): 0 < a, /?; a + /? < 1 a level vector. 

Let us consider n independent identical (P resp. Q) distributed observations in order 

to test P against Q. I.e. let us consider the testproblems (P", Q"), ne N. 

Fig. 1. 



344 Then our interest is concentrated on the number of observations, which are 
necessary to bound the error probabilities of the first resp. the second kind from 
above by (a, ft). 

The most instructive formalization of this problem is in terms of the risk set 
(cf. [1]). 

Definition 1. R„(P, Q) = R^P", Q") := co {(P"(A), 1 - Q"(A)) : A e ® 91} is cal-
i= l 

led risk set of the test problem (P", Q"). ("co" stands for convex hull.) 
The lower boundary of this set, to be understood as a function of the level a, 

rn(a) : = min {y : (a, y) e R„(P, Q)} 

is called n-th risk function (see Fig. 1). 

Remark 1. r„(a) is the error probability of the second kind for an optimal test. In 
the case of strict convexity of r„(a) in a 

r„(a) = 1 - Q"(Ak), 

where the optimal test is characterized by 

A = {(au ..., co„) : fl q(co,) > kf[ p^fi , 
i = l i = l 

where k = D+ r„(a). (D+ representing the absolute value of the right-hand-side 
derivative and p, q the Radon-Nikodym derivatives of P resp. Q with respect to 
a dominating cr-finite measure fi.) 

Remark 2. For us the most interesting properties of the (convex) risk function are: 

1 - a = rn(a) = 0 Va e [0,1] , Vn € N , 

where — for fixed n — equality holds true in the first case for one a e (0, l) (and 
hence for all a e [0, 1]) 

iff P = Q 

and in the second — for fixed n — for all a e [0, 1] 

iff P 1 Q . 

Furthermore r„(a) I 0 Va e (0, 1] iff P * Q. 
Now the sample-size in question can be expressed by 

Nayll = min{n : r„(a) = 0} . 



a + ß 

i n l 

Geometric properties of the risk set and standard estimations are basic for a (rough) 345 
lower and upper for JVa>». 

Theorem 1. 

U$:= max | 1, 

is an upper bound and 

Lx$:= max I 1, 

a lower bound for Nxj. 
Thereby: 

d : = min {Hy(P, Q), y e [0,1]} 

Hy(P, Q ) = f p?.oj-7d,u and 
J {p.q>0} 

bk = min (k . p, q) dp, 

(JVJ marks the smallest integer greater or equal to x). 

Proof. Let us ignore the trivial cases P = Q and P i Q . 
Twice the Bayes risk with respect to the prior distribution (-J, i ) is 

(1) inf {(P(A) + 1 - Q(A)), A e 21} = 1 - [ (q - p) dM = 
J{q>p) 

= min (p, q) dp. g py. q1"7 dp . 
J J{p.9>0} 

The latter follows from the inequality 

min (a, b) g ay .bx~y a, b ^ 0 , y e [0, 1] . 
Thus 

&i(P\ Q") : = min ( f l p(©,), f l «(«.)) dft"(«i. • • •> ®«) = 

^ min {HV(P", Q"), y e [0, 1]} = dn 

(see Fig. 2). Now taking also into account that 

bL(P", Q") - a (Sdn - a) 



346 is supporting line for r„(a) (cf. Remark 1 and (l)) and the convexity of r„(a) we derive 

max ( 1 — ( - ) a, d" — d"a ) ^ r„(a) . 

Now the upper bound is an immediate consequence. 

min (a . b, c . d) ^ min (a, c). min (b, d) a, b, c, d ^ 0 

Fig. 2. 

implies bj?n, Q") ^ b". Thus b" - a S &i(P", Q") - a = r„(a). The latter inequality 
is again due to the fact that 

6i(P", Q") - cc 

is supporting line for r„(a). Therefore 

L^jj = min {n : b\ — a ^ /?} 

is a lower bound for Naj. 

Remark 3. In the same way one can derive the sharper lower bound 

max min {n : b\ — k"a ^ f}} . 

The difficulty of its computation, however, causes that this bound is of less im­
portance. 

An essential improvement of the upper bound U^J of JV„j/? is 

U^:=max(l,[Uai,]), 



where 

Ûлß : = min 
ł íO. l ] 

y l n a " 1 + (1 - y ) ^ ^ " 1 - S(y) 

ln- l 

Hy(P,Q) 

and S(y) — — (ylny + (1 - y) In (1 — y)) is the entropy of the auxiliary distri­
bution (y, 1 — y). 

This bound is based on the convexity of the risk function, which therefore can be 
understood as the envelope of its supporting lines. 

In applying 
h s kmy(p, Q) 

these supporting lines are replaced by parallel auxiliary lines, lying above the former. 
Because of Hy(P", Q") = H"(P, Q) the envelope of the auxiliary lines, which is 

bounding r„(a) from above, is much easier to handle than the risk function (for 
detail cf. [3]). 

