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S U P P L E M E N T TO K Y B E R N E T I K A VOLUME S8 (1992), PAGES 8 5 - 8 9 

A TOTALLY SUBJECTIVE MULTIFACTORIAL 
CHOICE PROCEDURE 

ABDELWAHEB REBAI 

This contribution deals inter alia with the fuzzy number crunching issue and with the subjective 
ranking of fuzzy numbers using the bounds of their peaks and supports. 

1. INTRODUCTION 

An operational form of a multifactorial subjective choice problem may be: 

( P , ) D R [ V D P ( x ) ] subject to x € X 

where AT is a finite object set, DR a decision rule and VDP a variable descriptor pat tern , 

i .e., a vector of variable descriptors used for the characterization of the various objects 

in X; and subjectively estimated by the decisiou maker for each object x considered. 

VDP(x) is, thus , a subjective input vector. Problem (Pi ) reads "Apply the decision rule 

DR to choose the best-compromise object in the set X, given the judgemental input 

vectors V D P ( x ) , for x € A"'. It reduces, in many situations, to: 

(P 2 ) DR' [AR(VDP(x)) ] subject t o i e X 

where DR' is a decision rule and AR is a rule for aggregating the different elements of 

vector VDP(x ) . The present contribution assumes that a decision maker (who is also 

the assessor) and a decision analyst (who is also the consultant and facilitator) compose 

a decision-making unit and cooperate in order to find a best-compromise solution x* for 

problem P 2 , i. e., an object x* € X that satisfies the decision maker most [5]. It proposes 

a totally subjective multifactorial choice procedure which involves the decision maker in 

the selection process step by step, for we concede the point that a decision maker is more 

confident in a problem solution and feels more comfortable with it, if he/she is totally 

involved in the process generating it, and because it results from his/her own perception 

and judgements . 

2. T H E S U B J E C T I V E INPUTS MODELING AND CRUNCHING 

In this contribution, the subjective inputs are expressed in natural language and the de­

cision maker is allowed to assign quantitative, semiquantitative and ordered or linguistic 



and ordered values (see [10] for the meanings of these concepts) to the different variable 

descriptors. Therefore, these judgemental inputs may be modeled conveniently by crisp 

numbers, triangular fuzzy numbers, crisp intervals or fuzzy numbers with trapezoidal 

membership functions which are all encompassed by fuzzy intervals. 

In the sequel, a fijzzy interval A will be denoted by A = ( m i / m 2 , ms/rn^), which is a 

four-characteristic-value representation, also known as Buckley's notation [1,2,3]. T h e 

values m\, m 2 , m 3 and m 4 satisfy the condition ni\ < m 2 < m 3 < m 4 . The interval 

[m 2 , m 3 ] is the peak of A and [mi, m 4 ] its support. See Figure 1. 

Fig. 1. 

Let A,: for i = 1 , . . . ,p be a sequence of fuzzy intervals and let T(Ay) be the fuzzy 

interval image of A, by a mapping T, then the T(A;)'s will be called well-conceived 

transformations of the A^s if and only if: 

1°) S u p p ( T ( A , ) ) C [0,1], for . = \,...,p 

2°) the transformation T favours a well specified fuzzy anchor value Aio, among the 

A,'s, i. e., T (Aj > T (Ai) for i = 1 , . . . ,p. 

Now let's assume that the object set X comprizes n distinct objects characterized by 

k different variable descriptors. 

If 4 y = (alj/al, a^/at) , where 0 < ajj < o ^ < a^ < at for j = 1 , . . . , k, denotes the 

k positive fuzzy intervals used for the modeling of the various elements of the suhjective 

input vector VDP(x,) relative to the zth object x,-, for i — \,...,n (at this point, one 

should notice that different scales may be employed), then A^ for i = \,...,n, will be 

the sequence of estimates of the j t h variable descriptor over the n objects. 

Let af = max nf, and a~ = min a}-, then the following well-conceived transforma-
• <<<" i<«<" 

tions may be considered: 

Т.: 4 , - 4 = [3 3 j = \,...,k 

j=ï,...,k 

T3: 4 , - 4 = M- / ±,± / -f , j = \,...,k 
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T6: 4,,- 4 = (4/4.414). i»i,...,* 
where d'tj = J • [ l ( ^ + £ ) ] ' for 5 = 1, 2, 3, 4 and r , = (rj / r?, rf / r j ) the fuzzy 

anchor value of the j t h variable descriptor. It is to be noted that : 

1°) The transformations T\ and T2 preserve the natural ordering already existing among 

the various estimates of any variable descriptor and favour the largest value as­

signed to it over the various objects considered, whereas the transformations T3 

and Ti reverse it and favour the smallest value and the transformation Ts violates 

it and favour any given preferred value other than the largest or the smallest. 

2°) Iff all the A,/s are crisp numbers then the r m ( 4 y ) ' s for m = 1 , . . . , 5 are nothing 

but the degrees of closeness proposed by Zeleny [13]. 

