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K Y B E R N E T I K A — VOLUME 32 ( 1996) , NUMBER 2, PAGES 1 0 5 - 1 2 0 

EFFICIENT TRUST REGION METHOD 
FOR NONLINEAR LEAST SQUARES1 

LADISLAV L U K Š A N 

The main purpose of this paper is to show that suitable transformations and decompo­
sitions lead to an efficient trust region method that uses one decomposition in each iteration 
only. Convergence properties of the resulting algorithm are comparable with convergence 
properties of the trust region method with optimal locally constrained step (OLCS) that 
uses more than one decomposition in each iteration and, therefore, that needs a longer time 
for obtaining results. This fact is demonstrated by numerical experiments. 

1. INTRODUCTION 

Lot fi : Mn —• JR, 1 < i < m, be real-valued functions with continuous second order 

derivatives on the open set X C Mn. Let us denote 

л m 

2 
2 = 1 

We are concerned with the finding of a local minimum x* £ Mn of the function 
F : Mn —* M given by (1.1) on an open set I C F , i.e. a point x* £ Mn 

that satisfies the inequality F(x*) < F(x) \/x £ B(x*,e) for some e > 0, where 
B(x*,e) = {x £ Mn : \\x - x*\\ < e] C X is an open ball contained in X C Mn. 

If we denote gi(x) and Gi(x) the gradients and the Hessian matrices of the func­
tions fi : Mn —• M, 1 < i < m, respectively, and g(x) and G(x) the gradient and 
the Hessian matr ix of the function F : Mn —* M respectively then, using (1.1), we 
obtain m 

g(x) = J2fi(x)gi(x) (1.2) 
i = l 

and m m 

G(x) = Yl 9i(x) gj(x) + Y /«(*) G^x)- (L3) 
i = l i = l 

1This work was supported under the grant No. 23012 given by the Grant Agency of the Academy 
of Sciences of the Czech Republic. 



106 L. LUKŠAN 

Numerical methods for local minimization of the objective function F : JRn —» JR 
are usually derived from the Newton method. These methods are iterative and their 
iteration step has the form 

x+ = x + d, (1.4) 

where x and x+ are old and new vectors of variables respectively and d = x+ — x is 
the direction vector obtained as a minimizer of the quadratic function 

Q(d)= ^dTBd + gTd, (1.5) 

where B is an approximation of the Hessian matrix G(x) and g = g(x). 

If the objective function F : JRn —» 2R has the form (1.1) then we usually choose 

m 

B = Y,9i(x)gT(x). (1.6) 
i = l 

One reason for this choice is the fact that often F(x*) = 0 so that the second term 
of (1.3) is negligible in B(x*,e). Another reason follows from the linearization of 
(1.1). In this case 

.. m 

П*+) « žY,(fi(x) + 9Ï(x)d)2 

ť=i 
.. m 

= õ !Dtf(x) + 2Ш 9Ï(x) d + dт

9i(x) gт(x) d) 
2 

» = i 

= F(x) + gT(x)d+\dTBd = F(x) + Q(d) 

with B given by (1.6). The method which uses the matr ix (1.6) instead of the 
Hessian matr ix G(x) is called the Gauss-Newton method. 

The simple realization (1.4) of the Gauss-Newton method is unusable since it is 
not globally convergent. One approach which guarantee the global convergence of 
the Gauss-Newton method is based on the line-search strategy. In this case 

x+ = x + ad, (1.7) 

where a is a positive stepsize chosen so that 

F+- F < e1adTg (1.8a) 

a n d dTg+ > e2d
Tg (1.8b) 

with 0 < £\ < 1/2 and £\ < e2 < 1. This approach is very efficient for the so-
called variable metric methods (see [9]) but it has some disadvantages in connection 
with the Gauss-Newton method. Frequently the matrix, whose columns are the 
gradients gi(x), 1 < i < m, has nearly linearly dependent rows so that the matr ix 
(1.6) is nearly singular. This leads to the excessive growth of ||a?|| and, therefore, 
the usual first a t tempt a = 1 in (1.7) is unsuitable (too many line-search steps are 
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needed for conditions (1.8) to be fulfilled). Because of this reason the Gauss-Newton 
method is frequently combined with the variable metric methods (see [2], [1], [5]). 

Another approach that makes the Gauss-Newton method to be globally conver­
gent is based on the trust region strategy. In this case the unconstrained minimiza­
tion of (1.5) is substituted by the constrained problem with the objective function 
(1.5) and with the constraint 

\\Td\\ < A, (1.9) 

where T is some nonsingular transformation matrix. This approach partially ap­
peared already in papers of Levenberg [8] and Marquardt [10] but the current state 
was started from the papers of Powell [16], Dennis and Mei [3], Hebden [7], More 
[13], More and Sorensen [15]. The accurate minimizer d* £ Mn of the function (1.5) 
over the constraint (1.9) is usually replaced by the approximate solution which has 
to satisfy the conditions 

||T<-|| < <52A (1.10) 

