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S U P P L E M E N T TO K Y B E R N E T I K A VOLUME 28 ( 1 9 9 2 ) , P A G E S 4 5 - 4 ! 

A NOTE ON T-NORM-BASED OPERATIONS 
ON LR FUZZY INTERVALS1 

R O B E R T F U L L E R A N D T I B O R K E R E S Z T F A L V I 

The goal of this paper is to give a functional relationship between the membership functions of fuzzy 
intervals M\ © ... 0 M„ and M\ 0 ... 0 M„, where M; are positive LR fuzzy intervals of the same form 
Mi = M = (a,b,a,/i)iR and the extended addition 0 and multiplication 0 are defined in the sense of 
a triangular norm (i.e. via sup-t-norm convolution). 

1. DEFINITIONS 

A fuzzy interval M is a fuzzy set of the real line IR with a continuous, compactly sup­

ported, unimodal and normalized membership function fiM : R —> / = [0, 1]. A fuzzy 

set M of IR is said to be positive if HM{%) = 0 for all x < 0. We shall use the notation 

M ( x ) to abbreviate /J,M{X). 

It is known [3] that any fuzzy interval M can be described as 

{
1 if t € [a, b] 

a-f) i f . € I - M 
R(¥) ifl€[M + fl 
0 otherwise 

where [a, b] is the peak of M; L and R are continuous and non-increasing shape functions 

/ -> / with L(0) = R(0) = 1 and R{\) = L( l ) = 0. We call this fuzzy interval of LR 

type and refer to it by M = (a,b,a,f3)i,R. The support of M (denoted by SuppM) is 

[a-a,b + /3]. 
A function T : I2 —> / is said to be triangular norm ( t -norm for short) iff T is 

symmetric , associative, non-decreasing in each argument, and T(x,l) = x for all x £ / . 

Recall tha t a t -norm T is Archimedean iff T is continuous and T(x,x) < x for all 

* 6 ( 0 , 1 ) . 

Every Archimedean t -no rm T is representable by a continuous and decreasing function 

/ : / -> [0, oo] with / ( I ) = 0 and 

T(x,y) = f^{f{x) + f{y)) 
where / H is the pseudo-inverse of / , defined as 

/>-"Ы = { f (y) i fye[o,/(o)] 

otherwise 
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The function / is called the additive generator of T. 

Let T be a t -norm and let * be an operation on R. Then * can be extended to fuzzy 

intervals in the sense of the following extension principle 

(M, * M2)(z) = sup T(M\(x\),M2(x2)) z £ 1R 

which can be writ ten as 

(M, * M2)(z) = sup / [ - ' ] ( / ( M , ( x , ) ) + f(M2(x2))) z € R 

2. T H E RESULT 

The following theorem gives a functional relationship between the membership functions 

of fuzzy intervals M, © ... © Mn and M, 0 ... 0 Ma, where Mi are positive LR fuzzy 

intervals of the same form M, = M = (a,b,a,0)iR. 

T h e o r e m 1. Let T be an Archimedean t -norm with an additive generator / and 

let Mi = M = (a, b,aji)m be positive fuzzy intervals of LR type. If L and R are twice 

differentiable, concave functions, and / is twice differentiable, strictly convex function, 

then 

(M, © ... © Mn)(n • z) = (M, <•) ... © M„) ( r " ) = / H ] ( f I • / ( M ( ~ ) ) ) (1) 

P r o o f . Let 2 > 0 be arbitrarily fixed. According to the decomposition rule of fuzzy 

intervals into two separate par ts [5], we can assume without loss of generality tha t z < a. 