(1-b) 

2. AN UPPER BOUND FOR "GAUSS-NEAR" DISTRIBUTIONS 

A further upper bound makes use of the central limit theorem. Therefore we 
restrict our interest to the real line (i.e. Q = R, 91 = J ^ ) . 

Furthermore, singularities of the measures P and Q can be excluded from the fol­
lowing because of 

Remark 1. In the case of singularities of P and Q, i.e. for 

A„ = {p = 0, q > 0} , A% = {p > 0, q = 0} , 

b = Q(Aoo) > 0 and/or a = P(A0) > 0 , 

the risk function r„(a) is of a form as sketched in Fig. 3. 



348 Transformation of this function by 

a 
M ) ( i - a r Ҷ i - й ) " 

(the trivial case P ± Q can be excluded) results in the n-th risk function of the test 

problem of the conditional distributions P(-| Ae

x n A0) and Q(-| Ac

x n A0). There­

fore the problem can be reduced to a test problem of distributions without sin­

gularities. 

In this section we will choose our tests in terms of the statistic 

i>« 
Tn(xu...,xn)--±-. 

n 

Remark 2. In general we loose information this way, which means: the tests based 

on T„ are not best tests or equivalently 

R(P", Q") => R(P"(T„), Q"(T„)) , 

except: T„ is a sufficient statistic with respect to (P, Q) or equivalently R(P", Q") = 

= R(P"(T„), Q"(T,)). The latter can be seen from 

{ f t - (*,) > k\ « { i l n ^ (xt) > In k\ = {Cl(n) Tn(xu ..., xn) + c2(n) > In k) 

taking into account the definition of sufficiency of T„ and the fact that a best test is 

of the form 

{д^И-
From the first equality in the above chain it can also be seen that one does not loose 

any information with the statistic 

fn(xl,...,Xn)=1-iln«(xl) 
n ;=i p 

(i.e. R(P", Q") = R(P"(T„), Q"(T„))). 

Furthermore the test problem (P"(T„), Q"(T„)) has monotone (increasing) likelihood 

ratio and 

E p ( T B ) < 0 < E Q ( T „ ) . 

Thus it is sometimes convenient to replace the test problem (P, Q) by (P(Ti), Q(Ti))-



Remark 3. It is obvious, that tests based on the statistic T„ are powerful only in 349 
the case, when 

T„ is "near" sufficiency . 

In the latter case, however, best tests are of the form 

{T„ > r} , teR . 

Taking into consideration that the transformation 

Tn -> T„ - { 

does not cause any change of the corresponding risk sets, we will consider the problem 
under the 

Assumptions (A): 

Q = S c R, & = & c S n ^ , 

P and Q are equivalent (i.e. mutual absolute continuous) probability measures on 
(S, if) with the means £, = 0, n > 0 and the variances 0 < < 7 2 < O O , 0 < T 2 < O O . 

Parallel with P and Q we consider the Gaussian distributions G(^, a2) and G(n, T2) . 
Applying the central limit theorem we have 

weakly. 

More precisely, we make use of a Berry-Esseen-type result, derived by Zolotarev 
in [4] (which is expressed here for P): 

(2) sup \FpniTn>(x) - FG(i>a.I/n)(x)\ = sup \F„(x) - <P(x)\ = c . nn(P) . n'1/2 

xeR xeR 

where nn(P) = min (max (x,x"K3n+1)), max (x0, < / ( n + 1 ) ) , v0) with 

x = 3 \X2\F(X) - $(x)\ dx , 

x0 = j max (1, 3x2) \F(x) - <*>(x)| dx , 

v0 - f m a x ( l , | x | 3 ) | d ( E - * ) | , 

c = 1-88, 



I"p"(T„), rG(í,<rJ/B) 

Fn, F, í> 

denoting the distribution-
function of 

P"(Tn),GU, 

'Tn - £\ 

'/V»f 
, G(0,1). 

Our strategy in getting an upper bound for the number of observations is explained 
in the proof of the following lemma where we use the abbreviations: 

K, Q„ -i r P"(T,), Q"(T„) 

GP,„, GQj„ > denotes І •rø- GK) 
s„, ð„ . c.Aí„(P).n-1/2, c.џn(Q).n-1! 

and r f f 2 1 2 „(a) denotes the risk function of the test problem (G(0, a2\n), G(t], t2\n)). 

Lemma 1. Under the assumptions (A) and the above notation-conveniences the 
following functions are upper bounds for the risk function of the test problem 
(P", Q"): 

(I) r<r2)T2j„(a - e„) + o„ Va 6 [e„, 1] in the case a2 = T 2 . 

(IIA) rt2>t2j„(a - e„) + 5„ Va e [e„, \ + e„] ) _ 
, in the case a2 < T 2 

(IIB) r„2jt2j„(a - 2e„) + 25„ Va e [2e„, 1] 

Proof. First we consider tests of the form 

V„>.>> teR-

Taking into account (2) and the analogue for Q we have: 

P„((t, oo)) ^ Gp„((t, oo)) + e„ and 

Q „ ( ( - o o , i ] ) ^ G Q j „ ( ( - c « , f ] ) + 6„ 

and after standardization of Gp „ and G Q „ 

(3) a' = P„((f, oo)) S 1 - *(-rA + « - - = « . 

