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KYBERNETIKA —VOLUME 12 (1976), NUMBER 4 

Optimum Designs of Experiments 
for Uncorrelated Observations on Fields 

ANDREJ PAZMAN 

The properties of experimental designs in a generalized regression experiment with uncorrelated 
observations which was described in [8] are studied. It is supposed that the space of all possible 
"response functions" is a reproducing kernel Hilbert space generated by a given kernel. The 
stress is upon the principles of the construction of iterative procedures for computing optimum 
designs for a large class of optimality criteria. 

1. THE CONSIDERED MODEL OF THE EXPERIMENT 

The standard formulation of the design problem of a (finite dimensional) regres­
sion experiment is the following (cf. [5]). On a compact set A, k continuous and 
linearly independent functions (fu ...,fk) — f are given. The expected value of an 

k 

observation in a point a e A is £ a,L(a), the vector of the parameters a' -= (a . , . . . , cck) 
i = l 

being unknown. Observations are uncorrelated and they have positive variances 
depending continuously on A. It may be supposed without loss of generality that the 
variances are identically equal to 1 (more exactly: if c2(a) is the variance of the ob­
servation in a e A, we obtain unit variances by the substitution /;(•) -»L(«) <r-1(-)). 
Usually an approximated (asymptotic) design theory is considered, wherein the 
designs are a class 3 of Borel probability measures on A and the information matrix 
of a design «J is M(£) = Uf(a)f'(a) ^(a\ T h i s h a s t h e u s u a l meaning that M - 1 (£) 
is proportional to the covariance matrix of the best linear estimates for au ..., ak. 
A real function *F is given on the class {M(£) : £ e 3). It expresses the aim of the 
experimenter. The problem of the optimum design theory is the characterization 
and the computation of designs which are optimal, that is for which the extreme 
(usually minimal) value of !P[M(^)] is attained. 

Several aspects may be pointed out in the described (finite-dimensional) model: 

1) The mapping / : a e A -> ( / i (a ) , . . .,fk(a))' e Ek maps continuously the compact 



set A onto a compact metric space j(A) (in Ek). Instead of A we may consider j(A) 
and instead of £, the induced measure if"1. Hence without loss of generality it may 
be supposed that A is a compact metric space. 

2) The function K defined on A x A by 

(1.1) K(a,a')=YJfi(a)fi(a'); a, a's A 
i = l 

is the kernel of a reproducing kernel Hilbert space H(K) with the kernel K (for the 
definition see [1] or Paragraph 3.1). The space H(K) is here the set of all functions 9 

k 

expressed as 8(a) = £ «.L(a) with arbitrary reals a l s . . . , ak. In other words, H(K) 

is the set of possible "response levels" in the regression experiment. 
3) Consider a linear function h of a. We define a functional g on H(K) by 

k 

g( X a i / () — h(u). Obviously the correspondence between h and g is one-to-one. 
i = l 

That means the experimenter estimating some parameters or functions of parameters, 
estimates some linear functionals defined on H(K). Moreover, the variance of the 
best linear estimate for g may be expressed as the norm of an element of H(K). 

4) A discrete design £ (£ is supported by a finite subset of A) may be interpreted 
so that for any Borel set F c A, the value £(F) is proportional to the number of 
observations which are performed in points from F. With such a set we may associate 
a random variable X\(F), which is the sum of all observations performed in the 
points from F, divided by the total number of observations in A. We have E X\(F) = 
= J , 0 d£ and var XJ(F) = £(F). 

5) The experimenter, who wants to estimate functionals from a given set G, has 
to solve the following decision problem: The strategy space of the chance is G, the 
strategy space of the experimenter is 2 and the loss of the experimenter is the variance 
of the best linear estimate for g under the design £. As a consequence, an optimality 
criterion in the design problem must be a decision criterion in this decision problem. 

