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MODIFIED MODUS PONENS AND MODAL LOGIC

Jorma K. MATTILA

This paper discusses an inference rule called by modified modus ponens, which is used in the logical
system LPC + Ch which is first order (or lower) predicate calculus equipped with additional axiomati-
zation of modifier operators. This basic forms a system like generalized modal system with several pairs
of modal operators.

‘The main properties of the systemn LPC + Ch necessary for introducing this topic are considered. It
suffices well a propositional system PC + Ch for these purposes. The modal version of modified modus
ponens is proved to hold in standard modal systems.

1. INTRODUCTION

First we give a short description of the Ch-eztension of classical propositional logic
PC . As an alphabet of our Ch-language we adopt the alphabet of classical propositional
calculus choosing the connectives — standing for negation, — standing for implication,
as primitives, and connectives V standing for disjunction, A standing for conjunction,
and « standing for equivalence are derived from those in the known way. We adopt
the set of proposition letters PR = {p;|i =0,1,...,n,...} straight from PC. So, for
PC + Ch we get the logical alphabet from PC. We further need some added characters
for formalizing a set of characteristic operators. The symbolic alphabet consists of a set
of modifier symbols 0 = {S, F1, Fy, ...} where the operators Fy, Fa, ... are substantiating
(abbreviated by & 3 F;) and § is an identity operator. We can denote these modifier
operators by metavariables H, F, V,... (with or without numerical subscripts). For any
modifier F € 0, we can form its dual modifier F* = —~F—, and the set of duals we
symbolize by 0*. For the identity operator S it holds $* = &. Modifiers belonging to 0*
are called weakening operators (abbreviated by F* 2 3).

The formation of well-formed formulae (wffs) is similar to that of PC. We give the
definition of the set W of wifs of PC + Ch as follows:

Definition 1.1. W is the set of wffs of PC + Ch if
(1°) the set W of wifs of PC is a subset of W;

(2°) if @« € W and F € 0 then F(a) € W;

(3°) if « € W then ~a € W;

(4%) if o, B € W then (o — B) € W,
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(5°) All the wifs are generated by the steps (1°) — (4°).

The formal semantics of PC 4+ Ch is given in Mattila [7], and we do not consider it here.
Instead, we go straight to the axiomatization. In addition to the axiomatization of PC
we need in our proof-theoretical system a characteristic aziom schemata governing the
logical properties of the modifier operators.

Our axiomatization for our system PC + Ch are as follows:

Axiom schemata of Ch.
(1) All the tautologies of PC are axioms.
(i) H, F€0u0*,and H < F (H is at most as strong as F), then for all « € W
F(a) —» H(a) . (AxCh)
is an axiom.
(iii) For all wifs & € W and for the identity operator & € 0
S(a) &> a (AxId)
is an axiom.
We also adopt the following inference rules:
Modus ponens:
o f, ok B, (MP)
Modified modus ponens:
a— 3, Fla)l- F(B) (MMP)
where F € 0 is an arbitrary operator.
Rule of Substantiation. For wiffs « € W and all substantiating operators F € 0
ba= b Fa) (RS)

So, a Ch-system is any non-empty set X, such that the tautologies of PC, (AxCh) and
(AxId) are included in X, and X is closed under (MP), (MMP), and (RS).

In the sequel we need the following properties of PC +Ch, which are proved in Mattila
[6], [7]. For any P € W,

FFP)-P (SR F) (1.1)
EPomPp) (M A9 12

Then we consider situations in which operators are associated with connected wifs. We
have the following result:

If F is a substantiating operator and H'= —~F=, and P, § € W, then
F(P - Q) F(P)— FQ): (1.3)
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2. SOME SYNTACTICAL SIMILARITIES BETWEEN Ch- AND MODAL SYS-
TEMS

We consider first the system T giving its axioms and other rules and definitions we
need (for details, see {1]). One useful way for axiomatizing modal systems is to built
the system over PC, as usually is done. Thus the system T consists of the axioms for
propositional logic and of the axioms basing on necessity,

aPoPp (TA1)
O(P—-Q) —» (OP - 0Q) (TA2)
T contains also inference rule MP and so-called Rule of Necessitation:
P = 0P (N)
The modal concept of possibility, is defined by the condition
OP =g —~O~P (Def. )
for any wif P, i.e. possibility is the dual of necessity.

If we interpret the operators F and H to be the modal operators O standing for
necessity, and O standing for possibility of aletic modal logic, respectively, and the
system has only this dual pair of operators, we get a modal system which contains the
modal system T. In the modal interpretation of modifier operators the identity operator
3 corresponds to modal operator ‘actuality’ (abbreviated often by (O). The formal

evidence for that is e. g. the equation O(P) =~ (-~P) forall P e W.
The modal counterparts of (AxCh) in the system T is
FOP - OP (AxCh")
from which it follows the reflexivity laws by means of the actuality operator.

FopP o P (2.1)
FOP - OP ) @)

Thus in this modal interpretation (TA1) is equivalent to (1.1) operator O being sub-
stantiating. (TA2) follows directly from the modal counterpart of (1.3). Because MP
belongs to the both systems and in PC + Ch substantiating operators have the same
formal property than O in T, namely (N), we have showed that T belongs to the modal
version PC 4 Ch. Clearly (2.1) implies both (2.2), and (AxCh”), and also (2.2) implies
both (2.1) and (AxCh”).
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3. MODAL VERSION OF MODIFIED MODUS PONENS

There are also other standard modal systems like S1,S2, S 3, S4, and 85, which are
the most usual ones. The subsystem relations between these are S1 C S2 C S3 C
S4 CS5and S1 C S2C T C S4 C S5, Thus S3 is in a way alternative to the
system T. It suffices to restrict our considerations to S 1. The rule of Necessitation does
not hold without restrictions in standard systems S1, S2 and S3 (see [1], p. 225, 230,
and 235). The restricted form is

Frca = s Oa (3.1)

For any wif « of PC. Axiom (TA2) of T is a theorem in S1. It is proved in Hughes
and Cresswell [1] p. 225 and numbered by TS1.21. We need this result below. We now
prove the following

Proposition 3.1. The modal version of the rule MMP holds in S1, i.e.
P - Q- MP)= | MQ) (32)
where M is a modal operator of S1.

Proof. Suppose |- P — Q, and |- M(P) hold. It is remarkable that especially
lpc P — @. For M = O we have the deduction.

1. P-Q given

2. OP given

3. QP - Q) appl. (3.1) to 1
4. O(P - Q) — (OP - 0Q) TSL.21in H.&C.
5. OP — 0OQ MP, 3,4

6. 0OQ MP,2,5

For M = © we have the deduction

. P-@Q given

2. OP given

3. =0Q premise

4. 0-Q OQ = -0-Q
5. (P—=Q) - (-Q —~P) LA3

6. -~Q — -P MP, 1,5

7. O(=Q — —P) appl. (3.1) to 6
8. O(-Q — -P) — (0-Q — 0-P) TS2.21 in H.&C.
9. 0O-G -» O=P MP, 7.8

10. O=P MP, 4,9
1. ~OP OP = ~0-P
12. ~OPAOP A, 2,11

13. 0Q ‘ PC, 3,12,
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o

From this result and from the subsystem relations it follows directly

Proposition 3.2. The modal version of the rule MMP holds in T, i.e.
FP—Q FMP) = F MQ) (3.3)
Where M is a modal operator of T.

This can be also proved very easily without the knowledge of Proposition 3.1. Because
T is also a subsystem of Brouwerian system, the modal version of MMP holds also in it.
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