\\Td\\ < <5iA=> Bd= -g, (1.11) 

where 0 < 6\ < 1 < 62, and which has to guarantee a sufficient decrease of the 
function (1.5) such that 

Q{d)< 6\Q{d*). (1.12) 

Function (1-5) and the constraint (1.9) can be replaced by 

Q{d)=^dTBd+~gTd, (1.13) 

a n d HI < A, x (1.14) 

where d = Td, g = {TT)~1g, B = {TT)-1BT~1. In this case the conditions (1.10), 
(1.11), (1.12) h; ve the form 

H I < 62A (1.15) 

||J|| < <$iA => Bd=-~g (1.16) 

Q{d)< 6\Q{d*), (1.17) 

where d* £ Mn is a minimizer of the function (1.13) over the constraint (1.14). 
A typical trust region realization of the Gauss-Newton method is represented by 

the following algorithm: 

Algorithm 1.1 

Data: 0 < & < p2 < 1 < 7i < 72, 0 < 61 < 1 < 62, 0 < pi < p2 < 1, 0 < Z\ < e2 < 
l, o < Amax, h e N, h e N. 

Step 1: Choose an initial point x £ Mn. Compute the values /; := fc{x) of the 
functions / . : Mn —*• M, 1 < i < m, at the point x £ Mn. Determine the value 
F := F{x) of the objective function F : Mn -> M at the point x £ Mn by 
(1.1). Choose an initial trust region bound 0 < A < Am a x and set k := 1. 
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Step 2: Compute the gradients gi := gi(x) of the functions /; : Mn —> M, 1 < i < m, 
at the point x G Mn. Determine the gradient g := g(x) of the objective 
function F : Mn -* iR at the point z G Mn by (1.2). If either F < d or 
||<7|| < £2 then stop, otherwise set / := 1. 

Step 3: Choose a transformation matrix T and compute the transformed gradient 
g := (TT)-1g and the transformed matrix B := (TT)~1BT~1 where B is an 
approximation of the Hessian matrix given by (1.6). Determine the trans­
formed direction vector d G Mn that satisfies the conditions (1.15), (1.16), 
(1.17) where Q(d) is a quadratic function defined by (1.13). Set d := T~1d. 

Step 4: Set x+ := x + d. Compute the values f+ := fi(x+) of the functions ft : 
Mn —• R, 1 < 1 < m, at the point x+ € Mn. Determine the value F+ := 
F(x+) of the objective function F : Mn -> M at the point x+ £ iRn by (1.1). 
Compute the value Q(d) by (1.13) and set p := (F+ - F)/Q(d). When p < Pl 

then compute a := (F+ - F)/gTd, (3 := 1/(2(1 - a)) and set A := /?i||J|| if 
/? < /?!, A := /?||d|| if A < 0 < 02, A := (32\\d\\ if ft < /?. When P l < p < p2 

then set A := min(A,72||a'||). When p2 < /? then compute A := max(A, 7i||c?||) 
and set A := min(A, 72||c?||, Am a x ) . 

Step 5: If p < 0 and / > /1 then stop (too many reductions). If p < 0 and l.< l\ 
then set / := / + 1 and go to Step 3. If p > 0 and A; > &i then stop (too many 
iterations). If p > 0 and & < &i then set x := x+, F := F+, set k := k -f 1 and 
go to Step 2. 

The maximum number of iterations k\ G N serves as an alternative termination 
criterion in the case when the convergence is too slow. The maximum number of 
reductions l\ £ N serves as a safeguard against possible infinite cycle which can 
arise for large residual problems when a presence of round-off errors do not allow 
us to obtain a solution with the required gradient norm ||#j| < £2. Minimizer of the 
function (1.13) over the constraint (1.14) can be obtained iteratively by means of 
the Newton method applied to the nonlinear equation 

I - - J — = 0, (1.18) 
A ||d(A)|| 

W h e r e (B + \I)d(\) =-g (1.19) 

(see [15] as an example). This iterative process is terminated whenever the conditions 
(1.15), (1.16), (1.17) are satisfied. It leads to the repeated solution of the equation 
(1.19) for selected values of the parameter A > 0 which can be time consuming in 
general. The main purpose of this paper is to show that there exists a suitable 
transformation matrix T, which makes the matrix B to be diagonal (so that the 
repeated solution of (1.19) is not time consuming), while the resulting trust region 
method has still good convergence properties. 
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2. TRANSFORMATIONS, DECOMPOSITIONS, AND TRUST REGION 
SOLUTIONS 

The most time consuming part of Algorithm 1.1 is a repeated solution of the equation 
(1.19). Consider the decomposition 

X~1B{XT)-1 +C = PLDLTPT, (2.1) 

where X is a diagonal positive definite scaling matrix, C is a small diagonal positive 
semidefinite (usually zero) correction matrix, which is chosen automatically during 
the decomposition process, such that X~1B{XT)-1 + C is positive definite (see [6], 
[17]), P is a permutation matrix, L is a lower triangular matrix with unit diagonal 
elements, and D is a diagonal positive definite matrix. The matrix B + XCX will 
be used in Algorithm 1.1 instead of the matrix B, given by (1.6), which may not be 
positive definite. 