Points 1 — 5 stimulate a certain generalization of the standard model (see [8]). 
We shall describe it: 

Consider a compact metric space A, a symmetric, nonnegative definite and conti­
nuous real function K on A x A (a kernel), and the reproducing kernel Hilbert 
space H(K) with the kernel K. Denote by !F the Borel cr-algebra of subsets .of A. 
A design is an arbitrary probability measure defined on 3F. A possible "response 
function" will be any function 6 e H(K). Given the true "response function" 9 and 
a design £, the experimenter observes on F e <F a random variable Xg(F), with 
a finite mean and a finite variance. It is supposed that there is a probability space 
(Q, <f, P) such that 

X\(F) e L2(Q, ST.P); F e & 



(1.2) EXl(F)= f 0 d £ ; F e # 

cov [Xf(F), Xl(F')] . £(E n F') ; F , F e ^ 

and 

(1.3) xXi-7.)-!**-7.) 
1 = 1 i = l 

for every finite class of disjoint sets Fs, ..., Fn. The last equality is an equality of ele­
ments in L2(Q, Sf, P).*The aim of the experimenter is to estimate real functional 
defined on H(K), which defined on H(K), which are elements of a given set G. The 
experimenter deals again with the decision problem (G, 3, var,» a), where S is the set 
of all designs on A. and var{ g is the variance of the best linear estimate for g under 
the design £. 

In a certain sense the space H(K) may correspond to a field. For instance, let us 
suppose that A is a cube <0,1> x <0,1> x <0,1 > in E3 and 9 is the potential function 
of an electrostatic field in A which is constant along two axes (say y, z; that means 
ddjdy = dOjdz = 0). The derivative |30/3x| is the magnitude of the intensity of the 
field and Jo \p6\dx]2 dx is the energy of the field. The set of possible potential func­
tions is {6 : Jo [dO/dx]2 dx < oo} and this is equal to H(K) with K(xu yuzr; 
x2> )'2> z2) = m r n (xi> x2h Another simple example with the same set A may be: 

K(xuyu zx\ x2, y2, z2) = min (xu x2)min(yu y2)min( zlt z2), 

H(K) = id : I n [839j8x dy dz]2 dx dy dz < o o l . 

We give now some remarks on the structure of the paper. The paper is divided 
into 4 sections. In the first two the main results, their interpretation and their corres­
pondence to the finite-dimensional case are stated. In the last two sections we com­
plement the paper by auxiliary results and by the proofs of all the results (also of the 
ones from Section 2). These sections are divided into paragraphs labelled as 1.1, i.2, 
etc. (in the i-th section). Theorems and propositions (the less important statements) 
have the same numbers as the paragraphs in which they occur (hence "Theorem 4.1" 
or "the theorem in 4 .1" or "the theorem in Paragraph 4 .1" means the same). 

* The mapping 

%F e L2(A, *, cj) -> | x ! ( F ) - f 0 d{\ e L2(Q, 9>, P) 

is ah inner product preserving linear mapping which may be extended uniquely to an isometry 
of L2(A, $•, 0 onto a subspace of L2(Q, Sf, P). The existence of (Q, Sf, P) and of such an isometry 
for every probability space (A, &, Q is proved in [6]. 



Now some notations for inner products and closures in the Hilbert spaces: H(K) 
is a real reproducing kernel Hilbert space with the kernel K, || || K and (,)K are the 
norm and the inner product in H(K). E is the set of all designs on A; for every c, e E, 
L2(£) (or L2(A, 3F, £)) is the Hilbert space of ^-square integrable functions on A and 
I ||«, (,)«is the norm and the inner product in L2(£). Analogical notations are used 
in L2(P) = L2(Q, Sf,¥). If Q c L2(£) or Q <= H(K), we denote by if{Q} the set 
of all finite linear combinations of elements from Q and we denote by [Q]4 (resp. 
by [Q]K) the closure of Q in L2(£) (resp. in H(K)). Other notations will be given 
in what follows. 

