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COMBINED TRUST REGION METHODS 
FOR N O N L I N E A R LEAST SQUARES 1 

LADISLAV L U K S A N 

Trust region realizations of the Gauss-Newton method are commonly used for obtaining 
solution of nonlinear least squares problems. We propose three efficient algorithms which 
improve standard trust region techniques: multiple dog-leg strategy for dense problems 
and two combined conjugate gradient Lanczos strategies for sparse problems. Efficiency of 
these methods is demonstrated by extensive numerical experiments. 

1. INTRODUCTION 

Let fi : Mn —+ M, 1 < i < r, be real-valued functions with continuous second order 
derivatives on the open set X C Mn. Let us denote 

n*)=\ibf?(*)- (i-i) 
i-l 

We are concerned with the finding a local minimum x* £ Mn of the function F : 
Mn —> M given by (1.1) on an open set X C Mn, i.e. a point x* G Mn tha t satisfies 
the inequality F(x*) < F(x) Va; G B(x*,e) for some e > 0 , where B(x* ,e) = {x E 
Mn : \\x — x*\\ < e} C X is an open ball contained in X C Mn. 

If we denote gi(x) and Gi(x) the gradients and the Hessian matrices of the func­
tions fi : Mn —* R, 1 < i < r , respectively, and g(x) and G(x) the gradient and 
the Hessian matr ix of the function F : Mn —+ M respectively then, using (1.1), we 
obtain 

r 

9(x) = Y,fi(x)9i(x) (1-2) 
;=i 

and 
r r 

G(x) = J2 3i(x) 9i{*) + E f<(x) G^x) (L3) 
1=1 i-l 

This work was supported under the grant No. 23012 given by the Grant Agency of the Academy 
of Sciences of the Czech Republic. 
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Numerical methods for local minimization of the objective function F : JRn —• TR 
are usually derived from the Newton method. These methods are iterative and their 
iteration step has the form , 

x+ = x + ad, 

where x and x+ are old and new vectors of variables respectively, a is a stepsize 
parameter and d is a direction vector which approximately minimizes the quadratic 
function i 

Q(d) = -dTBd + gTd (1.4) 

over some subset of Rn. Here B = B(x) is an approximation of the Hessian matrix 
G(x) and g = g(x) is the gradient given by (1.2). There are two basic possibilities 
concerning how the matrix B in (1.4) can be constructed. The first possibility 
leads to the so-called variable metric methods which use an arbitrary positive defi­
nite matrix in the first iteration and which generate subsequent matrices by simple 
variable metric updates [8]. The main advantage of this approach is its general 
applicability (the objective function F : TRn —> Ft need not have the special form 
(1.1)) and the possibility to update matrix factorization which requires only 0(n2) 
operations in every iteration. Therefore, these methods are very efficient for dense, 
medium-size, and well conditioned problems. 

The second possibility is based on the special form (1.1) of the objective function 
F : Rn —• M and it consists in the substitution 

r 

B(x) = Y^9i(x)gJ(x). (1.5) 
i= l 

One reason for this choice is the fact that often F(x*) = 0 so that the second term 
of (1.3) is negligible in B(x*,e). Another reason follows from the linearization of 
(1.1). In this case 

F(x + d) * i j > ( * ) + y?(*)cOa 

i= l 

= \ £(/?(*) + W*) -#(*)d + ^ W sJ(x) d) 
i = l 

= F(x) + gT(x)d+^dTBd=F(x) + Q(d) 

with B given by (1.5). The methods which use the matrix (1.5) instead of the Hessian 
matrix G(x) are called Gauss-Newton (or modified Gauss-Newton) methods [6]. 
The main advantage of the Gauss-Newton methods is their quadratic convergence 
for zero-residual problems. Convergence of the Guass-Newton methods is usually 
faster then convergence of the variable metric methods. On the other hand the 
matrix (1.5) has to be factorized which consume 0(n3) operations in every iteration. 
Therefore these methods are very efficient for dense, small-size, and zero-residual or 
ill-conditioned problems. The Gauss-Newton methods are also very efficient for 
sparse problems since factorizations of sparse matrices are relatively inexpensive 
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and, moreover, the variable metric methods cannot be efficiently generalized to use 
sparse matr ix factorization. 

Besides the above two possibilities there exist their various combinations (see 
[3], [5] or [1], [9] as an example). We do not concern these hybrid methods here, the 
detailed investigation of them is given in [15]. 

All the above methods can be realized in two different forms using either the 
line search strategy or the trust region strategy. A typical iteration step of the line 
search strategy has the following form. 

(LI) Direction determination: 
Choose d E Mn so tha t . , _ , .. .. .. ,„ . 

| | -M + 0 | | < w | | _ | | (1.6) 

a n d -gTd>s0\\g\\\\d\\, (1.7) 

where 0 < w < Q < 1, €o > 0 (_ and £Q do not depend on the iteration step), 
g = g(x) and B = B(x). 

(L2) Stepsize selection: 
Choose a > 0 so that _ , rt - , 

F(x + ad)-F < exagTd (1.8a) 

gT(x + ad)d> e2g
Td, (1.8b) 

where 0 < i\ < 1/2, E\ < e2 < 1 (l\ and e2 do not depend on the iteration 
step) F = F(x) and o = g(x). Finally set 

x+ = x + as. (1-9) 

If the conditions (1.6) and (1.7) cannot be satisfied simultaneously, we must change 
the matr ix B (restart) . 