Choose a diagonal positive definite weighting matrix Y and set 

T = YTLTPTXT. (2.2) 

Then 

B = {TT)-1{B + XCXT)T~1 

= Y-1L-1P-1X-1XPLDLTPTXT{XT)~1{PT)-1{LT)-1{YT)-1 

= Y~1D{YTY1 (2.3) 

is a diagonal positive definite matrix and, therefore, the solution of (1.19) is trivial. 
If the vector d{\) is a solution of the equation (1.19) then, by (2.3), the vector 

d{\) = T~1d{\) is a solution of the equation 

{B + XCXT+\TTT)d{\) = -g. (2.4) 

Trust region methods for nonlinear least squares are usually designed such a way 
that TTT = E is a diagonal positive definite matrix and either 

E = I (2.5a) 

or n 
E = y£jeie

TBeie
T, (2.5b) 

» = l 

where e,-, 1 < i < n, are columns of the unit matrix. Because TTT = XPLYYT 

LTPTXT by (2.2), it would be advantageous to choose, the matrices X and Y so 
that X = E1!2 and LYYTLT be as close to the unit matrix as possible. 

Lemma 2.1 . Let L be a constant nonsingular matrix and let Z be a diagonal 
matrix which can vary. Then the function 

l-\\LZl7 - flft = 5 £ X > T ( £ ^ T " I) *<? (2.6) 
2 zk=u=i 
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reaches its minimum if and only if the elements Zi = eTZei, 1 < i < n, satisfy the 
equations n 

YJ(efLTLejfZj = eT LT Le{ (2.7) 
i = i 

for Ki< 

P r o o f . The quadratic function (2.6) is convex since it is bounded from below. 
Therefore it reaches its minimum if and only if its derivatives are zero. Using (2.6) 
we get the equation 

1 d\\LZLT -1\\] 
2 OZÍ 

J2 Y,(el(LZLT - T) ele
TLeie

TLTe1 

fc=i/=i 
n n 

= y^y^jeiL
Teke

T(LZLT - I)eiefLej 
fc=i/=i 

= efLT(LZLT -I)Lei=0 

for 1 < i < n, or 

2_.ei L Tjejej Zeiej L Lei = ei L Lei 
j = í 

for 1 < i < n, which gives (2.7). D 

Lemma 2.1 has no practical significance since the values Zi, 1 < i < n, obtained 
from (2.7) can be nonpositive. Moreover, the solution of (2.7) requires another 
matrix decomposition. Therefore we use a simpler way. We choose either 

Z = I (2.8a) 

* = E e,-e; (2.8b) 
i = i 

and then we set Y = Z1'2. Note that (2.8b) can be obtained by neglecting the 
off-diagonal elements in (2.7). 

Another reasonable condition, which should be satisfied for the matrix TTT in 
(2.4), is well-conditioning. If we set X = Y = I in (2.2), then TTT = PLLTP. Thus 
well-conditioning usually depends on the permutation matrix P. This is shown in 
the following example. 

Example 2.1. Consider the decomposition 

Bi = 
є, 

Є 

І + є 
1, 0 " ' e2, 0 ' ' 1, 

ì • 

1 
. Є ' 

1 . °. є . °» î _ 
= LlDlL

T. 

Then 
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LiLj = 1, 0 
1. 1 

i' i 
0, 1 ř. i + Ш J 

so that K(LILJ) —• oo as e —* 0. On the other hand consider the decomposition 

B,= 
1 + є, 1, 0 

l+e 

l + є, 0 
з 

1+e 

1, 

where H2 = PBXP with P = [e2, ei]. Then 

L2L2 — 
1, 0 

1 
l+e ' 

1 - £ -
X ' l+e 0, 1 

1, 
є 

1+e 

1+e 

1 

1+e 

— L2L)2Lo , 

ife. ! + ( * ) J 

so that «(L2LJ) —+ 1 as e —* 0. 
The decomposition (2.1) can be obtained by means of corrective Gaussian elim­

ination with diagonal pivoting as it is proposed in [6], [17]. We use a modification 
of the process proposed in [17]. Since our modifications are significant for nonlinear 
least squares, we give a detailed description of the algorithm (we suppose X = I in 
(2.1) for simplicity). 

Algor i thm 2.1 

Data: 0 < €3 < 1. 

Step 1: Set 6 := 0 and 7 := max I £3, max \Bjj\ I. 
\ !</<" / 

Step 2: Phase 1. For k := 1 to n do: 

Step 2.1: Choice of a pivot. Set I := k. Determine the index i such that 
Bn = max Bjj. If Bn < 0 then go to Step 4. If i ^ k then switch rows 

k <j < n 

and columns i and k of the matrix H. 