2. THE PROPERTIES AND THE CONSTRUCTION OF OPTIMUM 
DESIGNS FOR ESTIMATING FUNCTIONALS (RESULTS) 

In the whole section A is a compact metric space, K is a symmetric nonnegative 
definite and continuous function defined on A x A and H(K) is the reproducing 
kernel Hilbert space (of real functions on A) with the kernel K ( [ l ] or 3.1). As 
explained in Section 1 the experimenter wants to estimate one or several (linear) 
functionals defined on H(K). If observations are performed according to a design tj, 
the estimate of a functional g is based on the observed random variables Xg(F); 
F e F . A (linear) estimate is a set of random variables {Ye : 9 e H(K)}, which are 
elements of L2(Q, Sf, P), and which have the property: There are real numbers cu 

and sets F0-; i = 1,2, ...,j, j = 1,2, . . . not depending on 9, such that for every 
0 6 H(K) 

lim||£c0.4(E,,.)- Ye|P = 0. 

It follows that there is an I e L2(A , &, f) such that 

j 
I i m IEctjXFtJ - i\\('=o 

./-CO f = l 

(see the footnote 1 and [8]). 
By arguments, using the isometry mentioned in the footnote 1, it is proved in [8] 

that 

£Yfl = f Ye dP = f 9 d£ ; 9e H(K) 

and 

(2.1) var Ye = f (Y, - EYe)
2 dP = f I2 d£ ; 9 e H(K). 

The last value is the variance of the estimate. The estimate is called an unbiassed 
estimate for a functional g if 

EY„ m g(9) ; 9 e H(K). 



It is the best (linear) estimate for g if it has a minimal variance in the set of all 
unbiassed estimates, for g. This minimal variance will be denoted by var,* g ("the 
variance of g under the design £"). We define the covariance cov4 (g, g') of the best 
(linear) estimates for two functional g, g' analogously. 

We denote: 
by K^ the kernel on A x A, defined by 

(2.2) Ki(a,a') = f K(., a)K(-, a') df , 

by M ? the kernel on H(K) x H(K), defined by 

M4(0, 0') = I 6, 6' d£ , 

by K the operator from L2(£) into L2(C), defined by 

(Kh)(a) = f K(.,a)hd£; aeA. 

H(K4) and H(M{) are the reproducing kernel Hilbert spaces with the kernels K( 

and M{, respectively. By Pf we denote the projection of L2(£) onto [H(K)]^. By 
g[K] we denote the real function on A equal to g[K(-, a)] in a e A. We shall write 
from now on throughout the paper /instead of J^ to denote integrals over the set A. 
The image on the estimability of g is complemented by 

Theorem 4.1. A functional g on H(K) is estimable (i.e. has a linear unbiassed 

estimate) under the design S, iff one of the following four equivalent statements is 

true: 

1) There is an / e L2(£) such that 

g( ) = ľ/Ødč; єH(K) 

2) g[K] is in the range of the operator K 

3)g[K]eH(Ks) 

A)geH(M,) 

g[K] is the unique element of H(K) with the property g(6) = (g[K], 6)K; 6 e H(K). 

The variance of the best (linear) estimate is 

(2-3) var,g = | g [ K ] | ^ = | | g | | ^ = | |P,/ | | ?

2 . 

We may write (see 4.1): 

(e, (Ki, e%)K = (e, KO% = M,(e, e'), e, $' e H(K) . 



This, together with Theorem 4.1 shows that the operator K and the kernels Kf and 
Ms are different representations of one "object", namely, they are generalizations 
of the information matrix which is so important in the finite-dimensional case. 

k k 

Indeed, in the latter case, from 0 = Y, a,/-, 8' = £ a,'/,-, we obtain 

Mi(d,0')= I« .M f , (£)«j . 

The statement 2 (or the statements 3 and 4) in Theorem 4.1 may be read: "a is 
in the range" of the "information operator". K ("information kernels" K^ or M^). 
The equality (2.3) shows that K, Kia.nd M4 determine the variance of the best estimate 
for g, as well as does the information matrix in the finite-dimensional case. 

