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KYBERNETIKA — VOLUME 24 (1988), NUMBER 6

DIVERGENCES OF GAUSS-MARKOV RANDOM FIELDS
WITH APPLICATION TO STATISTICAL INFERENCE

MARTIN JANZURA

In addition to the previous asymptotic theory of parameter estimation (cf. [2]) further asymp-
totic properties of the Gauss-Markov random fields are studied in the present paper. The explicit
formulas for the entropy rate, the I-divergence, and the «-divergence are obtained. Applications
to parameter estimation and hypotheses testing are included.

1. INTRODUCTION

The Gauss-Markov random fields are used as the probability models for the
statistical analysis of spatial data. In the preceding paper [2] a convenient way
of their parameter description was given, and a method for the parameter estimation
was proposed.

The method and its asymptotic properties are closely connected with those charac-
teristics of distributions which are studied in frame of thermodynamics or, parallelly,
in frame of information theory. Namely, we mean the entropy rate, the I-divergence
(information gain), and the a-divergence (for the definitions sec below).

Thus, the present paper is devoted to deriving the explicit form of these characteris-
tics for the Gauss-Markov random fields. The main results are obtained in Section 3
with the proofs and some auxiliary results in the following Section 4.

As an application in Section 5 we investigate the connection between the estimator
proposed in [2] are the so called minimum distance methods (cf. [6]). This connection
is based on the considered notions, and it seems to be interesting and fruitful from
both the computational and the methodological aspects.

Section 6 contains an application of the results to testing hypotheses, namely
the appropriate versions of the Stein and the Chernoff theorems on the asymptotic
behaviour of the error probabilities are introduced.

Some of the asymptotic results were attained by Kiinsch [3] with the aid of a bit
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different methods. But only the Gauss-Markov fields with zero mean value were
considered, and the question of a-divergence was not studied at all.

The divergences of probability measures and related topics being concerned,
we follow [8] as the main reference.

2. PRELIMINARIES

We shall only briefly recall some basic definitions and results concerning Gauss-
Markov random fields (for more details cf. [2] — Section 2 and Section 3).

By a Gauss-Markov random field we mean a stochastic process {X,},EW on
a d-dimensional lattice &¢ with

i) translation invariant distribution P;
i) Gaussian finite-dimensional marginals P”,

Vef={#c2%0<|¥|=card¥ < o} ;
iii) spectral density given by
fo(2) =[2.% U(k)cos kx]™* forevery le Sy =[-m=]’,
ket

where
U= {UR)} en€Dy={UeB*; Y Uk)cos ki > 0 for every Le 7},

ke fl

e, M ={teZtz0} (“z is the lexicographical ordering);
iv) constant mean value given by
g = —h ~fU(0) , hez.

Thus, we can see that the distribution P depends on a (1 + |.#])-dimensional
parameter 8 = (h, U)e Z x D, = O.

In what follows we shall use the term “random field” for the distribution and we
shall deal with the (locally asymptotically normal — cf. [2]) parameter family
P = {Py}eco Of Gauss-Markov random fields.

Let us note that the Gauss-Markov random field Py may be understood as a Gibbs
field with a finite range pair potential U given by

Uy(x) = U(0)x} + hx, forevery te2’,
and
Upon(x5 %) = Uy (x4 %) = Ut — s) xx, for t —se./~\{0}

(for detailed treatment of this approach cf. [1] and [3]).
For every Ue D, the corresponding covariance function

Ry(t) = (2n) "4 [, e fu(2)dA, te 2t

is absolutely convergent: Y |Ry(f)] < o .
tezd
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Let a function a: ¢ — 2 be given by

a(0) = 2. U(0)
a(t) = U(t)  for te s/ \{0} or —te.d {0}
a(t) =90 otherwise .