The line search startegy is very convenient for the variable metric methods that 
generate matrices which are usually well-conditioned. Another situation appears 
for the Gauss-Newton methods since the matr ix given by (1.5) is very often ill-
conditioned even singular. In this case, the direction vector d _ Mn can have rather 
large euclidean norm and, moreover, it can be almost orthogonal to the gradient g. 
Therefore, too many line search steps can appear for satisfying (1.8) and, moreover, 
frequent restarts can occur due to violation of (1-7). 

A typical iteration step of the trust region strategy has the following form. 

( T l ) Direction determination: 
Choose d £ Mn so that ,, ,,, . . ,., ,_ v 

||a|| < A (1.10a) 

| | _ | | < A = > | | B _ + flf||<-||flf|| (1.10b) 

M d - Q ( r f ) > ^ o | | a | | m i n ( | | d | | , | | o | | / | | 5 | | ) , (1.11) 

where 0 < A < A , 0 < _ < d ) < l , £ o > 0 (barred constants do not depend on 
the iteration step), g = g(x) and B = B(x) (Q(d) is given by (1.4)). 
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(T2) Stepsize selection: 
x+ = x + d if F(x + d)<F(x) (1.12a) 

if F(x + d) > F(x). (1.12b) 

(T3) Trust region update: 
C ° m p U t e „ F(- + _ - F _ 

' = — « " o — ' (u3) 

When p < p\, then determine the value 

2 ( i - ng+jj-n-?)^ 

(quadratic interpolation) and set 

A+ = ft||d|| if !3<A (1.14a) 

A+ = /?nd|| if h<P<h (i.Hb) 

A+=/32 | |d | | if & < / ? . (1.14c) 

When pi < p < p2 then set 

A+=min(A,7 2 | | d | | ) . (1.15) 

When p2 < p then set 

A+ = min(max(A,7i| |d| |),72 | |d| | )A). (1.16) 

Here 0 < fi\ < /32 < 1 < 7i < 72, 0 < p\ < p2 < 1 and A > 0 (barred constants do 
not depend on the iteration step). 

The trust region strategy with the iteration step (T1)-(T3) has strong global 
convergence properties (see [20], [21]). Even if it also works well for indefinite ma­
trices B(x), we confine our attention to the positive semidifinite case which appears 
in connection with the Gauss-Newton methods. In this case the following theorem 
holds (see [14]). 

Theorem 1.1. Let the functions fa : Mn —> M, 1 < % < r, have continuous second 
order derivatives and there exist constants C\ > 0, C2 > 0, C3 > 0 such that 
1/iO-OI < Cu \\9i(x)\\ < C2, \\Gi(x)\\ < C3} 1 < i < r, for all x G X C Mn. Let 
Xk G X C Mn, k G N, be the sequence generated by the Gauss-Newton method 
with the trust region strategy (T1)-(T3). Then 

liminf|| f f(x t)| | = 0 (1.17) 
k—*oo 

The trust region strategy is very advantageous in connection with the Gauss-
Newton method. The matrix (1.5) can be ill-conditioned, even singular, but \\d\\ is 
always bounded from above according to (1.10). Moreover (1.17) holds without any 
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restart. Strategies like the trust region strategy (T1)-(T3) were proposed already 
in [13], [16]. The current realizations were developed in [4], [18], [19], [22]. 

The most complicated part of the trust region strategy is computation of the 
vector d G Mn satisfying the conditions (1.10)-(1.11). There exists three basic 
possibilities for a positive semidefinite case. First, the vector d £ Mn can be obtained 
as a solution of the subproblem 

d= argmin Q(cl(A)) (1.18) 
| |d(A)| |<A ^ V V " 

which leads to the repeated solution of the equation (B + \I)d(\) + g = 0 for selected 
values of A [18]. This way gives well-convergent algorithms but for a large number of 
variables it is time consuming since it uses, on average, 2 - 3 Choleski decompositions 
in every iteration. Moreover, an additional matrix has to be used. 

The second possibility consists in replacing the complicated subproblem (1.18) 
by the two-dimensional subproblem 

d= « « ™ A Q(d(aJ)), (1.19) 

where d(a,/3) = ag + (3B~1g [2]. Usually the subproblem (1.19) is solved only 
approximately, getting (1.10) — (1.11), by the so-called dog-leg methods [4], [19]. In 
this case we compute the vectors d\ £ Mn and dn £ Mn such that <7THgdi + ||a||2(7 = 
0 and Bdn + g = 0. The resulting vector d £ Mn is obtained as cl = Ao?i if \\d\\\ > A, 
d = d\ + \(dn — cli) if ||c?i|| < A < ||cln||, and d = dn if ||cl.n|| < A, where the scaling 
factor A > 0 is chosen so that ||d|| = A. This way is more economical since the 
equation Bdn + g = 0 is solved, at most, once in every iteration and no additional 
matrix is used. 

The third possibility is very natural. The equation Bd + g = 0 is solved by the 
conjugate gradient method which generates the vectors di E Mn, i € N, having the 
following properties (see [22]): 

(A) There exists an index k < n, such that ||Hcljfc+#|| < w||flf|| for a given 0 < u < 1. 