Step 2.2: Test on phase 1 acceptability. If min (Bjj — Bfk/Bkk) < £37 
k + l<j <n J 

then go to Step 4. 
Step 2.3: Elimination. Set L\ := Bkk and Lkk '•— 1- For j := & + 1 to n do: 

Step 2.3.i; Set Ljk := Bjk/Dk-
Step 2.3.2: For i := Jfe -f-1 to j compute Bij := B{j — BjkLik-

Step 3: End of phase 1. Terminate the computations. 

Step 4: Phase 2. If / < n — 2 then for j := / to n compute 
n 

/j;- •- Bjj - 2_^ \Bij\ 
1 = 1 

and for ^ := / to n — 2 do: 
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Step 4.1: Choice of a pivot. Determine the index i such tha t hi = max hj. 
k<j<n J 

If i ^ k then switch rows and columns i and k of the matr ix B. 

Step 4.2: Choice of a correction. Compute 
n 

/?••=£ \Bjk\ 
j=k+l 

and /? := max(0, -Bkk + max(/5, £37), S). Set H^ := Bkk + p and 5 := p. 

Step 4.3: Update of Gerschgorin bound estimates. If Hjfcjfc / f3 then set j3 := 

1 — (3/Bkk and for j := I + 1 to n compute hj := hj + f3\Bjk\. 

Step 4.4: Elimination. Set Dk := Bkk and Lkk '— 1- For j := A: + 1 to n do: 

Step 4.4.1: Set Ljfc := Bjk/Dk. 
Step 4.4.2: For z := & -f 1 to j compute Bij := H;j — BjkLik-

Step 5: Final 2 x 2 submatrix. If / < n — 1 then set / := n — 1 and do: 

Step 5. J: Choice of a correction. Compute the values 
(3 := V ( £ n n - j 3 / ; ) 7 4 + L^, A := (Hn n + H,)/2 - /? and set p := 

max(0, - A + e3 max(2/?/( l - £3), 7))- Set Bu := B\\ + p, Bnn := Bnn + p 
and 6 := max(6, p). 

Step 5.2: Elimination. Set D\ := B\\ and L\\ := 1. Set Ln\ := Bn\/D\ and 

Bnn : = Bnn — Bn\Ln\. bet Dn := Hnri and Lnn :— 1. 

Step 6: Final l x l submatrix. If / = n then do: 

Step 6.1: Choice of a correction. Set p := max(0,—Bnn + £37)- Set Bnn := 
Bnn + p and <5 := max(<$, p). 

Step 6.2: Elimination. Set Dn := Bnn and Lnn := 1. 

Step 7: End of phase 2. Terminate the computations. 

Note that the matrices D and L need not be stored separately since Dk = H/fcfc 
and Ljfc overwrite Bjk for 1 < k < j < n after termination of computations. 

The main difference between Algorithm 2.1 and the algorithm proposed in [17] 
consists in the fact tha t p can be less then the previous 6 in Step 5. This difference 
leads to less correction matr ix which considerably improves the efficiency of trust 
region algorithm for nonlinear least squares. Other modifications are extension of 
Step 2.1 (phase 1 is left if Bu < 0) and addition of Step 6. These modifications 
make Algorithm 2.1 to be more general. 

Now we return to the determination of the transformed direction vector satisfying 
(1.15), (1.16), (1-17). If we use the transformation matr ix (2.2) then the matr ix (2.3) 
is diagonal and positive definite. Therefore the solution of the equation (1.19) has 
the form n ?~ 

fo) = -E Tfrrr^ (2-9) 
fr? ej Be{ + A 

and, moreover, the eigenvalues A{, 1 < i < n, of the matr ix B are given by Az- = 
efBei, 1 < i < n. This fact considerably reduces computations in each iteration 
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of the Newton method applied to (1.18). The new value A+ of A obtained by the 
Newton method is computed by the rule 

A + -= A +ml(H-(A)II - A \ 
' ll?(A)|P V A ) ' 

where d(X) is given by (2.9) and 

||c~(A)||2 = dT(X)(B + A/)-1 d(X) = J2 S ^ - (2-U) 
££ ej Be{ + A 

We get the following algorithm which is a simplification of the algorithm given in [15]. 

Algor i thm 2.2 

Data; 0 < (33 < 1,0 < 6X < I < 62. 

Step 1: Choose indices i and j such that Bn = min (Bkk) and Bti = max (Bkk) 
l<fc<n l<fc<n 

where Bkk = ejBek, I < k < n. Compute the bounds A/ := max(0, ||fif||/A — 
Bjj) and Au := max(0, ||fif||/A — Bo). Set A := A/. 

Step 2: If A < A, then compute A+ := A/A,AU and set A := A, + ^3(XU — A/) if 
A+ < A, + f33(Xu - A,), A := Au - (33(\u - A,) if A+ > Au - (33(XU - A,), and 
A := A+ otherwise. 

Step 3: Compute the vector d := d(\) by (2.9). When 62A < \\d\\ then set A, := X 
and go to Step 5. When 6iA < \\d\\ < 62A or ||J|| < Si A and A = 0 then 
stop (the conditions (1.15), (1.16), (1.17) are satisfied). When ||J|| < <5iA and 
A > 0 then set Au := A and continue. 