Then we can easily verify that
at) = (2m)"? f,, e [ fy(A)]' di forevery re2*

and the infinite matrix A = (a(t — $)), .2 is inverse to the infinite covariance matrix
Ry = (Ry(t = 9))s ez

3. ENTROPY RATE, I-DIVERGENCE, AND «-DIVERGENCE

Suppose a stationary random field P to be given by its densities p*, 7" € &.
Then we define the entropy rate as the limit

S(P) = lim || Ex{ —log p”}
¥ A4
which always exists (it can be equal to — o0, cf. [4]).
For a pair P, Q of stationary random fields with densities p” and ¢*, ¥ e &,
respectively, we define the I-divergence of P with respect to Q by
H,(P | Q) = lim |[#"|* Ep{log py/q,}
v pzd

whenever the integrals and the limit exist. Otherwise we set H,(P [ Q)= .
The convergence ¥~ 7 &7 is defined in order to satisfy
7|7 7] 1 forevery ke2?,
where ¥, = ¥ n (¥ + k).
We denote by M the family of all stationary random fields with finite second
moments, finite entropy rate, and with all the marginal densities, i.e.

PeM iff Ep[Xi] < oo, S(P)> —oo, and p* exists forevery ¥ eS.

Theorem 3.1. Let Q € M, Py € P. Then
i) S(Pp) = (1 + log (2n) + (2m)™7 [, log fu(2) d2) ;
i) H,(Q | Pg) = 4{log (2m) + (2m)™* [, log fu{2) dA + 2%, U(k) . [Ro(k) +
+ .y = v)’]} = S(Q). et
where vq = Eo[X,] and Ro(k) = Eo[(X, — vq) (X, — vo)] are the mean value
and the covariance function, respectively, of the random field Q.

The proof of the theorem is given in Section 4. Here we continue with some easy
consequences.
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Corollary 3.2. i) Let Py, Py P. Then
Hy(P. | Po) = ﬁ{(zn)-d f log 788 4 1} +
2 s folB)
+ 3, U0 [Rol) + (0 = na’].
ii) For Q € M it holds
Hi(Q I Pyo) = Tei‘;] Hile | Py) iff

Vg = fyo,yo and Ro(k) = Ryo(k) for every ke 4 .

Proof. The first statement is straightforward if we properly substitute for the terms
from Theorem 3.1.

If the minimum in the second statement is reached at 8° we obtain the claimed
identities by differentiation of the I-divergence with respect to the parameters.

From the other side if the condition is satisfied we have

H{Q | Py) — H(Q | Pgo) = H,(Pgo | Pg) 2 0

for every 0 e ©. [}

It is not difficult to see that for a pair P, Q of stationary random fields with densities
p” and ¥, ¥ € &, respectively, we have

A P\ a

P . 1 q
Ep|log=- { = lim — — log E =1 1.
P[ € qyJ a0 afor — 1) & l:<p"r> ]

whenever the expressions make sense, and similarly

2 \«

q . L q
Eoflog=— | = lim ————1logE 1.
Q[ gp’”] el 1) E {(r)’"ﬂ

Therefore, we can understand the I-divergence as a special case of the a-divergence
defined by 1 FIAx
H,(P| Q)= ——— lim |[#] " logEp | (1
Aot — 1) v pore g
if the integrals and the limit exist.
For the sake of brevity let us denote
wley=(1—-¢'ec for ¢
w(c) =+ for ¢

and

v A

Theorem 3.3, Let Py, Py e P,
p )
oe <7w (min fv—kn( l> , 4w <min f_w(f))) .
sesa fydA) P f”(/y) ,

Ho(Py. [ P) = 1{(2m) " [, [(1 — &)™ " log fy(2) + o * log fy(4) —
— (a1 = @) " log fups 1-ow{A)] di +
+ [160) ol O] favs - 00:0) - (1t — fye 62V} -

Then
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The proof of the theorem is given again in the next section.
Corollary 3.4. Let Py, Pg. € P. Then
H(Pos | Po) = lim H,(Py. | Pg)
a—+0

and

H,(Pg | Pg.) = lim H (Py. | Py) .
a1

Proof. We may write

. ot [ T B 1) T
[111?2] H,(Po: | Po) = 5 {(27:) J-h l:logfm(l) + 0 l} dz 4
+ [fu(O)] " (w — #h".U*)Z} >
and, since [ fy(0)]™* = 2. U(k)and

kel

(2my~e f;UT(;)) 42 =23 U() R(),
Fq JU &

we obtain the claimed statement for « — 0.

For a —» 1 we proceed in the same way. ]

4. PROOFS AND AUXILIARY RESULTS

In this section we intend to prove the theorems introduced in the preceding section.
In fact, we shall prove something more general.

