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S U P P L E M E N T TO K Y B E R N E T I K A V O L U M E 28 ( 1 9 9 2 ) , P A G E S 7 2 - 7 7 

ON FUZZY INTUITIONISTIC LOGIC 

ESKO TURUNEN 

A first order fuzzy logic, called Fuzzy Intnitionistic Logic is introduced. This fuzzy logic is a gener­
alization of the classical intnitionistic logic. 

1. T H E FOUNDATIONS O F FUZZY INTUITIONISTIC LOGIC 

T h e s ta r t ing point in Fuzzy Intuitionistic Logic is to fuzzify t ru th . We accept formulae 

t h a t have different t ru th values. This corresponds to the use of sentences in everyday life; 

they may be t rue 'in different ways'. By accepting different t ru th values, we also break 

the true-false-dualism of classical logic. If we know the degree of t ru th of a sentence we 

do not necessarily know the degree of falsehood of the sentence. In Fuzzy Intuit ionist ic 

Logic a half t rue expression is not always half false. 

Since we are not interested in the false sentences of a theory we let t he falsehood be 

crisp. The re is only one falsehood in Fuzzy Intuitionistic Logic. T h e negation of any 

formula being t rue in any degree is a false formula and the negation of any false formula 

is an absolutely t rue formula. 

In everyday life we often experience sentences as being t rue 'in some degree ' bu t we are 

not able to decide which of them is more t rue than the other . This kind of incomparable 

t ru th values are accepted in Fuzzy Intuitionistic Logic. We also accept the principle 

t h a t for any set of t ru th values there exists a t ru th value which is at least as t rue as 

any of the t ru th values in the set under consideration and another t ru th value which is 

less or equally t rue to any of the t ru th values in the set under consideration. This leads 

to a s t a te of affairs in which the set of degrees of t ru th consists of the largest element 

( the absolute t r u th , often marked by 1) and the smallest element (which differs from the 

t ru th value false of 0). 

T h e set of t ru th values, composed of different t ru ths and false, is always a finite set. 

Similarly, as in classical first order logic, a set of well formed formulae J- is composed 

of a tomic formulae, containing the formula 'contradiction', and addit ional formulae ob­

tained from the a tomic formulae by means of logical connectives and, or, implies, not and 

quantors 3 (read: there exists) and V (read: for each). 

Let L be some partially ordered set of t ru th values. Assume the binary operat ions A 

(meet ) , V (join) and —* (residuum with respect to A) are defined in L. A model of a 

theory can be defined similarly as in classical logic; an interpretation T, which is roughly 
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speaking the map 

T : r -> L, 

and has the following properties (see [4]): 

T (contradiction) = 0 (the zero element of L), 

T(a and b) = T(a) A T(b), T(a or b) = T(a) V T(b), 

T(a implies b) = T(a) -> T(b), T(not a) = T(a) -> 0, 

T(3xa(x)) = VT(a(x)), T(Vxa(x)) = AT(a(x)). 

The value T(a) € L is the degree of truth of a in interpretation T. If T(a) = 1 we say 
that T is a model of a. If T(a) = 0, then a is false in interpretation T. By semantics 
Sx with respect to some set of formulae X, we understand the set of all models of X. 

Similarly, as in classical logic, it is reasonable to assume that formulae (a and b) or c 
and (a or c) and (b or c) have the same degree of truth. Also formulae (a or b) and c 
and (a and c) or (b and c) should have the same truth values. This implies that the 
truth value set L must be distributive, i.e. 

(a A b) V c = (a V c) A (b V c), (a V b) A c = (a A c) V {b A c) for each a, b, c € L. 

This is actually the case for operations A and V in L. Also, the symmetry of these oper­
ations is a valuable property since it is natural to assume that formulae a or b (a and b) 
and b or a (b and a) have the same degree of truth. 

In Fuzzy Intuitionistic Logic the Paradox of Bald (falakros) does not occur since we 
have more truth values than only one and since we set the following condition: 

The form of formula a implies b is absolutely true if and only if the . . 
degree of truth of a is less than or equal to the degree of truth of b . 

Between the connectives and and implies we set the following condition: 

T(a and b) < T(c) if and only if T(a) < T(b implies c) for any interpretation T. (2) 

This can be done if in value set L there exists the Galois connection 

a A 6 < c if and only if a < b —• c for any a, b, c € L. (3) 

By (2) we generalize (1). 

We may combine the operations not and implies by 

not a is equal to a implies contradiction. (4) 

Rules of inference have a central role in proof theory. In classical logic a conclusion 
is connected with the premises in such a way that whenever the premises are true then 
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the conclusion is also true. This is also the case in Fuzzy Intuitionistic Logic. We define 
a role of inference R in the following way: 

/ a . , . . . , a , q . , . . . , qn \ 
R - l — b — ' — l — / ' 

where a j , . . . , a„ are the premises and b is the conclusion. The values u . , . . . , an, b € 
K C L — {0} are the corresponding truth values. 

In everyday life we sometimes hear reasoning like 'If you're not with me, then you're 
against me'. This is not accepted in Fuzzy Intuitionistic Logic. We assume that there 
exists formulae a such that a or (not a) is not absolutely true. Also such reasoning as 
'The enemy of my enemy is my friend' is not generally valid in our logical system. This 
means that the formula a and not (not) a are not necessarily true to the same degree. 