(B) The sequence Q(di), 1 < i < k, is decreasing, i.e. Q(di+\) < Q(di) for 
1 < i < k. 

(C) The sequence ||d,-|J, I < i < k, is increasing, i.e. | |d t + i | | > ||cl,t|| for 1 < i < k. 

(D) It holds that 2<2(Ac?i) < -\\g\\ \\Xdi\\ for 0 < A < 1, and 2Q(dt) < -| |flf| |2/ | |5| | 
for 1 < i < k. 

The resulting vector d £ Mn is then obtained as d = \d\ if ||Q?I|| > A, cl. = clt- + 
\(di+i - di) if ||d,-J| < A < ||d,-+i|| for some 1 < i < k, and cl = dk if ||cftj| < A, 
where the scaling factor A > 0 is chosen so that \\d\\ = A. Note that (A)-(D) 
imply (1.10)-(1.11). Note also that no matrix factorization is used in the conjugate 
gradient method but, for small ui, the index k in (A) can be large. Fortunately the 
condition \\d\\ < A also limits the number of iterations. 
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In the subsequent text we confine our attention to the trust region realizations 
of the Gauss-Newton method. Our main purpose is to construct new trust region 
strategies which outperform all the above described ones in both the number of func­
tion evaluations and the computational time. Section 2 is devoted to the multiple 
dog-leg strategies for dense problems. In Section 3 we propose combined conju­
gate gradient Lanczos methods for sparse problems. Efficiency of these methods is 
demostrated by extensive numerical experiments. 

2. MULTIPLE DOG-LEG STRATEGIES FOR DENSE PROBLEMS 

Consider the conjugate gradient method applied to the quadratic function (1.4). 
This method is represented by the following iterative process 

(2.1a) 

(2.1b) 

(2.1c) 

(2-ld) 

(2-le) 

(2-1-0 

(2-lg) 

(2-lh) 

The matrix B given by (1.5) is always positive semidefinite. First, suppose that 
it is positive definite. Then the following well-known lemma holds (see [12], [22]). 

Lemma 2.1 . Consider the conjugate gradient process (2.1) with a symmetric posi­
tive definite matrix B. Then there exists an integer I < n such that d\ £ Mn is a 
minimizer of the quadratic function (1.4) and 

pjBpj = djBpj = 0 (2.2a) 

Phi = dJg3 = 0 (2.2b) 

gfpj = -gj-igj-i (2-2c) 

gfgj = 0 (2.2d) 

Q(di) > Q(dj) (2.2e) 

11*11 < I M (2-2Q 
hold for 0 < i < j < I. Moreover, if k < I then the vectors gi, 0 < i < k — 1 form 
an orthogonal basis in the Krylov subspace 

JCk(B, g0) = span{Blg0, 0 < i < k - 1} 

do = 0, g0 = g 

Po = 0 , <50 = 0 

ld 
PІ = -gi-i + 6І-IPІ-I 

Чi = Bpi 

li = \\gi-i\\2/p[qi 

di = fii-i + 7 І P І 

gi = gi-i + 7 Í 5 І 

6i = WlVllл-ill 
ir i Є N. Note t h a t gi = Bdi + g foг г Є N. 
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_,- = argmin Q{d) 
detC,(B,g0) 

for 0 < i < k - 1. 
If H is only positive semidefinite then the situation when pk qk = 0 can appear 

for some index k < n so that jk in (2.1e) may not be defined (breakdown). 

A direction vector satisfying (1.10)-(1.11) can be found using the iterative pro­
cess (2.1) by the following rules. 

(CGI) If ||_fc-i|| < A and pTqk = 0 for some k < m (breakdown) then set d = 
dk-i + JPk where 7 is chosen so that \\d\\ = A. 

(CG2) If U-jb-ill < A and ||_jk|| > A for some k < m then set d = dk-i + JPk 
where 7 is chosen so that | |„ | | = A. 

(CG3) If either \\gk\\ < u\\g\\ for some k < m or k = m then set d = dk. 

Usually m = n + 3 since dn £ Rn may not be a minimum of the quadratic function 
(1.4) because of roundoff errors. 

The algorithm defined by the iterative process (2.1) and by the rules ( C G 1 ) -
(CG3) was introduced in [22] and we call it the conjugate gradient trust region 
(CGTR) method. This algorithm is very natural and simple but it has one disad­
vantage. Usually u> —• 0 and \\d\\ —• 0 < A for x —* x* (to guarantee superlinear con­
vergence of the Gauss-Newton method) so that the rules ( C G 1 ) - ( C G 3 ) can require 
too many CG steps. For dense problems the matr ix multiplication (2.1c) consumes 
~ n2 operations and if k ~ n then direction determination consume ~ kn2 ~ n3 

operations. On the other hand the Choleski decomposition followed by the solution 
of the decomposed system consume ~ ( l / 3 ) n 3 operations which can be considerably 
less than we had in the previous case. Moreover an exact solution of the equa­
tion Bd + g = 0 can improve the convergence of the Gauss-Newton method. The 
simplest method which uses an exact solution of the equation Bd + g = 0 is the 
dog-leg strategy discused in the previous section. But this method can fail applied 
to ill-conditioned problems. Therefore we recommend a more complicated multiple 
dog-leg trust region (MDTR) method which uses the iterative process (2.1) together 
with the following rules. 

