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S U P P L E M E N T TO K Y B E R N E T I K A V O L U M E 28 (19 9 2 ) , P A G ES 6 5 - 7 1 

MINIMAL AXIOMATIC SYSTEM 
OF FUZZY LOGICAL ALGEBRA 

Z U W E I LlAO 

This paper presents seven axioms of fuzzy logical algebra based on an axiomatic treatment of system 
(U, *, 0,1). This system will make a research into fuzzy logical algebra much more rigorous than before. 

1. I N T R O D U C T I O N 

One of the most impor tan t tools in modern mathemat ics is the theory of sets. Fuzzy set 

theory, in t roduced by L. A. Zadeh in 1965 [1], is a generalization of abs t rac t set theory, 

while operat ions of fuzzy sets are obvious extensions of the corresponding definitions for 

ordinary sets. A year later, BCK-algebra , introduced by Y. Imai and K. Iseki in 1966 

[2], is a generalization of set algebra based on six propert ies of the relative complement 

of a set with respect to the other. However there is a question between the two theories, 

whether exists a connection or not, and what it implies, this not problem seems to have 

been put forward so far. 

As a m a t t e r of fact, fuzzy logical algebra [3] which is based on fuzzy set theory is 

special case of BCK-a lgebra , and from this, minimal axiomat ic system in fuzzy logical 

algebra is obta ined. 

2. A B C D - A L C E B R A 

D e f i n i t i o n 1. A BCD-a lgebra is a system 

S - - (47 ,* , 0 ,1) , 

where U is a part ial ly ordered set and it has at least two constant elements 0 and 1, 

* : U x U —> U 

and for V x, y, Z € U, system S satisfies the following set of axioms: 

ai Order : 

x * y = 0 <=> x < y. 

a2 Equivalence: 

x * y — 0, ;/ • x = 0 => x = y. 
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a3 0 Element: 

0*x = 0. . . ; , x. 

a4 Associativity: 
x * (x * (z * (z * y))) = z*(z + (x*(x* y))). 

as Boundedness: 
x * l = 0 . 

as Collocation: 
((x*y)*(x*z))*(z*y)=0. 

a7 Distributivity: 
((x * (x * Z))) * (x * (x * z))) * ((x * (x * y)) * (x * (x * z))) = 0, 

where 
£»-= l * ( ( l * y ) * ( ( l * y ) * ( l * - ) ) ) . 

Theorem 1. Let m, a2, a3, a4, a5 and a6 be the set of axioms. Then 

b0 0*0 = 0. 

b r x * x = 0. 

b2 x * (x * 0) = 0. 

b 3 x * 0 = x. 

b4 (x*(x*y))*y = 0. 

b5 x*(x*y) = y*(y*x)). 

Proof . 

(b0) Let x = 0. Then 0*0 = 0, since a3 

(b,) Let y = 0, z = 0. Then 

( ( x * 0 ) * ( x * 0 ) ) * ( 0 * 0 ) = 0 

by ag, and since bo 

while since a3 

Hence by a2 

If u = x * 0, then 

Thus we obtain b . . 

( ( x * 0 ) * ( x * 0 ) ) * 0 = 0, 

0 * ( ( x * 0 ) * ( x * 0 ) ) = 0 . 

( x * 0 ) * ( x * 0 ) = 0. 

u*u = 0. , ,. 
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(b2) Let 2 = 0. Then 

x * (x * (0 * (0 * y))) = 0 * (0 * (x * (x * y))) 

by a*i, and since a3, bo, we have b2. 

(b3) Let y = 0, - = x. Then 

((x * 0) * (x * x)) * (x * 0) = 0, 

by a6, and since bi 
( ( x * 0 ) * 0 ) * ( x * 0 ) = 0 , 

while since b2 

( x * 0 ) * ( ( x * 0 ) * 0 ) = 0 . 

Hence by a2 

(x*0 )*0 = (x*0). 

Similarly, we obtain b3. 

(b4) Let y = 0. Then 
( (x*0 )* (x*2 ) )* (2*0 ) = 0 

by a+j, and since b3 

( x * ( x * 2 ) ) * 2 = 0. 

Hence b4. 

(b5) Let y = 1. Then 

X * (X * (Z * (z * 1))) = 2 * (z * (X * (X * 1))) 

by a4, and by a5, b3, we have b5. • 

A system ((/,*, 0) is a BCK-algebra, if U has at least one constant element 0 and 
it satisfies six axioms: a., a2, a3, a$, bi and b4. A system ((/,*,0,1) is a boundary 
commutative BCK-algebra, if it satisfies six axioms: a,, a2, a3, a5, a6 and b5 . 

Above Theorem 1 shows that an ABCD-algebra is a special case of the BCK-algebra 
class. 