Step 4: Determine the value a having the same sign as di = ejd such that \\d + 
ae.-l) = A. If a2(Ba + A) < (1 - <5i)2(AA2 - gTd) then set d := d + ae{ and 
stop (the conditions (1.15), (1.16), (1.17) are satisfied). 

Step 5: Compute the value A+ by (2.10) and (2.11), set A := min(A+, Au) and go to 
Step 2. 

Algorithms described in this section can be used in Step 3 of Algorithm 1.1. 

Step 3 of Algorithm 1.1: Determine a diagonal positive definite scaling matrix X 
such that Xi := ~\ if y/Ei < ~\, Xi := ~2 if y/El > ~2 and X, := \/Ei 
otherwise, where Xi = eJXei, Ei = ejEei, 1 < i < n, with E given either 
by (2.5a) (case S = 1) or by (2.5b) (case S = 2), and set g := X_1fif, B := 
X~lBX~l. Compute the decomposition 73 + C := LDLT using Algorithm 2.1 
and set g := L~xg. Determine a diagonal positive definite weighting matrix Y 
such that Yi := ~\ if y/Zl < ~\, Yi := ~2 if \fZ[ > ~2 and Yi := \fZ[ otherwise, 
where Y% = ejYei, Zi = ejZei, I < i < n, with Z given either by (2.8a) 
(case W = 1) or by (2.8b) (case W = 2), andjset g := Y~lg, B := Y~lDY~l. 
Compute the transformed direction vector d using Algorithm 2.2. Set d := 
Y~ld. Set d := (LT)~ld. Set d := X~xd. 
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Numerical effectiveness of a trust region method realized by Algorithm 1.1 is 
investigated in Section 3. We have no theoretical justification for a good conver­
gence of this method but numerical experiments given in Section 3 show tha t our 
considerations were reasonable. 

3. COMPUTATIONAL EXPERIMENTS 

In this section we present results of a comparative study of trust region methods for 
nonlinear least squares. These results were obtained by means of 30 standard test 
problems given in [14; pp. 21-28] and by means of 6 difficult problems given in the 
Appendix. Problems 1-19 had the same dimensions as in [14]. Problems 20-30 were 
considered either with 6 variables or with 20 variable. 

Because Algorithm 1.1 (together with Algorithm 2.1 and Algorithm 2.2) contains 
several parameters , we have to specify our recommended values. We have used the 
values ft = 0.05, (32 = 0.75, fo = 0.1, 71 = 2, j 2 = 10, St = 0.9, 62 = 1.1, Pl = 0.1, 
p2 = 0.9, £1 = 1 0 - 1 6 , e2 = 1 0 - 6 , e3 = 10 - 1 8 , o-i = 10~5 , a2 = 5.104, h = 20 in all 
numerical experiments. The value A m a x was chosen individually for each problem, 
as high as possible, but such that overflows could not appear. 

The first three tables contain numerical tests of Algorithm 1.1 with different 
scaling (cases S = 1 and S = 2) and weighting (cases W = 1 and W = 2) matrices 
which were introduced in Section 2. Rows of these tables correspond to individual 
problems and columns correspond to different scaling and weighting matrices. Re­
sults are recorded in the form IT-IF-IG (P) where IT is a number of iterations, IF is 
a number of different points at which the values fi(x), 1 < i < m, were computed, 
IG is a number of different points at which the gradients gi(x), 1 < i < m, were 
computed and P is the logarithm of the obtained gradient norm. Table 1 contains 
results for problems 1-30 where problems 20-30 had 6 variables, Table 2 contains re­
sults for problems 20-30 with 20 variables and Table 3 contains results for problems 
given in the Appendix. 

Results reported in these tables show that s tandard problems are better solved 
with unit scaling matr ix (choice 5 = 1 ) while the choice 5 = 2 is necessary for 
difficult exponential models. Therefore, it is necessary to have both these possiblities 
in a general algorithm. The choice W = 2 gives slightly worse results for s tandard 
problems and slightly better results for difficult exponential models, but its influence 
has little significance. 

The last three tables compare the new method (Algorithm 1.1) with two other 
methods for nonlinear least squares: the trust region method with optimal locally 
constrained step (OLCS) proposed in [15], and the trust region method with double 
dog-leg step (DDLS) described in [3] (see also [18]). Results are presented in the form 
IT- IF- IG/ ID where ID is a number of decompositions performed by Algorithm 2.1. 
Table 4 contains results for problems 1-30 where problems 20-30 had 6 variables, 
Table 5 contains results for problems 20-30 with 20 variables and Table 6 contains 
results for problems given in the Appendix. 
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Table 1. 