(MD1) If ||_jfc_i|| < A and pTqk = 0 for some k < m (breakdown) then set d = 
dk-i + JPk where 7 is chosen so, that ||_|| = A. 

(MD2) If ||_jfc_i|| < A and ||_fc|| > A for some k < m then set _ = dk-i + JPk 
where 7 is chosen so tha t ||_|| = A. 

(MD3) If either \\gk\\ < w\\g\\ for some k < m or k = m then determine the Gil l-
Murray decomposition B + E = LDLT and compute the direction vector 
dn such that LDLTdn +g = 0. If ||_n|| < A then set d = dn. Otherwise set 
d = dk + j(rdn — dk) where 0 < d^gjd^g <r<\ and where 7 is chosen 
so that Il-H = A. 
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Here a; is a small number, m < n is a small integer which is usually much less than 
n and, therefore, than m in (CG1)-(CG3). 

The idea of a multiple dog-leg strategy was mentioned in [22], but no proof of 
efficiency and no implementation details were given there. The multiple dog-leg 
strategy is based on the following theorem. 

Theorem 2.1. Consider the conjugate gradient method applied to the quadratic 
function (1.4) with the symmetric positive definite matrix B. Let ||dj|| < A < |jrffc|| 
for some 0 < i < k < I where / is the integer from Lemma 2.1. Let 0 < dfg/dTg < 
T < 1. Then the function 

<p(j) = Q(di + j(Tdk - di)) (2.3) 

is monotonically nonincreasing for 0 < j < 1. 

P r o o f . Differentiating (2.3) we obtain 

<p'(j) _ (rdk - di)T[B(di + j(Tdk - di)) + g]. 

Let / < n be the integer from Lemma 2.1. Then Bd\ -\- g — 0 holds and we can write 

g = -Bdi = -Bdk- £ BPj 

j = k + l 

so that 

p'(j) = (rdk - dif I Bdi + jB(Tdk -di)- Bdk - J2 BPj 
\ 3-k+l ) 

= - ( 1 - j)(тdk - diУ B(тdt - đi) - (1 - т)(тdk - d,)' Bdt 

<(l-r)(Tdk-di)T \g+ J2 BPj 
\ i=k+i J 

= (l-r)(Tdk-di)Tg (2.4) 

since djBpj — d%Bpj = 0 for % < k < j < I by (2.2a). But 

k k 

(dk - difg _ Y^ IjPjdo = - J2 ^dj-i9j-i < 0 
j=i + l j=i+l 

by (2.2c) since jj > 0 for t < j < k by (2.1e). Therefore d\g < djg < d?g _ 0 so 
that 0 < djg/djg < 1 and (2.4) imply that ip'(j) < 0 for 0 < djg/djg < r < 1. 

• 

Now we are in the position to give a detailed description of the multiple dog-leg 
trust region method for nonlinear least squares. 
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A l g o r i t h m 2 .1 

Data: 0 <J1 < /?2 < 1 <Jf1 < j 2 > 0 < ft < ft < 1, 0 < Wi < w2 < 1, 
0 < A, 0 < ei < £2 , fc G N, / G N, m G N. 

Step 1: Choose an initial point x G Mn. Compute the values fi := f(x) of the 
functions ft : Rn —> iR, 1 < i < r, at the point x E Mn. Compute the 
value F := F(x) of the objective function F : Mn -^ M by (1.1). Set 
A = 0, m := min(m, n) and k := 1. 

Step 2: Compute the gradients gi := gi(x) of the functions / ; : Mn —> .K, 
1 < t < r , a t the point x G Mn. Determine the matr ix B := B(x) 
by (1.5) and compute the gradient g := g(x) of the objective function 
/ : Rn —• M by (1.2). If either F < e\ or \\g\\ < e2 then stop, otherwise 
set / := 1. 

Step 3: If A = 0 then set A := min(\\gf/gTBg, 4F/\\g\\, A) . Compute the 
vector d G Mn by the following subalgorithm. 

Step 3.1: Set d := 0 g := g and p := — g. Set p := \\g\\ and i := 1. 

Step 3.2: Set 5 := Bp. UpTq < 0 then determine 7 > 0 so tha t ||c?+7p|| = A, 
set d := d + yp and go to Step 4. Otherwise compute 7 := p/pTq. 
If \\d + jp\\ > A then determine 7 > 0 so that ||cl + 7p|| = A, set 
d := d + 7P and go to Step 4. 

Step 3.3: Set d := d + jp and g := g + jq. If either i = m or ||sr|| < o72||<7|| 
then go to Step 3.4. Otherwise compute <S := ||</||//?, p := — g + 6p, 
p := \\g\\, set i := t + 1 and go to Step 3.2. 

Step 3.4: If ||<7|| < ci7i||^|| then go to Step 4. Otherwise compute the Choleski 
decomposition B + E = LDLT, where E is a small diagonal matrix 
chosen so that B + E is positive definite and set s := (LDLT)~xg. 
If | |s | | < A then set d := s and go to Step 4. Otherwise compute 
r := dTg/s g and set either r := 1 (basic dog-leg strategy) or 
r := max(r , A/ | | s | | ) (modified dog-leg strategy). Set p := TS - d 
and determine 7 > 0 so that ||rf + 7p|| = A. Set d := d + jp and go 
to Step 4. 