Let us denote G an r-dimensiorial linear space of functionals which are defined 
on H(K) (the space of "useful functionals"). According to the statement 1 in Theorem 
4.1, every g e G is estimable under the design t, iff r linearly independent functionals 
gu ...,greG (a linear basis of G) are estimable under £,. On the other hand, if 
gu ...,gr are estimable, each with respect to another design £;, then every geG 

is estimable with respect to the design £, = r _ 1 ^ <Jf. 
i = l 

We denote by S the set of all designs and by SG the set of designs allowing the 
estimation of every g e G. By D(£) we shall denote the covariance matrix 

(2.4) Dij(Z)=Covi(gi,gJ); i,j = l,...,r, £eEG 

An optimality criterion for estimating functionals from G will be a finite real 
function $ defined on the set {D(£) : £ e EG} having the properties 

a) The ordering of designs according to $[!>(£)] does not depend on the choice 
of the linear basis gu ...,g,e G 

b) <P is continuous on {!5(£) : £ e S G } 

c) If £, r\ e EG and var4 g = var, g for every geG, then ®[D(£)] = <P[D(t})]. 

We define a real function <P* on S by $*(£,) = 4>[D(£)] for i e EG and by <£*(£) = 
= oo for £, e E — SG. The aim of the experimenter is to find a design £,* (if it exists) 
which minimalizes $*(•) over S . £* is called the <P-optimum design. 

A sequence of designs {£„} "= i is said to converge weakly to a design £, if for every 
function / which is continuous on A 

lim ľ/dč„ = ľ/dč. 

The set S with the weak topology is compact and metrizable, since A is a compact 
metric space [7], However, unlike the finite-dimensional case, <P* may not be a con­
tinuous function on S as the following example shows: Take A = <0,1>, K(a, a') = 



= min (a, a'). Denote by %„ the design concentrated in the point \\n and by £„ the 
design concentrated in the point 0. Evidently the sequence {£„}"= i converges weakly 
to £<*>• From (2.2) we obtain Kin(a, a') = K(a, \\n)K(a', l/n), hence H(Kin) is the 
span of K(% l/n). Take $*($) **"\\K(; 0 ) | ^ . We have $*(Q = oo but $*(U) = 1. 

We shall call an iterative procedure a sequence {%i}T=o of designs which is such 
that there is a sequence of designs {x;}?L0 and a sequence of numbers {oe;}?L0, 

a ; e (0,1), £ a ; < oo so that 
71 = 0 

(2-5) in+1 =(l - < K „ + a„x„ 

(2-6) 4 = ( 1 - < K „ + 1 +a„x„ 

for n = 0 , 1 , 2 , . . . 

The iterative procedure is increasing if (2.5) is true for n = 0, 1,2, ... It is 

decreasing if (2.6) is true for n = 0, 1, 2 , . . . The design £0 is the starting design 

of the iterative procedure. The designs x0, xu ... are correction designs. 

Theorem 4.3. Every sequence of designs {£„}^°=0, which is an increasing or a de­
creasing iterative procedure, is weakly convergent, and 

<2>*[lim Q = lim $*(Q 

for every optimality criterion <P. 

Theorem 4.4. If <J> is an optimality criterion such that $* is convex on 3, then there 
is a decreasing iterative procedure weakly converging to a ^-optimum design. 

For every design £, E 3 we denote 

Ai = {a:aeA, K(-, a) e H(Kt)} 

and 

Ti = {a:aeA, K(-,a)e [#(-£.)]*} • 

In the case of a finite-dimensional H(K) we have A^ = T«, which may not be true 
in the infinite-dimensional case. 

Let {, n be two designs each of which allows the simultaneous estimation of every 
g e G. Let x be the design (the restriction of n to T.) defined as 

fl(Ti)x(-)=fl(-nTi). 



Proposition 4.5. If x is the restriction of \x to T«, then 

var,, g ^ var„ g ; a e G . 

As a consequence, <£*(%) g <J&*(j<) for every optimality criterion $. 

The proposition 4.5 may not be true if % is the restriction of p to As. 

The construction of an iterative procedure converging to a ^-optimum design 
which will follow, is based on the assumption that we know increasing iterative 
procedures for constructing ^-optimum designs for finite-dimensional regression 
experiments. The actual situation in the experimental design [2, 3] justifies such 
an assumption. 

Take an increasing sequence of finite-dimensional subspaces of H(K) : 01 a 
c 02 c ... c H(K) such that 

[ u o a K = H(K). 
; = i 

Denote by gik) the restriction from H(K) to 0k of a functional g e G. Take a linear 
basis {gx>..., gr} c G and denote by Dw(<!;) the covariance matrix of the best linear 
estimates for g(k), ..., gr

k) under a design £, e Sa. We define 

( co ; £ e 3 - EG . 