Let ® be the class of bounded, positive, real valued and differentiable functions f
defined on £, by
fO) =Y r(t)e'* forevery ie.s,.
ted
Then, according to Corollary VII 1.9 in [5] the Fourier coefficients are absolutely
summable, i.e.

Y|l < o,
tezd
and the same is true for the Fourier coefficients of the reciprocal function, i.e.

3 Jal)] <
tegd
where
[FA)]* =Y a(f)e'” forevery le.g,.

e
It is easy to see that the infinite matrix A = (@(t — 5)); scza is inverse to the matrix
R = (r(t = 9))eseze. :
Let us denote f™* = max f(4), f™ = min f(1). For an m x m matrix D with
AeFq AeSq
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the eigenvalues ¢;,j = 1,...,m, let us denote g(D)= max |c;|. Further, we
J= e

introduce some useful basic results concerning positive definite matrices.

Lemma 4.1.1) For C, D > 0it holds
di log Det (4C + (I — 3) D) = Tr {(;C + (1 — ) D)~' (C — D)} .
Y

ii) For C, D = 0it holds
0 < Tr(CD) = ¢(C) Tr (D).

The results are well-known and need not be proved.

Lemma 4.2. Let R, be an arbitrary infinite covariance matrix, i.e. Ry is positive
semidefinite and Ry = (Ry(t, s)= ry(t — 5))iene, and A corresponds to some
Je€®. Then

i) Jim ¥ Tr (RETA™) = 3 1y(0) a();

v A2 tezd

i) lim ]V]"‘ Tr (RI"QV’"“(A”“”c)’1 ATy =0.
v Axd
Proof. We may write

P L relt = s als - ) = 3 rall) alh) 7 [

Since [ri(k)| = 74(0) and ¥ |a(k)| < o, the convergence is dominated and we

obtain the first statement, k2¢
In order to prove the second one we observe R”*"° — (A”7*)™! x 0 and therefore

0.5 1 T [RTAT (77 AT [ T [REAT R £
£r(0). % ; [a(ic)] {a(D)] . ZJr(m)l AT+ (T + L+ m)a
PRER meg
nyea(ye+m) -0
again by the dominated convergence arguments. O
Lemma 4.3. For fy, f2, f3 € ® it holds
fim |77 RY7] T RERY T 1y = [£1(0) £2(0)] 7 £(0)-
v Axd
Proof. We have
[R"i/"‘l/]—l R‘;/V[R”g‘“l’]— 1 __ A'i”f"R;"II‘A;'V —
= [R7]RY(RY] — ATY) + ([RT] 7 — A7) RTVATY.
Now, due to Lemma 4.1 ii) and Lemma 4.2 ii) it follows
0z /T GIRYT RY(RE] - AT L, 2
2 PP T (L AT (AT AT 0,
and similarly for the second term.
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Thus, we finish the proof by
W BATRYAT 1y - T ()Y 1) T ax(0) o
ted uexd veFd

Lemma 4.4. It holds
lim [#] " log Det (R¥) = (2n)* |, log (f(1)) 1.
¥ AZd

Proof. Due to Lemma 4.1 i) we may write
Gy = || (log Det (A") — log Det ([R”]7")) =
= I,VJ*I Tr (,ys( A’f"‘V + (1 —_ y:'s) [R’f""f/]"l)‘l (A"V'{ _ I:R"V‘V]*l)
for some y* e [0, 1].
Since A" — [R77]"1 = AP"“[A"**]" A" it holds
0= Gy <. 7|t Tr (AP [A""*]"1 A7) - 0
according to Lemma 4.1 ii) and Lemma 4.2 ii). Therefore
lim |#7|"* log Det (R} = — lim |#"| ™" log Det (A") =
v Azl e

= (2m)™* [, log (f(4)) dA O
by Theorem 2.5 in [3].