Step 4: Set x+ := x + d. Compute the values ff := fi(x+) of the functions 
fi : Mn —> M, 1 < i < r, at the point x+ G Mn. Compute the 
value F+ := F(x+) of the objective function F : -K" -> M by (1.1). 
Compute the value Q(d) by (1.4) and set p := (E+ - F)/Q(d). When 
/o < p ^ t h e n compute a := (F+ - F)JdT~g, fi := 1/(2(1 - a)) and set 
A : = / y - i | | i f / ? < / ? ! , A : = / ? H | iifix < (3 < (32, A := p2\\d\\ if /32 < 
P. When pi < p <p2 then set A := min(A,72 | | rf | | ) . When p__< p 
then compute A := max(A,7 1 | | d | | ) and set A := min(A, J2\\d\\, A). 

Step 5: If p < 0 and / > 7 then stop (too many reductions). If p <_0 and / < 7 
then set / := / + 1 and go to Step 3. Ifj? > 0 and k > k then stop 
(too many iterations). If p > 0 and k < k then set x := x+, fi '•= fi , 
1 < i < r, F := F+, set k := k + 1 and go to Step 2. 
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The maximum number of iterations k £ N serves as an alternative termination 
criterion in the case when the convergence is too slow. The maximum number of 
reductions 1 E N serves as a safeguard against a possible infinite cycle. The matr ix 
B + E is used in Step 3.4 to remove the situation when B is singular. The technique 
for its construction is described in [10]. The matrix E is chosen to keep the diagonal 
elements of the matr ix D no less than U\. 

The global convergence of Algorithm 2.1 is an immediate consequence of Theorem 
2.1. Since the CG steps satisfy the conditions ( A ) - ( D ) from Section 1 and since 
Q(d{ + 7(rc/n — d{)) < Q(d{) for 0 < 7 < 1, we have fulfilled the conditions (1 .10 ) -
(1.11). The conditions (1.12)-(1.16) are automatically satisfied for all our algor­
i thms (see Step 4 and Step 5) so that Theorem 1.1 holds. 

Now we can present the results of a comparative study of three trust region 
methods for dense nonlinear least squares problems. The first method, which we 
call the opt imum step trust region (OSTR) method uses the subproblem (1.18) 
to determine the direction vector d £ Mn by the procedure given in [18]. The 
second method is the C G T R method defined by the iterative process (2.1) and by 
the rules (CG1)-(CG3). More details are given in the next section (see note after 
Algorithm 3.1). The third method is the MDTR method which is represented by 
Algorithm 2.1. This algoritm contains several parameters. We have used the values 
£ i = 0.05, ^ 2 = 0.75, 7 ! = 2, 7 2 = 106, ft = 0.1, p2 = 0.9, wi = lO" 1 8 , UJ2 = 10~1 6 , 
A = 103, €! = 1 0 - 1 6 , £2 = 1 0 - 8 , k = 500, 7 = 20, m = 3. 

All test results were obtained by means of the 30 problems given in [17]. Prob­
lems 1-19 had the same dimension as in [17] while problems 2 0 - 3 0 were considered 
with 12 variables. 

Table 1 contains a comparative study of various realizations of the M D T R method. 
The basic realization uses the value r = 1 in Step 3.4 of Algorithm 2.1 while the 
modified realization has the value r = ma,x(dTg/sTg, A / | | s | | ) . The standard dog­
leg strategy corresponds to the choice m = 1. Rows of Table 1 correspond to the 
numbers of CG Steps. The results are presented in the form IT-IF-IG and TIME, 
where IT is a total number of iterations, IF is a total number of objective values 
evaluations, IG is a total number of objective gradients evaluations and TIME is 
a total computat ional time (over 30 test problems). The asterisk means that 500 
iterations did not suffice for problem 18. 

Table 1 . 

m basic s t ra tegy modified s t ra tegy 

1 1274-1598-1304 
0:13.29 (*) 

1302-1526-1332 
0:13.79 (*) 

2 1073-1311-1103 
0:10.82 (*) 

1075-1327-1105 
0:10.99 (*) 

3 596-773-626 
0:06.26 

576-757-606 
0:06.04 

4 622-810-652 
0:06.65 

619-815-649 
0:06.64 

5 649-840-679 
0:06.81 

650-850-680 
0:06.92 
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Table 2 contains results for three trust region algorithms (OSTR, CGTR, MDTR). 
The MDTR algorithm was realized with m = 3 and with the modified strategy. Rows 
of Table 2 correspond to individual problems. The results are presented in the form 
IT-IF-IG where IT is the number of iterations, IF is the number of objective values 
evaluations and IG is the number of objective gradients evaluations. Also, summary 
results including total computational time are presented. 

Table 2. 