These two conditions imply that in set of truth values L 

a V (o -» 0) / 1 for some a in L, (5) 

and 
a ^ (a —» 0) —* 0 for some a in L. (6) 

If often happens that we associate truth value a (different to the absolute true 1 and 
false 0) to some phenomenon a. Then we receive new independent information about a 
and associate another truth value 6 -£ 0, a, 1 to the phenomenon a. Finally we conclude 
that the truth value c of a must be more than or equal to both a and b. This also 
characterizes Fuzzy Intuitionistic Logic. 

2. FINITE BROUWERIAN LATTICES WITH EXACTLY ONE ATOM 

As we saw in the previous section, logic is reducible to the structure of the set of truth 
values. We are looking for a finite residuated lattice L probably containing incomparable 
elements. The definition of a rule of inference implies that the set of non-false truth values 
should be closed with respect to the operations V, A and =S>, i. e. whenever a, b £ L— {0}, 
then a A 6, a V 6, a => 6 £ L - {0} too. 

Any finite Brouwerian lattice (see [4]) has these properties. The residuum operation 
=> is defined by 

a = T . 6 = \ / { c | a A c < 6 } . (7) 

3. SOME MORE DEFINITIONS 

Let the truth value lattice L be fixed. A fuzzy theory X is composed of the set of the 
well formed formulae ;F, containing a proper subset X^ of the axioms (formulae assumed 
to be true to some degree), a set R of the rules of inference and the set L of the truth 
values, i. e. X is a four tuple 

X = (JF,X„,R,L). 
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The degree of L-validity of formula a £ T in the fuzzy theory X is defined by 

CsX(a) = A {T(a) | T is a model of X„} . (8) 

If CsX(a) ^ 0, then a is L-valid in X. 

A L-deduction u> of formula a is a system 

wi ui\X (B\), 

w„_i un-\X (£Jn_i), 
w„ w„X (£„), 

where w. : A (i = l , . . . , n ) are formulae and UX{X : s the corresponding truth values 
so that wn = a and each u>,- is an axiom or obtained by a rule of inference from some 
previous Wj : s (j < i). B, : s (i = 1 , . . . n) are elucidating comments. 

If formula a has an L-deduction, we say that it is L-deducible in X. The set of all 
L-deducible formulae in theory X will be marked by Jrded. Since L-deducible formula a 
may have different L-deductions, we define the degree of L-deduction of a by 

CRX(&) = V (wX | w is an L-deduction of a} . (9) 

The subtheory Xsub of fuzzy theory X is the four tuple 

X 8 " ^ ^ ^ , X„, R, L - {0} ) . 

Fuzzy theory X is L-consistent if for any a € L there exists a € ^ s u c h that Cfi^(a) = a. 
Finally, fuzzy theory X is L-complete, if for any a g / 

a is L-valid if and only if a is L-deducible, (10) 

and for any a € Jrd,!tl 

CRXsub(a) = CsX
sub(a). (11) 

4. THE /.-COMPLETENESS OF FUZZY INTUITIONISTIC LOGIC 

Completeness Theorem. Every L-consistent fuzzy theory X (containing X,* and 
R as defined above) is L-complete. 

The proof of the theorem is rather long and can be found in [6] (see also [5]). O 
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Example . Assume we have five sentences a, b, c, d and e. We know that 

b is absolutely true, 

b implies d is very probably true, 

b implies e is not out of question, 

a and b is very probably true, 

(a and b) imply c is quite sure. 

Let the truth values absolutely true (1), very probably true (a), quite sure (6), not out of 
question (c) and false (0) form set L see the Diagram. To what degree, if any, is formula 
c true? 

1 

Define fuzzy theory X with the rules of inference Rj - R,, logical axioms (Ax. 1) - (Ax. 15) 
(cf. [6]) and special axioms 

(Ax. 16) b 

(Ax. 17) b implies d 

(Ax. 18) b implies e 

(Ax. 19) aandb 

(with truth value 1), 

(with truth value a), 

(with truth value c), 

(with truth value a), 

(Ax. 20) (a and b) imply c (with truth value b), 

We obtain an L-complete fuzzy theory. Using (Ax. 19), (Ax. 20) and R, we may construct 
the following L-deduction w of c 

wi = a and b wj A' = a ((Ax. 19), assumption). 

W2 = (a and b) imply c u)2X = b ((Ax. 20), assumption), 

w = c u> = a A b = c (apply R, to Wi and w2). 
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This means that 
c<CRX(c). (12) 

Could there exist another L-deduction w' of c so that u'X > c? Since X is L-complete 
this question can be solved semantically. 

Let Tj be such an interpretation that T ( b ) = 1, Tj(a) = o, T ( d ) = a, T](e) = 
c, Tj(c) = a. One easily verifies that Ti € 5.*. We conclude that Cs(X(c)) < a. Let T2 

be another interpretation so that T2(b) = 1, T2(a) = 1, T2(d) = 1, T2(e) = c, T2(c) = 
b. Then T2 € Sx, too. We conclude that CsX(c) < b, but then we have 

CsX(c) < c. (13) 

Because of the L-completeness of X and the equations (12) and (13) we conclude that 

CsX(c) = c 

i. e. c is not 'out of question.' 

Exercise. Using the assumptions as above, define the degree of L-deduction of for­
mulae d and e. 
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