From Theorem 1 of [6] it follows that 

(M, * . . . © M „ ) ( n - z ) = / H 1 ( » - / ( - ^ ( " a . ~ " * ) 

= / [ - 1 ] ( » / ( I 

= / [ - ' ! ( „ . / ( M ( z ) ) ) 

The proof will be complete if we show that 

( M (•)...(•) M ) ( c ) = sup r ( A / ( j - , ) M(./:„)) = (2) 

= 7 ' ( M ( ^ ) M ( ^ ) ) = 

= / [ - , ] ( n / ( A / ( v ^ ) ) ) 

We shall justify il by induction: 

(i) for » = I (2) is obviously valid; 

a — z 
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(ii) Let us suppose that (2) holds for some n = k i .e. 

(Mk)(z) = sup r(w(.B,),.,.,Af (.-*)) = 

r = T(M(^),...,M(^)) = 

= f^(k-f(M(^))) 

and verify the case n = k + \. It is clear that 

(Mk+1) (z) = sup T(Mk(x),M(y)) = 
xy=z V ' 

= sup T(M(^/x),...,M(Vx),M(y)) = 

= / H i ( j j r f (* ' f(M«fc)) + f(M(y)))) = 

= / ^ (inf (* • / ( M ( ^ ) ) + / ( A / ( * / z ) ) ) ) 

The support and the peak of Mk+X are 

[M*+l]1 = [M] l i + 1 = [a*+1,6*+1] 

•S>p(M f c + 1 ) C ( , S ' 7 W ( M ) ) " + 1 = [(a - a)k+\ (a + p)k+\ 

According to the decomposition rule we can consider only the left hand side of M that 

is let z £ [(a — a)k+], ak+x]. We need to find the minimum of the mapping 

x^k-f(M(^c))+f(M(z/x)) 

in the interval [(a — a)k,ak\. Let us introduce the auxiliary variable t = tfx and look 

for the minimum of the function 

t^^(l):=k-f(M(t)) + f(M(z/tk)) 

in the interval [a — a, a]. Dealing with the left hand side of M we have 

m = L (fiZ.*) and M(z/tk) = L (a~ZJtk) 

The derivative of tp is equal to zero when 

*>'«) = * • / • (««» • i ' ( ^ ) . ^ + 

1. Є. 

/ • /»(*(-)) •"-' ( V ) ^ J • -" W » • L' (~~) (3) 
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which obviously holds taking t = z/tk. So t0 = k+^/z is a solution of (3), furthermore, 
from the strict monotony of 

t^t-f'(M(t))-L''a~i 

follows that there are no other solutions. 
It is easy to check, that <p"(t0) > 0, which means that <p attains its absolute minimum 

at t0. Finally, from the relations ^/5^ = k+^/z and z/x0 = k+-{/z, we get 

(Mk+1)(z) = T(M(k+l/l),...,M(k+lfz),M(k+y-z)) = 

=- / H ] (* ' f(M( k+V~z)) + f(M( k+y~z))) = 

= f[-\(k + \)-f(M(**y-z))) 

which ends the proof. • 

Remark 1. As an immediate consequence of Theorem 1 we can easily calculate the 
exact possibility distribution of expressions of the form en(M) := M®~§— and the limit 
distribution of e*(M) as n —> oo. Namely, from (1) we have 

«(M)) (z) = ( M 8 ; ; e M ) (z) = (M® ... 9 M)(n • z) = /HI („ . f(M(z))) 

therefore, from f(x) > 0 for 0 < x < 1 and linv^oo /t_1'(a;) = 0 we get 

Q i m < ( M ) ) ( 2 ) = B m « ( J t f ))(-) = 

= B l im/t- 1 ] (n . / (Af (.-))) = 

f ] if - €'[o, 6] 
\ 0 if«.^[«,*] 

that is 

Hm<(Af) = (o,6] * (4) 

which is the,peak of M. 
It can be shown [4] that (4) remains valid for the (non- Archimedean) weak t-norm. 

Other results along this line have appeared in [1,2,8]. 

Remark 2. It is easy to see [7] that, for instance, when T(.r,y) = x • y : 

('itf, * ... * Mn)(n • z) = (M, ( (•) Mn)(z
n) = (M(z))n 
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