Prob . O S T R C G T R M D T R 

1 12-15-13 15-20-16 15-20-16 
2 30-46-31 36-51-37 36-51-37 
3 33-34-34 77-88-78 28-29-29 

4 13-16-14 4-5-5 5-7-6 
5 6-7-7 7-8-8 7-8-8 
6 11-21-12 19-52-20 19-54-20 

7 11-14-12 9-11-10 10-12-11 
8 5-6-6 6-7-7 4-5-5 
9 1-2-2 2-3-3 2-3-3 

10 125-141-126 131-138-132 130-153-131 
11 39-46-40 36-46-37 31-36-32 
12 12-14-13 16-19-17 16-19-17 

13 10-11-11 10-11-11 10-11-11 
14 69-75-70 56-64-57 38-45-39 
15 17-20-18 15-18-16 15-18-16 
16 29-66-30 37-73-38 37-73-38 
17 21-23-22 24-27-25 18-19-19 
18 32-40-33 19-20-20 25-31-26 
19 13-15-14 17-20-18 12-14-13 
20 7-8-8 8-9-9 10-11-11 
21 12-15-13 17-21-18 15-20-16 
22 10-11-11 12-14-13 10-11-11 
23 20-25-21 26-30-27 21-26-22 
24 28-36-29 25-29-26 25-35-26 
25 10-11-11 10-11-11 10-11-11 
26 9-13-10 16-26-17 8-12-9 
27 6-7-7 6-7-7 4-5-5 
28 7-8-8 8-9-9 7-8-8 
29 2-3-3 4-5-5 3-4-4 
30 5-6-6 7-8-8 5-6-6 

£ 605-755-635 675-852-705 576-757-606 

t ime 0:06.98 0:06.54 0:06.04 

Finally, Table 3 contains similar results for problems 21-30 which were considered 
with 40 variables. The MDTR algorithm was realized with m = 4 (it was the best 
choice for 40 variables) and with the modified strategy. 
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Table 3 . 

Prob. OSTR CGTR MDTR 
21 12-15-13 24-27-25 15-20-16 
22 10-11-11 15-17-16 10-11-11 
23 16-22-17 28-32-29 18-27-19 
24 153-162-154 138-148-139 132-141-133 
25 13-14-14 13-14-14 13-14-14 
26 12-18-13 17-27-18 23-34-24 
27 4-5-5 6-7-7 4-5-5 
28 10-11-11 34-35-35 11-12-12 
29 2-3-3 4-5-5 3-4-4 
30 4-5-5 9-10-10 5-6-6 

7! 236-266-246 288-322-298 234-274-244 
time 1:22.61 1:00.20 0:50.42 

3. COMBINED CONJUGATE GRADIENT LANCZOS METHODS FOR SPARSE 

PROBLEMS 

Consider the Lanczos method applied to the quadratic function (1.4). This method 

is represented by the following process 

and 

#o = 9, Po = \\go\l <Zo = 0 

qi = 9i-i/fii-i 

a, = qfBqi 

gi = Bqi - aiqi - A - l # * - l 

A- = INI 

(З. lа) 

(3.1b) 

(3.1c) 

(З. ld) 

(З.le) 

for i G N. If we suppose the matrix B is positive definite then the following well 

known lemma holds (see [11]). 

L e m m a 3 . 1 . Consider the Lanczos process (3.1) with a symmetric positive definite 

matr ix B. Let (3k / 0 for some 1 < k < n. Then the vectors g», 1 < i < k, form an 

orthonormal basis in the Krylov subspace (Ck(B,9o) = span{B l ~ 1 g 0 , 1 < i < k}. If 

we denote Qk = [?i, • • •, qk], then 

where 

Tk = 

QT

kBQk =Tk) 

«i i Pí, •••> 
(3i, ot2, ..-, 

0, 0, 

is a symmetric tridiagonal matrix. 

ßk-l Oik 

(3.2) 

(3-3) 
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Consider now a simplification of the subproblem (1.18), namely 

d= mgto Q(d(X)) (3.4) 
| |d(A)||<A 

where d(X) £ K,m(B, go) for some m < n. Since g,-, 1 < i < m form an orthonormal 
basis in ICm(B,go), we can write d(X) = Qmy(X) for some y(X) G Mm, so that 

Q(d(X)) = \yT(X)QT
mBQmy(X)+gTQmy(X) 

= 1-yT(X)Tmy(X) + p0e
Ty(X) 

= Q(vW) 

holds by (3.1a) and (3.2) (ei is the first column of the unit matrix). Moreover 
l|d(A)|| = ||Qmy(A)|| = ||y(A)|| since the matrix Qm is orthogonal. Therefore (3.4) 
can be rewritten in the form d = Qmy where 

y= argmin Q(y(X)) ( 3 . 5 ) 
Il2/(A)||<A ^V*V " V ; 

This subproblem can be solved by the standard Newton method which is represented 
by the following process 

Xl = 0 (3.6a) 

and 
Tm + Xil = LiDiLj (3.6b) 

LiDiLfyi + foei = 0 (3.6c) 

LiZi = yi (3.6d) 

. , , llwll2 (\\yi\\-~^\ ( , , , A>+1 =Xi + Ww^ \~^) ( ] 

for i £ N. This iterative process is finished if ||y.-|| < A for some i £ N. Then we 
set y = yi. The parameter 0 < 6 < 1 is usually close to 1. 

The main advantage of the subproblem (3.5) is the fact that the matrix Tm is 
symmetric and tridiagonal, so both the Choleski decomposition (3.6b) and solution 
of the decomposed system (3.6c) consume O(m) operations only. 