S = l,W = 1 5 = 1,W = 2 S = 2,w~ = l 5 = 2,W = 2 

1 14- 17- 15(99) 12- 14- 13(-13) 23- 28- 24(-99) 16- 20- 17(-13) 

2 25- 40- 26(-6) 30- 50- 31 (-6) 13-22- 14(-6) 11- 21- 12(-7) 

3 33- 34- 34(-6) 33- 34- 34(-6) 47- 52- 49(-6) 40- 44- 41 (-7) 

4 22- 24- 21(-10) 20- 24- 21 (-10) 15- 19- 16(-10) 16- 20- 17(-10) 

5 6- 7- 7(-10) 6- 7- 7(13) 7- 9- 8(-9) 7- 9- 8(14) 

6 19- 60- 19(-5) 17- 48- 17(-5) 29- 60- 21 (-4) 19- 31- 20(-6) 

7 12- 16- 13(-5) 11- 14- 12(-7) 9- 11- 10(-11) 13- 20- 14(-7) 

8 5- 6- б(-8) 5- 6- 6(-8) 5- 6- 6(-8) 5- 6- 6(-8) 

9 1- 2- 2(-7) 1- 2- 2(-7) 1- 2- 2(-7) 1- 2- 2(-7) 

10 125-136-126(-4) 126-151-126(-3) 130-169-130(-1) 154-190-154(-3) 

11 34- 41- 35(-6) 35- 41- Зб(-6) 248-312-249(-6) IT > 400 

12 12- 14- 13(-8) 12- 14- 13(-7) 10- 11- ll(-6) oveгflow 

13 10- 11- 11 (-6) 10- 11- 11 (-6) 10- 11- 11 (-6) 10- 11- ll(-6) 

14 36- 40- 37(-7) 34- 39- 35(-7) 72- 81- 73(-11) 70- 79- 71 (-8) 

15 16-17- 17(-6) 16-17- 17(-6) 14- 17- 15(-6) 12- 15- 13(-6) 

16 29- 64- 29(-3) 26- 62- 2б(-3) IT > 400 IT > 400 

17 19- 22- 20(-7) 19- 22- 20(-7) 19- 22- 20(-8) 12- 15- 13(-8) 

18 28- 32- 29(-8) 39- 46- 40(-9) 23- 29- 24(-7) 12- 13- 13(-11) 

19 13- 16- 14(-6) 13- 15- 14(-б) 11- 13- 12(-б) 12- 16- 13(-6) 

20 7- 8- 8(-6) 7- 8- 8(-6) 7- 8- 8(-6) 7- 8- 8(-6) 

21 14-17- 15 (-99) 12- 14- 13(-99) 19- 24- 20(-13) 18- 23- 19(-15) 

22 10- 11- ll(-6) 10- 11- ll(-6) 10- 11- ll(-6) 10- 11- ll(-6) 

23 17- 24- 18(-6) 17- 24- 18(-6) 94- 116- 95(-6) 33- 42- 34(-6) 

24 36- 45- 37(-7) 39- 48- 40(-6) IT > 400 IT > 400 

25 8- 9- 9(-10) 8- 9- 9(-10) 8- 9- 9(-9) 8- 9- 9(-9) 

26 7- 9- 8(-7) 7- 9- 8(-9) 5- 6- 6(-6) 6- 8- 7(-8) 

27 5- 6- 6 (-7) 5- 6- 6(-6) 10- 12- ll(-9) 7- 8- 8(-9) 

28 4- 5- 5(-10) 4- 5- 5(-9) 4- 5- 5(-9) 4- 5- 5(-8) 

29 2- 3- 3(-6) 2- 3- 3(-6) 2- 3- 3(-6) 2- 3- 3(-6) 

30 4- 5- 5(-8) 4- 5- 5(-8) 4- 5- 5 (-8) 4- 5- 5(-8) 

£ 571-741-599 580-759-607 IT > 1641 IT > 1709 

Table 2. 

5 = 1,W = 1 S=1,W = 2 5 = 2,W = 1 5 = 2,W = 2 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

7- 8- 8(-12) 

14-17- 15 (-99) 

10- 11- ll(-6) 

28- 35- 29(-6) 

104-118-105(-6) 

11- 12- 12(-6) 

42- 53- 43(-6) 

10- 14- ll(-8) 

5- 6- 6(-6) 

2- 3- 3(-6) 

4- 5- 5(-8) 

8- 9- 9(-ll) 

12- 14- 13(-13) 

10- 11- ll(-6) 

64- 73- 65(-6) 

141-163-142(-6) 

11- 12- 12(-6) 

7- 9- 8(-6) 

9- 11- 10(-8) 

5- 6- 6(-б) 

2- 3- 3(-6) 

4- 5- 5(-8) 

4- 5- 5(-6) 

22- 28- 23(-8) 

10- 11- ll(-6) 

IT > 300 

IT > 300 

30- 31- 31 (-99) 

58- 75- 59(-6) 

11- 14- 12(-7) 

6- 7- 7 (-7) 

2- 3- 3(-6) 

4- 5- 5 (-8) 

6- 7- 7(-13) 

22- 27- 23(-99) 

10- 11- ll(-6) 

IT > 300 

IT > 300 

15- 16- 16(-99) 

6- 7- 7(-9) 

11- 13- 12(-7) 

6- 7- 7(-6) 

2- 3- 3(-6) 

4- 5- 5(-8) 

£ 237-282-248 273-316-284 IT > 747 IT > 682 
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Table 3. 