Theorem 2. Suppose (/ = [0,1], and V I J € [0,1]; 

Í
x-y, i f x > y ; 

0, i f x < y , 

then the system ([0,1], *) is the ABCD-algebra. 

The proof of this theorem is evident from the above definition and is thus omitted. 
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3. PUZZY LOGICAL ALGEBRA 

Definition 2. A fuzzy logical algebra is a system 

Z=(U, +,;/, 0,1) 

where U = [0,1], and for V x, y, z £ U, system Z satisfies the following set of axioms: 

(Ai) Indempotency: 
1 + 1 = X, X • X = X. 

(A2) Commutativity: 
x + y = y + x, x-y = y-x. 

(A3) Associativity: 
(x + y) + z = x + (y + z), (x • y) • z = x • (y • z). 

(At) Distributivity: 
x + y • z = (x + y) • (x + z), x • (y + z) = x • y + x • z. 

(As) Complement: 
x" = x. 

(At) Identifies: 
x + 0 = x, xl=x. 

(A7) 0-1 Laws: 
x + l = l, x - 0 = 0. 

(As) Absorption: 
x + x y = x, x -(x + y) = x. 

(Ag) De Morgan Laws: 
(x + y)' = x' • y\ (x • y)' = x'+ y'. 

(A10) Complementation: 
x + x' = sup{x, x'}, 
x-x' = inf{x, x'}. 

In particular, V x € {0,1} 

x + x' = 1, x • x' = 0. 

Theorem 3 . Let S = (U,*,0,1) be an ABCD-algebra. If U = [0,1] and for 
Vx, ye*/ , 

x' = 1 * x, 

x-y^y*(y*x), 

x + y*=\*((l*y)*((l*y)*(l*x))). 

Then the operations "+", "•", '"" satisfy the axioms A, - Aio-
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4. T H E LEMMAS F O R PROVING T H E O R E M 3 

L, x < y => z*y < z*x, V z € U. 

L2 x < y, y < z => x < z. 

L3 (x*y)*z = (x*z)*y. 

L4 x*y < z ==> x* z < y. 

L5 x < y => x*z < y*z. 

L6 x' *y' = y*x. 

L7 x*(y + z) = (x*z)*(y*z). 

L8 xy < x, x j / < y. 

L9 x < x + y, y < x + y. 

L10 u < x, u < y => « < x j / , i .e. xt/ = inf{x, j / } . 

Ln x < u, y < v => x + y < v, i .e. x + y = sup{x, y). 

L,2 x <y => xz <yz. 

L13 x j / + x z < x(j/ + z) . 

The proofs of the lemmas Li - L J 3 are based on the definitions of the operat ions " + " , 

"•", " '", and the axioms ai - ar, (cf. [4,5]). 

5. PARTIAL P R O O F O F T H E O R E M 3 

A) x • x = x * ( x * x ) def. 

= x * 0 b , 

= x. I)3 

A2 x • y = y*(y*x) def. 

= x*(x*y) b 5 

= y x. def. 

A3 (r-y)-z = (yx)-z A2 

= z*(z*(x*(x*y))) def. 

= x*(x*(z*(z*y))) a4 

= (y • z) • x def. 

= x-(yz). A2 

A4 (x-(y + z))*(x-y + xz) = 

= (x • (y + z)*x • z)*(x- y*x • z) L7 

= 0, a7 

and (x-y + .r-z)*(x-(y + z)) = 0. L1 3 
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Hence x • (y + z) = x • y + x • z. a2 

A5 x " = l * ( l * x ) def. 

= x * (x * 1) b s 

= x * 0 a5 

b3 

A6 x • 1 = 1 *(1 *x) def. 

= x" def. 

= x. A5 

A7 x • 0 = 0 * (0 * x) def. 

= 0*0 a3 

= 0. b0 

A8 x + x • y = x -1 + x-y A6 

= x - ( l + y ) A4 

= x• 1 A7 

= x. A6 

A9 (x • y)' = (x" •»/")' A5 

= ( ( l * x ) ' ( l * y ) ' ) ' def. 

= ( l * x ) + ( l * y ) def. 

= x' + y'. def. 

Aio x • x' = inf{x, x'}. L]0. 

The proof of dual part for Theorem 3 is omitted. O 

6. CONCLUSION 

Theorem 2 and 3 show that the ABCD-algebra ([0,1], *) is exactly the fuzzy logical 
algebra ([0,1], +, •, /). Hence the axioms ai - a7 of ([0,1], *) become the minimal ax­
iomatic system of fuzzy logical algebra ([0,1], +, •, /). This system will make a research 
into fuzzy logical algebra much more rigorous than before. 
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