(4) QH((-m,q)<*(t^ + oa. 

In case I (a2 = T 2 ) : {(1 - $(t\a\^Jn), <P((t - r^jaj^Jn)), t e M} is already the graph 
of the risk function rff2jff2;„(a) of the test problem (G(0, a2\n), G(n, a2\n)). 

Therefore {(1 - <P(t\a\jn) + s„, $((t - n)\a\\jn) + 5n), t e «} can be described 



by 

>V,,T2.«(a _ Sn) + Sn • 

a' < a, the fact that a risk function is decreasing and (4) imply 

Q-C(-°°» 0) = tV,^>' - 8n) + 5n • 

The remainder 

' V - . Q > ' ) £ Q - ( - « M ] ) 

is caused by the fact that l{r„>t} is in general not optimal. 

In case IIA we have 

ff/Vn T/V" 
and hence 

—\<1-<P (-?—\ V* > 0 . 

wv»y_ wv»/ ~ 
Thus from (3) we get 

P„((/, oo))<l ~ 0 ( - J V . + e« W £ 0 . 
VT /V«/ 

Starting from this inequality and using the same considerations as in case I we get the 
result IIA. 

In case IIB we use tests of the form 

l{s<r„<(}° s < t ; s.teR 

(which are optimal for the test problem (Gp „, GQ „) (a2 < z2)). Applying (2) we 
derive: 

P„((s, t]c) < Gp>n(($, i]°) + 2e„ and 

Q„((M]) < GQ,„((M]) +2 ,5 n . 

The remainder of the proof is the same as in case I. 
The resulting bound is expressed in 

Theorem 1. Under the assumptions (A) U^ is an upper bound for Ntj, where in 

case 

(I) a2 m z2 : Ui3j := min {n e N : s„ < a, r^^Ja - e„) < 0 - §„} 

(II) a2 < x2 : US := min {0Xtfi, #, , ,} with 

UXjfi := min {ne N : e„ < a , rtjjt2>B(a - e„) <, /? — <5„} , 

XJXtfi : = min {n e N : 2e„ < a , *>,**,»(« - 2e„) < p - 25„} . 



Remark 4. The case a2 > T2 is not treated above. It turns into case II, when the 
distributions P and Q are exchanged. This can be done without difficulty because of 
the symmetry of the problem. 

3. COMPARISON OF THE DIFFERENT BOUNDS BY MEANS 
OF AN EXAMPLE 

The most interesting comparison is that of the upper bounds U<2J and U^j. 
According to the slow rate of convergence in the Beryy-Esseen-type result 

sup|F„(x) - «P(x)| < cn„.n-112 

xeR 

with c > 0, 0 < n„ f fJ. < oo as opposed to the exponential rate, used both in the 
derivation of U*'j and U<2j, U(

a
3J can be a better bound than U<2J (and therefore 

also U{1J) only as long as the conditions for the application of the estimation tech­
nique used in Lemma 2.1 are extremely good. 

The fulfillment of these conditions and consequently the quality of the upper 
bound U^j depend essentially on: 

(1) how close the sample mean T„ is to sufficiency; 

(2) how close P resp. Q is to the corresponding (auxiliary) Gaussian distribution 
G(£, a2) resp. G(t], T2) in the sense of Zolotarev (cf. (2)); 

and (related to (l)) 

(3) how close a2 is to T2. 

In order to illustrate the things mentioned above let us consider the following 

Example. Q = R, 5"£ = 9ICT({(e/2 + (n - l) e, e/2 + ne], n integer}) with e = 0-1, 
0-01; PE resp. Qc being the conditional distribution of G(0, 1) resp. G(l, l) with respect 
to £fe (which is formalizing a round-off procedure). 

For the levels we choose a. = /? = 0-1; 0-01 

z=ß £ L«,ß K,ß Щ u<2} " # 

0 1 
0 1 4 7 18 13 12 

0 1 
001 4 7 18 13 9 

001-
0 1 9 22 37 32 *) 

001-
0-01 9 22 { 37 32 25 

*) In this case the «n's are too great in relation to a. 



Remark 1. To get an idea of the percentage px p = Na p/U^j we consider the test 353 

problem (G(cj, a2), G(i/, a2)). 

From this we get for a = p 

u - м - ^ f - —̂(•-(«-«»г 
fг(2) 1 
t7-" 2 1 n l 

2a 
observing that 

In 1

 = x K l _ y ) 0 L Z L i ) ! . 
H y(P,Q) 2 A ? ; a 2 

It is interesting that this percentage does not depend oni) - ^ and <r2 and that for 

our example 

N^ = {pXiP.Ui2}} 
coincides with Nxp. 

Generally it would be interesting to get guiding principles for px>p for different 

classes of test problems. These would be very useful hints for practical purposes. 

Acknowledgement: The authors wish to thank Prof. Dr. R. Hafner and Prof. Dr. T. Nemetz 
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