S = 1,W = 1 S = 1,W = 2 S = 2,W = 1 S = 2,W = 2 

Al 
A2 
AЗ 

A4 

A5 

A6 

48- 49- 49(-6) 

17- 50- 17(-5) 

125-136-12б(-4) 

IT > 900 

IT > 900 

IT > 900 

48- 49- 49(-7) 

17- 48- 17(-5) 

126-151-126(-3) 

IT > 900 

IT > 900 

IT > 900 

38- 41- 49(-6) 

21- 60- 21 (-4) 

130-169-130(-1) 

28- 30- 29(-9) 

234-263-235(-6) 

581-605-582(-8) 

40- 44- 41 (-6) 

19- 31- 20(-6) 

154-190-154(-3) 

21- 23 22(-6) 

144-158-145(-6) 

576-594-577 

£ IT > 2890 IT > 2891 1032-1168-1036 954-1040-959 

Table 4. 

New (S= l,W = l) OLCS(S = l) DDLS(S = 1) 

1 14- 17- 15/14 12- 15- 13/28 18- 21- 19/18 
2 25- 40- 26/25 30- 63- 30/106 20- 30- 21/20 
3 33- 34- 34/33 33- 34- 34/64 52- 53- 53/52 
4 19- 23- 20/19 13- 16- 14/27 4- 6- 6/4 
5 6- 7- 7/6 6- 7- 7/8 7- 8- 8/7 
6 16- 28- 17/16 11- 21- 12/36 19- 56- 19/19 
7 11- 13- 12/11 7- 8- 8/11 11- 14- 12/11 
8 5- 6- 6/5 5- 6- 6/8 4- 5- 5/4 
9 1- 2- 2/1 1- 2- 2/1 1- 2- 2/1 
10 124-129-125/125 124-126-125/263 46- 76- 46/46 
11 70- 99- 70/34 70- 97- 70/207 51- 60- 52/16 
12 12- 14- 13/12 12- 14- 13/29 16- 20- 17/16 
13 10- 11- 11/10 10- 11-11/14 10- 11- 11/10 
14 36- 40- 37/36 69- 75- 70/99 42- 46- 43/42 
15 16- 17- 17/16 17- 20- 18/35 15- 17- 16/15 
16 29- 64- 29/29 28- 65- 28/132 157-202-157/157 
17 19- 22- 20/19 21- 23- 22/60 16- 17- 17/16 
18 28- 32- 29/28 17- 20- 18/161 196-226-197/196 
19 13- 16- 14/13 13- 15- 14/29 13- 16- 14/13 
20 6- 7- 7/6 7- 8- 8/15 8- 9- 9/8 
21 14- 17- 15/14 12- 15- 13/28 18- 21- 19/18 
22 10- 11- 11/10 10- 11- 11/14 10- 11- 11/10 
23 22- 30- 23/22 20- 25- 21/42 18- 21- 19/18 
24 76- 85- 77/76 28- 36- 29/111 59- 72- 60/59 
25 10- 11- 11/10 10- 11-11/10 8- 9- 9/8 
26 9- 16- 10/9 9- 13- 10/21 32- 43- 33/32 
27 7- 8- 8/7 6- 7- 7/9 4- 5- 5/4 
28 4- 5- 5/4 7- 8- 8/18 6- 7- 7/6 
29 2- 3- 3/2 2- 3- 3/2 2- 3- 3/2 
30 4- 5- 5/4 5- 6- 6/6 5- 6- 6/5 

£ 651-812-679/651 615-780-642/1712 868-1093-895/871 

Time 1:08.22 1:24.14 1:56.72 
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Table 5. 

New ( 5 = 1,W = 1) OLCS(5 = 1) D D L S ( 5 = 1) 

20 7- 8- 8/7 8- 9- 9/46 10- 11- 11/10 
21 14- 17- 15/14 12- 15- 13/28 18- 21- 19/18 
22 10-11- 11/10 10- 11- 11/14 10- 11- 11/10 
23 28- 35- 29/28 20- 26- 21/44 30- 35- 31/30 
24 104-118-105/104 42- 53- 43/157 IT > 300 
25 11- 12- 12/11 11- 12-12/11 11- 12- 12/11 
26 42- 53- 43/42 37- 48- 38/124 IT > 300 
27 10- 14- 11/10 7- 8- 8/10 4- 5- 5/4 
28 5- 6- 6/5 8- 9- 9/24 8- 9- 9/8 
29 2- 3- 3/2 2- 3- 3/2 2- 3- 3/2 
30 4- 5- 5/4 5- 6- 6/6 5- 6- 6/5 

E 237-282-248/237 162-200-173/466 IT > 698 

Time 4:40.37 6:01.57 >15:04.51 

Table 6. 