The simplest method which uses the subproblem (3.5) is the Lanczos conjugate 
gradient trust region (LCTR) method. This method consists in choosing a fixed 
(usually small) number m of Lancozs steps. After m steps of the form (3.1) we solve 
the subproblem (3.5) by the Newton method (3.6) to obtain the parameter A > 0. 
Finally we approximately solve the equation (73 + XI) d + g = 0 by the inexact 
CG method. More details are given in the following algorithm. 
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A l g o r i t h m 3 .1 ( L C T R ) 

Data: 0 < _\ < /?2_< 1 < % < j 2 _ 0 < px < p2 < 1, 0 < uJ < 1, 0 < 6 < 1, 
0 < A, 0 < A, 0 < £i < e2, k G N, I G N, m G N. 

Step 1: The same as Step 1 of Algorithm 2.1. 

Step 2: The same as Step 2 of Algorithm 2.1. 

Step 3: If A = 0 then set A := mm(\\g\\3/gTBg, 4F/\\g\\, A). Set w := 

min ( \/||fif||, l/k, Uj and compute the vector d G Rn by the following 

subalgorithm. 

Step 3.1: Compute a symmetric tridiagonal matr ix T of the order m using 
the m steps of the Lanczos process (3.1). Set A := 0 and i := 1. 

Step 3.2: If A > A then set A := A and go to Step 3.4. Otherwise compute 
the Choleski decomposition T+\I = LDLT and solve the equation 
LDLTy-\-P0ei = 0. If either \\y\\ < A or i > 5 then go to Step 3.4. 
Otherwise go to Step 3.3. 

Step 3.3: Solve the equation Lz = y set A := \+(\\y\\/zTD'1 z)(\\y\\/(SA)-l), 
set i:=i+l and go to Step 3.2. 

Step 3.4: Set d := 0, p := -g, p := \\g\\2, po := p and i = 1. 

Step 3.5: Compute q := (B + \I) p. If pTq < 0 then determine 7 > 0 so 
that \\d + 7p|| = A, set d := d + jp and go to Step 4. Otherwise 
compute 7 := p/pTq. If \\d + 7p|| > A then determine 7 > 0 so 
tha t ||d! + 7p|| = A set d := d + 7P and go to Step 4. 

Step 3.6: Set d := rf + 7p and g := g + jq. If either i = ra + 3 or ||«7||2 < cj2po 
then go to Step 4. Otherwise compute S := \\g\\/p, p := —g + <Sp, 
/? := ||<7||2, set i := « + 1 and go to Step 3.5. 

Step 4: The same as Step 4 in Algorithm 2.1 

Step 5: The same as Step 5 in Algorithm 2.1 

Note tha t if we omit Steps 3 .1 -3 .3 and set A := 0 in Step 3.5 of Algorithm 3.1 we 
obtain exacly the C G T R method proposed in [22] and tested in the previous section. 

Global convergence of Algorithm 3.1 follows from the fact that the direction vector 
d is an inexact CG solution of the equation (B + \I) d-\-g = 0. Since A < A (see Step 
3.2), the matr ix B + \I is bounded from above whenever assumptions of Theorem 
1.1 hold. Using the matr ix B + \I instead of B in the theory proposed in [20] we 
get the required result. 

The main advantage of the LCTR method is the fact that it does not use aditional 
vectors. On the other hand, it uses additional matrix-vector multiplications in the 
Lanczos part of the algorithm. This disadvantage can be removed using the relation 
between the conjugate gradient and the Lanczos method. This relation is based on 
the fact tha t both the set {flfj-i, 1 < i < k} given by (2.1) and the set {qi, 1 < i < k} 
given by (3.1) form ortogonal bases in the Krylov subspace ICk(B, go). Therefore the 
vectors <7;_i, 1 < i < k, have to be collinear with the vectors g,-, 1 < i < k. A more 
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detailed analysis, which is proposed for instance in [11], gives the formulas 

1 _. fc-i 
or. = 1 

7i 7«'-l 

Ä __?_ 
7. 

for 1 < i < I, where / is the index from Lemma 2.1. Moreover 

L *̂_—x /11 _7_ — i l l » = (-iŕ1 

(3.7a) 

(3.7b) 

(3.8) 

for 1 < i < I 
The formulas (3.7) and (3.8) allow us to construct another combined method 

which we call the conjugate gradient Lanczos trust region (CLTR) method. This 
method consists in choosing a fixed (usually small) number m of CG-steps. After m 
steps of the form (2.1), which are followed by the construction of the matr ix T and 
by the computat ion of the vectors <?;, 1 < i < m using (3.7)-(3.8), we proceed as 
follows. If el™, < A then we continue in CG steps to fullfill the condition ||firfc|| < w | | f i r | | -
If dm > A then we solve the subproblem (3.5) and set d = Qy. More details are 
given in the following algorithm. 

A l g o r i t h m 3 .2 ( C L T R ) 

Data: 

Step 1 

Step 2 

Step 3 

Step 3.1: 

Step 3.2: 

Step 3.3: 

Step 3.4: 

Step 3.5: 

0 < /?i < /32 < 1 < T__ < 7 2 l 0 < p_ < p2 < 1, 0 < U < 1, 0 < 5 < 1, 
0 < A, 0 < _i < _ 2, k E N, / E N, m E N. 
The same as Step 1 of Algorithm 2.1. 

The same as Step 1 of Algorithm 2.1. 

If A = 0 then set A : = min (\\gf/gTBg, AF/\\g\\, A ) . Set u : = 

min f vilfl'll, l/k, Uj and compute the vector d E Mn by the following 
subalgorithm. 