Now, we may prove the main results of the preceding section.
Proof of Theorem 3.1. We may write
Eof —log py ] = 4[|#"]| log (2n) + log Det (RY”) +
+ Tr (RKV[RW]“) + (/Jh,v - vQ>2 IJ[REV]ﬂ 11/] ,
where
[#°]7* log Det (RFY) — (2m) ™ [, log f(2) dA
by Lemma 4.4;
7 Tr(RGIRGT]™!) = 2 Y, U(k) Ro(k)
kest
by Lemma 4.2. i) and ii);
and |7 GRY T 1, - [fu(0)] 7 = 2. % U(k)
kel

by Lemma 4.3.
Since for Q = Py we have 2. ). U(k) Ro(k) = 1and vq = g, y we obtain
ket
S(Py) = lirrl |77 Epg[—log py ] = 4[1 + log (2r) + (2m)~¢ (5, log fu(2) d2].
VAL
For general Q € M we have
H{Q | Py) = lim [#"| " Eo[ —log pf] — S(Q) =
¥ pad
= ${log(2n) + (2m)™? [, log fu(2) dA + 2kZ./tU(k) [Ro(k) + (upp — vo)2]} —
- 5(Q). O
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The remaining Theorem 3.3 we obtain as a corollary to the more general following
proposition.

Proposition 4.5. For j = 1,2 let Q; be the stationary Gaussian random field
with the spectral density f; € ® and a mean value p;.
We fix «, f € # satisfying

B> —“(fz/f1)mi" if «az0;

B> —a(foff)™ if a<O.
Then

lim |¥7|~* log Bo {[¢7]""* [a7]'} =
Y AZd

=H{(1 — o — B)log(2n) + (2m) 7 §,, [(1 — &) log f1(4) + (1 — B) log f>(1) —

= log (@ f2(&) + BA(N] 42 — af(py — p2)* [2£2(0) + B £ (O]}
Proof. Let us denote f3 = af, + ff;. Then we have
P77t log Eq {[a7]* ! [431%) = 3{(1 — o« — p)log 2m)} + [»|™".
.3{(1 — @) log Det (RYT?) + (1 — f) log Det (R%*) — log Det (RY”)} +
+ 7 H{ o [RY T 1y + B[R] 1) (RT7T + BRI
A [RY T 1y + Bra[REV] 1) — oed TH[RYY] 1 1y — s 15[RGV] 71 1)
By Lemma 4.4 we obtain

lim |[77]71. 4{(1 — ) log Det (RT*) + (1 — B)log Det (RT”) — log Det (R3¥)} =

Ve
- =3(2m)7 [, {(1 = @) Tog f1(A) + (1 = B)log f5(A) — log f5(4)} dA.
The last term may be rewritten as
[7]7 1 ${ou} IR RYVIRYY T 1y + 20800, 15[REY] 71 1y +
+ 0 DR RITIRET 1 — o TRTT L -
= Bz GIRZ]7? 1} - HePui[£:(0) £5(0)] 7 12(0) +
+ 20Buy [ S5O + BABLf2(0)£3(0)] " £1(0) — ewsi[£1(0)] 7 -

— Ba[f20)]7"} = —daBluy — 1a)? [f>(0)] 7
by Lemma 4.3. (m}

Proof of Theorem 3.3. If we substitute f =1~ a, Q; = Py, Q, = Py, and
realize '

Javs1-mue = (Df[fu]_l -+ /3[fv']—1)7l ’

we obtain directly the statement of Theorem 3.3. m]
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5. APPLICATION TO ESTIMATION

At first let us try to give a brief sketch of the basic idea of the so called ““minimum
distance method” used in statistical decision (for detailed explication sce [6]).

Thus, suppose we are given (in some sense regular) parameter family of probability
distributions

P = {Pe?ee@)
and a collection of observed data {X,},.,. On the basis of the given data we intend
to estimate an unknown parameter 0° € ©.

We suppose the data to generate some ‘“‘empirical distribution” P which need
not be from P. Therefore we seek for the distribution Py € P with minimal distance
from P: (P, Pg) = min 9(P, P,),

0cO®
where & is some suitably chosen measure of distance. And  is considered to be the
estimate of 6°.

There are two obvious questions, namely what distance & to choose and what
to understand under the “empirical distribution” in a considered situation.

If the parameter family is of an “exponential-like” type, and the Gauss-Markov
random fields represent such a case, the I-divergence seems to be the convenient
measure of distance.

Let P e M. According to Corollary 3.2. ii) the minimization of H,(P | Py) is equi-
valent to solving the system of equations

Hao = Vp
Ry(k) = Rp(k) for ke..

Therefore it is obvious that we may not construct any “empirical distribution” P,
but the above mentioned moments are all what we actually need to know.