New (S = 1,W = 2) OLCS(5 = 1) DDLS(5 = 2) 

Al 
A2 
AЗ 
A4 
A5 
A6 

40- 44- 41/40 
19- 31- 20/19 

154-190-154/154 
21- 23- 22/21 

144-158-145/144 
576-594-577/576 

43- 46- 44/125 
14- 25- 15/43 

137-161-137/310 
32- 34- 33/116 

135-149-136/434 
522-551-523/1110 

40- 44- 41/40 
28- 67- 28/28 
32- 69- 32/32 
38- 40- 39/38 
72- 78- 73/72 

IT > 900 

E 954-1040-959/954 883-966-888/2138 IT > 1110 

Time 1:20.14 1:28.54 >1:34.58 

Results recorded in these tables show that the convergence of the new method 
is almost as robust and fast as the convergence of the trust region method with 
optimal locally constrained step (OLCS). The OLCS method uses time-consuming 
repeated matrix decompositions and, therefore it needs a longer time for obtaining 
results. The new method is much better then the DDLS method which also does 
not use repeated matrix decompositions. 

The results obtained by the approach introduced in Section 2 are very hope­
ful. Since we use a simple decomposition technique, namely a corrective Choleski 
factorization of a Gauss-Newton normal equation matrix, it would be possible to 
improve these results by some other decomposition techniques such as rank revealing 
QR factorization. Also a study of the matrices P and Y's influence to the condition 
number K(LYYTLT), which would lead to minimal K(LYYTLT), remains for further 
research. 
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APPENDIX 

Difficult problems we have used were originally listed in [11]. These problems served 
for testing statistical packages in [12]. 

Problem Al. (Meyer, Roth) 

fi(x) = xi + x2 exp(x3ti) - yi 

for 1 < t < 10, where 

І U Уi i U УІ 

1 1.0 16.7 6 25.0 17.4 

2 5.0 26.8 7 30.0 17.6 

3 10.0 16.9 8 35.0 17.9 

4 15.0 17.1 9 40.0 18.1 

5 20.0 17.2 10 50.0 18.7 

Start xi = 20.0, x2 = 2.0, x3 = 0.5. 

Problem A2. (Jennrich, Sampson) 

fi(x) = exp(x1ti) + exp(x2*.) - Vi 

for 1 < i < 10, where 

І U УІ i U Уi 

1 1.0 4.0 6 6.0 14.0 

2 2.0 6.0 7 7.0 16.0 

3 3.0 8.0 8 8.0 18.0 

4 4.0 10.0 9 9.0 20.0 

5 5.0 12.0 10 10.0 22.0 

Start x\ = 0.3, x2 = 0.4. 

Prob lem A3. (Meyer, Roth) 

fi(x) = xi exp(x2/(x3 + U)) - Уi 

for 1 < i < 16, where 

i u Уi i u УІ i U УІ 

1 50.0 34780.0 7 80.0 11540.0 13 110.0 4427.0 

2 55.0 28610.0 8 85.0 9744.0 14 115.0 3820.0 

3 60.0 23650.0 9 90.0 8261.0 15 120.0 3307.0 

4 65.0 19630.0 10 95.0 7030.0 16 125.0 2872.0 

5 70.0 16370.0 11 100.0 6005.0 

6 75.0 13720.0 12 105.0 5147.0 

Start xi = 0.02, x2 = 4000.0, x 3 = 250.0. 
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Problem A4. (Květoň) 

fi(x) = xi exp(-x3ti) + x2 exp(-x4ti) - y,-

for 1 < i < 10, where 

І U Уi i U Уi 

1 1.0 99.6 6 6.0 16.1 

2 2.0 67.1 7 7.0 11.7 

3 3.0 45.9 8 8.0 8.6 
4 4.0 31.9 9 9.0 6.38 

5 5.0 22.5 10 10.0 4.78 

Start x\ = 1.0, x2 = 1.0, X3 = 1.0, x4 = 1.0. 

P r o b l é m A5. (Hřebiček) 

fi(x) = xi exp(-x3ti) + x2 exp(-x4ti) - yi 

for 1 < i < 15, where 

i ť. Уi i U УІ i U Уi 

1 7.448 57.554 6 7.877 27.952 11 8.552 11.803 

2 7.448 53.546 7 7.969 19.498 12 8.903 7.727 

3 7.552 45.290 8 8.176 16.444 13 9.114 4.764 

4 7.607 51.286 9 8.176 21.777 14 9.284 4.305 

5 7.847 31.623 10 8.523 13.996 15 9.439 3.006 

Start Xl = 100000.0, x2 = 100000.0, x3 = 1.079, x4 = 1.31. 

P r o b l é m A6. (Květoň) 

for 1 < i < 12, where 

fi(z) = aя/f3 + x2t
xi * - УІ 

i ť, Уi г U Уi 

1 12.0 7.31 7 18.0 8.84 

2 13.0 7.55 8 19.0 9.12 

3 14.0 7.80 9 20.0 9.40 

4 15.0 8.05 10 21.0 9.69 

5 16.0 8.31 11 22.0 9.99 

6 17.0 8.57 12 23.0 10.3 

Start xx = 1000.0, x2 = 0.01, x3 = 2.0, x4 = 100.0. 

(Received January 31, 1995.) 
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