Take a sequence {e„}*=i of positive numbers converging to e ^ 0 and consider 
an increasing iterative procedure {£„}„=0 which is such that 

a) c0 is a design allowing the estimation of every g e G 

(2.7) b) <Pt(Q £ inf < ( £ ) + e„ ; n = 1, 2, . . . 

We note that design £„ + 1 may be obtained from the design £„ by a finite iterative 
procedure Co = £»» Ci> C2> •••» Cm;„) = £„ + i- The finite sequence {C.}™io is the first 
m(n) terms of an iterative procedure converging to a <£-optimum design in the 
finite-dimensional regression experiment with the set of possible "response functions" 
0k. 

Theorem 4.6. The described iterative procedure {£„}"= 0 converges weakly to 

a design £* and 

<£*(£*) ^ inf <?>*(£) + e. 

We end this Section by considering the D-optimality criterion: 

(2.8) <*>[£(£)] = det />({) . 



It may be proved without difficulty that it has the properties a, b, c of an optimality 231 
criterion. The proof of a) is based on the following: If gu ..., gr and hu ..., hr are 
two linear bases of G, then there is a nonsingular r x r matrix J such that gt = 
= X JtJhj. Hence cov, (gh 9j) = (9i[K\, 9j[K\)K( = X JtkJ3{hk[K\, h,[K\)Ki = 

J k,i 

= X JUJJI c o v« (hk, h)-
k,l 

This allows also to prove that the expression 

(2.9) X <0lX\, K(; b))K,{D-\Z)}i3 (9j[K\, K(; b))K, 
i ,J '=l 

which is defined for every b e A^, does not depend on the choice of the linear basis 

in G. We shall denote this expression by dG(b, £,)• 

Moreover if 

9ІЌ]m jк/,d£; i = l,...,r 

for some lu . . . , lr e H(K), then, from the arguments which are given in 3.10, it follows 
that the functional (fl.[K], -)Ki may be uniquely extended from H(K^) to [H(/<"?)]

K. 
Thus in this special case, dG(b, t ) is defined for every b e T^ (and it is continuous 
on T4). 

The function dG(; £) may be useful to express the changes of det D(£) in increasing 
iterative procedures with one-point corrections or to stop the iterative procedures 
at some design £„, as Proposition 4.8b and Theorems 4.9 and 4.10 show. We say that 
an increasing iterative procedure {£„}"= o n a s one-point corrections if there is a se­
quence {fl„}™=o of points from A, such that 

£„+1(-) = (1 - *„) £„(•) + a„Z,}(fl„) ; n = 0, 1,2,. . . 

In such a case we have the following: 

Proposition 4.8b. 

det J(gB + 1) _ / 1 

det D(Q \l - a, 
an Ф А'„ 

i XU g_ dcKQ \. a e A 

1 - a J l l-Xnl-an+an\\K(;an)l2

KJ' " ""-

(The proof follows directly from Proposition 4.8 in Section 4.) 

Theorem 4.9. Let us suppose that the design £ and the set of functionals G 
are such that to every g e G there is an I e H(K) such that g[K\ = JKZ d£. Let \i 
be a design which allows the estimation of every g e G and such that #(-£„) <= 



[H(X4)]K. Then 

1 , , , w fdet D(c)T/r 

- sup dG(a, £) > ^ 
r a*s" GK'^J- [ d e t D(fi)j 

As a corollary we obtain: 

Theorem 4.10. If G and £, are as in Theorem 4.9, then 

1 . , A > Г detJ>(ž) Ţ / f 

- sup dG(a, ç) ś Ң — 
r 4 LinfdetD(x)J 

It means that the expression l/r sup dG(a, £) may serve as an evaluation of "how 

far" the design % is from an D-optimal design. Every functional g which is estimable 
under a design t, is expressible as g(-) = /h . d£ for some h 6 [H(£)] ? . Hence there 
is a sequence {/,}r=i of elements of H(K) such that lim ||/; — ft|« = 0. It follows 

that we have a sequence {flj}r=i of functionals gt(-) = J/ ;d^; i = 1,2, satisfying 
the assumptions of Theprem 4.10 and such that 

lim 1^(0) - 0(0)| = 0 ; 0 e 0 

and that 
lim |var4 fl; — var? g\ = 0 . 