If we set

Vp = HV()?’V)
- and
Rp(k) = My ,(%y) — (s(%y))? for ket
where
() = |7 T %0
tey”

My (%) = 17V Y X Ty for ke,
eV

then the solution 8 = (i, U) coincides with the estimate introduced in [2].

Thus, we know that there is at most one solution, and the solution exists with
a probability tending to one for growing ¥”. The other asymptotic properties were
also derived in [2].

Moreover, Corollary 3.2. ii) represents also the key for the implementation of the
method since we obtain the estimate as the solution of the minimization problem
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which, under some reasonable assumptions on the dimension d and the “range”
A, is numerically solvable.

The only possible defect of the described method may consists in the absence
of robustness. It is well known that the estimates of the “maximum likelihood
type” are highly efficient but not robust enough. The proposed estimator is not
exactly the maximum likelihood one, but asymptotically it coincides with such a one
and therefore it may be considered as an approximate maximum likelihood estimator.

From the general theory (cf. e.g. [7]) it follows that, using the a-divergence instead
of the I-divergence, we should obtain a more robust estimator. Nevertheless, there
are several new problems connected with this approach, namely,

i) what « to choose;

ii) how to construct the “‘empirical spectral density” f € ® which is explicitly needed
for expressing the o-divergence formula (cf. Proposition 4.5), and which should
be a consistent estimate of the unknown spectral density;

iii) how many (if any) local minima there are, i.e. the question of existence and
uniqueness of the solution;

iv) what are the (asymptotic) properties of the obtained estimate.

Some of the indicated problems might be (with some additional assumptions)
solved in a satisfactory way but the necessary effort does not seem worthwhile to
compare with the possible gain.

Let us realize that the main weak point of the maximum likelihood estimation,
i.e. the nonuniqueness of the estimate, does not occur in the proposed method
based on the minimum I-divergence. And if we feel some doubt about the contamina-
tion of the given data we may apply some known robust estimators of the first and
the second moments instead of jiy- and {MWJ ret» TESpectively.

Thus, we may keep the I-divergence as the proper distance.

6. APPLICATION TO TESTING HYPOTHESES

In this section we intend to show the role of the divergences for a characterization
of the asymptotic behaviour of the error probabilities in testing simple statistical
hypotheses.

Suppose we are given a collection of observed data Xy = {)?,} ey Testing the
hypothesis Hy: P = Py against the alternative H,: P = Py (8°, 0' € ©), we reject
the hypothesis H, whenever

Pool%y) £ ¢ - Pi(Ey)
with some constant ¢, > 0 called the critical value.

Thus, the test is given by the critical region

Byl(cy) = {(xy € B”; Pho(xy) £ ey Parlxy)} -
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The probabilities of the errors of the first kind and of the second kind are given by

el = Py(%,(cy)) and e} = Po((%,(cy))),

respectively.

We are interested in the asymptotic behaviour of the error probabilities for growing
7. We shall treat two basic possibilities of choice of the critical values {¢y} yq.

At first let the critical value be fixed, i.e. ¢y- = ¢ > 0 for every ¥" € K. Then the
test corresponds to the optimal Bayes test which minimizes the mixed errors

gy ET + 42 ef s

where the prior probabilities are given by q; = (1 + )"t and g, = ¢l +¢)7,
respectively.

In the second case let the critical value ¢, be given by

el = Plu(@y(cy)) =1

for some fixed I € (0, 1), i.c. the test is optimal on the level 1.

Theorem 6.1. i) Let ¢,- = ¢ > O for every ¥" & & Then for j = 1,2
lim {—|#

v AL
ii) Let ¢, be for every ¥" e & given by

e = Py((%y(cy)) = 1e(0,1).

“logel} = r?oa):]{a(l — o) H(Pgo | Pgi)} -

Then
lim{—[#] ! log )} = Hy(Pgo | Pos).
VA%

Proof. With the aid of Theorem 3.3, Theorem 3.1 and Corollary 3.4 the statements
follow from Theorem 12.19 and 12.20 in [8]. [}

7. CONCLUDING REMARK

Some other applications of the divergences are introduced in [8] where the above
mentioned problems are treated in general. The reader can find many interesting
results and consequences there as well as a lot of useful references relevant for the
topic.

(Received April 5, 1988.)
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