Set d? : = 0, p : = — g, p := \\g\\2, po : = p and i = 1. Compute the 
first Lanczos vector by (3.8). 

Compute q := Bp. If pTq < 0 then determine 7 > 0 so that 
IM + 7Pll — --, set d : = d + yp and go to Step 4. Otherwise compute 
7 •'= p/pTg- If | |c?+ 7p| | > A and i > m then determine 7 > 0 so 
that \\d + 7p | | = A, set _ : = d + jp and go to Step 4. 

Set d : = d + 7 p and (/ : = g + jq. If | | d + 7 p | | > A and either i = m or 
I M | 2 < w Po then compute the corresponding column of the matr ix 
T b y (3.7) and go to Step 3.5. If | | r f + 7 p | | < A and either *' = n + 3 
°r ||<7|| < u2po then go to Step 4. 

Set 8 := \\g\\/p. If i < rn then compute the corresponding column 
of the matr ix T by (3.7) and the corresponding Lanczos vector by 
(3.8). Set p : = —g + őp, p := 

Set Л : = 0 and i := 1. 

\g\\ . Set i : = í + 1 and go to Step 3.2. 
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Step 3.6: Compute the Choleski decomposition T + XI = LDLT and solve 
the equation LDLTy + (30ei = 0. If either ||y|| < A or i = 5 then 
go to Step 3.8. Otherwise go to Step 3.7. 

Step 3.7: Solve the equation Lz = y, set A := A+(||y| |/zTL)-1z)(| |t/ | | /(6A)-l), 
set i:=i-\-l and go to Step 3.6. 

Step 3.8: Set d := Qy where Q is the matrix whose columns are the Lancozs 
vectors. 

Step 4: The same as Step 4 in Algorithm 2.1. 

Step 5: The same as Step 5 in Algorithm 2.1. 

Global convergence of Algorithm 3.2 follows from properties of the CG steps 
(conditions (A)-(D) from Section 1) and from properties of the subproblem (3.4). 
If we terminate computations before the subproblem (3.4) is solved, then we use 
the same direction vector as in the CGTR method which satisfies all necessary 
conditions. In the opposite case, if the subproblem (3.4) is solved, then (1.11) holds 
since Q(d) cannot be greater than the value obtained in the first CG step. 

The main advantage of the CLTR method is the fact that it does not use ad­
ditional matrix-vector products. On the other hand, it uses additional n-dimensional 
(Lanczos) vectors. 

Now we can present the results of a comparative study of three trust region 
methods for sparse nonlinear least squares problems. The first method is the CGTR 
method (Algorithm 3.1 without Steps 3.1-3.3 and with A = 0 in Step 3.5) the LCTR 
method (Algorithm 3.1) and the CLTR method (Algorithm 3.2). We have used the 
values/?! =0.05, p2 = 0.75, 7.. = 2, 72 = 1 0 6 , ^ = 0.1, p2 = 0.9, & = 0.4, 6 = 0.9, 
A = 103, A = 106, £1 = 10-16 , £2 = 10~8, k = 500, / = 20, m = 5, in all algorithms. 
All test problems were obtained by means of the 10 problems given in [14] which 
had 100 variables. 

1. Chained Rosenbrock function. 

2. Chained Wood function. 

3. Chained Powell singular function. 

4. Chained Cragg and Levy function. 

5. Generalized Broyden tridiagonal function. 

6. Generalized Broyden banded function. 

7. Extended Freudenstein and Roth function. 

8. Wright and Holt zero residual problem. 

9. Toint quadratic merging problem. 

10. Chained exponential system. 

Table 4 contains results for three trust region algorithms (CGTR, LCTR, CLTR) 
in the case where the gradients are given analytically. Rows of Table 4 correspond 
to individual problems. The results are presented in the same form as in Table 2. 
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Table 4. 

Prob. CGTR LCTR CLTR 
1 122-125-123 125-131-126 124-130-125 
2 145-175-146 70-78-71 142-170-143 
3 19-20-20 19-20-20 19-20-20 
4 151-172-152 71-100-72 79-101-80 
5 11-12-12 10-11-11 11-12-12 
6 11-12-12 11-12-12 11-12-12 
7 42-80-43 44-81-45 40-73-41 
8 17-18-18 19-20-20 17-18-18 
9 56-82-57 56-82-57 56-82-57 
10 29-69-30 30-61-31 29-64-30 

E 603-765-613 455-596-465 528-682-538 
Time 1:05.20 1:03.80 1:00.80 

Table 5 contains similar results, but now for the case where the gradients are 
computed numerically (numbers of objective gradients evaluations are zero). This 
case is more favourable for matr ix vector products so that the efficiency of the LCTR 
and the CLTR methods are more clear. 

Table 5. 

Prob. CGTR LCTR CLTR 
1 122-309 125-320 155-418 
2 148-427 71-199 141-408 
3 19-60 19-60 19-60 
4 204-561 66-204 61-195 
5 11-47 10-43 11-47 
6 11-94 11-94 11-94 
7 42-169 39-155 38-149 
8 18-57 19-60 18-57 
9 57-310 53-290 53-290 
10 26-125 29-133 27-129 

£ 658-2159 442-1558 534-1846 
Time 1:40.95 1:22.82 1:28.32 

(Received January 31, 1995.) 
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