This allows to use Theorem 4.10 at least in principle to construct a stopping rule 
for the iterative procedure yielding to a ^-optimum design. 

3. REPRODUCING KERNEL HILBERT SPACES AND PROBABILITY 
MEASURES 

The aim of this section is to recapitulate some standard properties of a reproducing 
kernel Hilbert space (RKHS) and to relate the RKHS with a probability measure. 
The proofs of the statements, which are in Paragraphs 3.1 — 3.4, may be found in [ l ] . 

3.1. If S is a set and fe is a symmetric, nonnegative definite, real function on S x S 
(a kernel), then there is exactly one Hilbert space (called the RKHS with the kernel 
k and denoted by H(k)) with the following properties: 

i) elements of H(k) are real functions on S, 

ii) k(-, s) e H(k) for every seS , 

iii) (/, k( •, s))k = f(s) for every / e H(k), seS. 

The set {k(-, s) : s 6 S} spans H(k). 



Take an arbitrary Hilbert space H with the inner product denoted by <•, •>. 
It may be proved (using the Riesz representation theorem) that the set of all bounded 
linear functionals on H is an RKHS with the kernel 

k(h, h') = <h, h'> ; h,h'eH. 

3.2. Every set V which is a closed subspace of H(k) is an RKHS with the kernel 
fc'(sl5 s2) = \Pvk(-, s t)] (s2), where Pv is the projection of H(k) onto V. Consider 
especially the following subspace V: Take a set T c S and denote N(T) = {j: je if(fc) 
j(s) = 0 for s e T}; denote by Vthe orthogonal complement of N(T) in H(k). Vis 
the subspace of H(k) which is spanned by the set {k(-, s) : se T}. It is an RKHS 
as mentioned above. The mapping, which maps every feV onto the restriction 
of j to the set T is a linear isometry of the RKHS Vonto the RKHS H(kT), where kT 

is the restriction of the kernel fc onto T x T 

3.3. Let fcls fc2 be two kernels defined both on S x S. The function fc = kl + k2 

is also a kernel and H(fc) = { / : / = / , + f2,f, e H(k,),f2 e H(k2)}. 
Further 

(3-1) | j | 2 = min ( l A l 2 + | / 2 | 2
2 : / = / . + / 2 } . 

The sets H ^ ) and H(fc2) are closed subspaces of H(k). We have: H(kt) n H(fc2) = 
= {0}, iff H(kt) and H(k2) are orthogonal in H^ . Insuchacase fc^ - , s) = P t fc(-, s), 
fc2(-, s) = P 2 fc(% s); s e S, where P ; is the projection of H(k) onto H(fcf). 

H(kt) is a closed subspace of H(k2) iff there is a c > 0 such that fc2 — ckl is a kernel. 
In such a case | / | | £ ^ c | | / |2

2 for every /e H(kt). 

3.4. Consider a sequence {fc„}"= t of kernels defined on S x S. 
If 

H(k„) => H(fc„+1); i t - 1 , 2 , . . . , 

| / | k = | / | |*„+ 1 ! f£H(kn+l), n = l , 2 , . . . , 

then there is a limit 
l im fc„(s1; s2) = fco(S],,s2) 

and 

Moreover, 

Я(fc0) = {/:/є П Я(fcn), lim | / | 2 „ < æ} . 

\\l = lim | / | 2 , ; / 6 / í ( f c 0 ) . 

Similarly, let us suppose that H(fc„) c H(fc„+1); n = 1, 2, . . . 

£ | | / | | t„+ . ; /eH(fc„) , n = l , 2 , . . . , 
*.. = 



234 and that there is the limit 

lim kn(su s2) = fc0(s,, s 2 ) ; s{, s2e S . 