3. AGGREGATION SCHEMES 

The crunching of subjective inputs results for each object considered into a mathematical 

object which could be respectively a fc-tuple (A , , A2,..., A*.), such that S u p p ( A j ) C 

[0,1], for j = l,...,k a level 2 fuzzy set ((An Pi) , C d b p j ) , . . • ,(A*,Pfc))> s u c n t n a t 

Supp (A}) C [0,1] and pj 6 [0,1] for j = 1 , . . . ,fcor a mixed fuzzy set ( ( A , , £ i ) , (A2,2L2), 

• ••>Gifc,2Jfe)), such that Supp (A,) and Supp^Tj) C [0,1] for j = \,...,k, this will 

depend on whether the decision maker assigns equal crisp weights, unequal crisp weights 

or fuzzy weights to the different variable descriptors. If the assigned weights are crisp 

(equal or unequal) , it is possible to use appropriate aggregation connectives as follows 

[11]: 

if Ai = (a\ I b\, C\ j d\) and A2 = (a2 / b2, c2 / d2) are two fuzzy intervals having their 

supports in [0,1], then A\*A2 will be defined by: 

A\*A2 = (a i0a 2 /b\0h, c , 0 c 2 / d\0d2) 

where • is an aggregation connective defined on the collection of fuzzy intervals having 

their supports in [0, 1] associated with the aggregation connective 0 defined on the unit 

interval [0,1]. The operator 0 may be chosen on the basis of relationships of compensa­

tion and competitiveness involved between the different variable descriptors [12]. If the 

assigned weights of importance are fuzzy, it is possible to employ a linear aggregation 

scheme [6,8,9] or generalized fuzzy sets reductions [4]. 

4. TOTALLY SUBJECTIVE MULTIFACTORIAL CHOICE P R O C E D U R E 

4 . 1 . T h e s u b j e c t i v e rank-ordering of fuzzy n u m b e r s 

The decision maker assigns subjectively probabilistic weights of importance u); (i — 

1, 2, 3, 4) respectively to the four characteristic values of the fuzzy interval. It can be 



easily shown that the pessimism-optimism indices associated with the support 's level 

and the peak's level are respectively A = +' and A' = 1j? therefore a coherence 

condition could be: A = A' that is, A and A' are independent of the level considered. 

Now, let Eval (x) = (ei(x) / e 2 ( x ) , e,3(x) / e,i(x)) be the fuzzy-interval-valued evaluation 

of object x, the decision analyst starts by computing WACV (Eval (x)) = £ ^ = i wTxer(x), 

for x € X, i. e., a weighted average of the characteristic values and then uses the obtained 

values for the ordering purpose, using the following rules: 

x,. > Xj <-=> WACV (Eval (x,)) > WACV (Eval (*,•)) 

i .e. , x, is preferred to Xj 

Xi ~ x3 <?=> WACV (Eval (x,)) = WACV (Eval (Xj)) 

i .e. , x, is indifferent to Xj. 

If the assigned weights are possibilistic, it is possible to transform these weights into 

probabilistic ones by means of the formula suggested by Dubois and Prade in [7]. 

The ordering functions WACV satisfies the following properties: 

1°) If A = (a / a, a / a), where a is a crisp number, then WACV (A) = a. It follows that 

WACV preserves the natural ordering among crisp numbers. 

2°) (V£/ Supp (A) C [0,1]) : W A C V ( l ) > WACV (A) , that is, the maximum is 

at tained for ( 1 / 1 , 1/1) = 1 and WACW (A) > WACV(O), that is the minimum is 

at tained for (0/0, 0/0) = 0. 

3°) WACV is continuous in the usual sense. 

4 . 2 . T h e s t e p s of t h e se l ec t i on process 

The different steps of the selection process are the following: 

STEP 1: The decision analyst obtains from the decision maker the subjective input 

vector relative to each object x € X; 

STEP 2: The decision analyst models the different subjective inputs by fuzzy intervals 

using Buckley's notation. 

STEP 3: The decision analyst asks the decision maker to specify an anchor value among 

the estimates fo each variable descriptor over the objects considered. 

STEP 4: Using well-conceived transformations, the decision analyst transforms the fuzzy 

intervals obtained in Step 2, in accordance with fuzzy anchor values specified in Step 3. 

STEP 5: The decision analyst identifies a suitable aggregation operator compatible with 

the relationships of compensation and competitiveness involved by the decision maker 

between the different variable descriptors. 
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STEP 6: The decision analyst obtains from the decision maker the probabilistic weights 

of importance assigned to the four characteristic values and, then computes the fuzzy-

interval-valued overall evaluations of the various objects. 

STEP 7: The decision analyst applies the subjective rank-ordering procedure described 

in this contribution to the various fuzzy-interval-valued overall evaluations obtained in 

Step 5, and identifies the best-compromise solution(s). 

5. CONCLUSION 

The subject ma t te r of this contribution was the making of a global subjective judgement 

based on an aggregation of crunched context-dependent formal representations (here 

fuzzy intervals) of judgemental inputs for a best-compromise alternative selection pur­

pose. The procedure suggested takes, therefore, into account the human subjectivity 

and the fuzziness of the natural language in a practical way. A rather simple and easy 

to employ subjective approach for the rank-ordering of the fuzzy-interval-valued overall 

evaluations of the different objects was considered. 
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