Then fc0 is a kernel, the set U H(k„) is dense in H(k0), and 
u = 1 

||/||,20 = lim ||/ | |t; fe\JH(k„). 

3.5. Suppose now that A is a compact metric space and K is a kernel which is 
continuous on A x A. Take a Borel probability measure t on A. 

We have 

sup | / .(a) - / 2 (a) | = sup |(K(-, a ) , / , - / 2 ) K | g 

S ||f - .f 1K sup V-f (-. a) 5 U e H(«) • 

It follows that functions which are elements of H(K) are continuous. Hence H(K) c 
c L2(c) and 

| | / | | 4
2 ^ s u p K ( a , a ) | | / | | | ; / e H ( X ) . 

ae.4 

3.6. Let Kt and K be defined as in Section 2. 

Proposition. The operator K maps isometrically [H(X)]4 (with the norm || ||. 
onto Lf(K4) (with the norm || ||K?). H(-K^) is a subset of H(X) and the inner products 
in ff(K) and L2(£) are related by the equation 

(3.2) (/, KI)K = (f, I). ; / e H(K) , I e L2(£) . 

Proof. As in (2.3) we denote by P4 the projection of L2(£) onto [H(K)]?. Kmaps 
[H(K)f onto KL2(£), since (K/i) (a) = (K(-, a), h)t = (K(-, a), P(h)t = [KP.fc] (a) 
for every a 6 A. K restricted to [//(K)]* is a bijection, since the equations 

(K(-, a), P.ft.). = K P . / J . = KP4h2 = (K(-, a), P4h2)4 ; a e A 

imply P4/?j = Pth2 (because the set {K(-, a) : a e A} spans H(K)). We shall prove 
that the set K[L2(£)] with the inner product (•»••) defined by 

(3.3) (KJ., K/2) = (/., Z2)e; ! , j 2 e [ H ( i C ) ] ? 

is equal to H(Kt). Indeed, we have Kt(', a) = KK(-, a); a e A. Hence from (3.3) 
it follows that 

(K/, Kt(-, a)) = \l K(-, a) dc = (K/) (a); le L2(£) ; a e A . 



Thus KL2(c) with the inner product (•, •) and the kernel K( has the properties i, ii, 235 
iii, from 3.1. It follows that K L2(£) = H(K(). 

From the equality (3.3) we obtain that 

(3.4) !|K/||Xs = | | / j | , ; le[H(K)f. 

Let {/,}," i be an orthonormal basis of H(K). We have K(-, a) = lim £ ft(-)fi(a); 

aeA (since/(a) = (K(\ a),f^)K) the convergence being uniform on A, according 
to 3.5. It follows that 

™=Zl\fihdZ)M-); heL2((). 

Further we have 

| N | K = I | f/ili d^j2
 = Ah||| |x(a, a) dc(a) < cc . 

This implies first that K/i e -fZ(K), and secondly that, according to (3.4), 

flKhfll < ||Kh|||s foa, a) d£(a) ; h e L2(£) , 

that is 

(3.5) fl^fli = | |^| |i t t ( a , a) d£(a) ; »A 6 H(*4) • 

It follows that H(K4) is a subset of H(K). 

From the reproducing property of the kernel K (3.1 point iii) we obtain 

(K(-, a), (K(-, b) 1(b) dc(%- = U(b, a) 1(b) d£(b) ; a e A ,1 e L2($) , 

which may be rewritten as 

(K(-,a), Kl)K =(K(-, a), 1\; aeA, le L2(£) . 

It follows that (3.2) is valid since {K(-, a) : a e Ajspans H(K) and since | / | | | < 
= |j/1| I sup K(a, a) for every / e H(K) (Paragraph 3.5). • 

3.7. Proposition. We may write 

a)[KH(K)f = [H(K()f = [H(K)f 

b)[K H(K)f. = [H(K()r 

and the latter is the subspace of H(K) spanned by {K(-, a) : a e S(}. 



236 Proof . Consider the set Q = {j: Kj = If, k 4= 0} of proper functions of K 
corresponding to nonzero proper values. If [i?(Q)]{ =1= [ff(-K)]{, then K restricted 
to the orthogonal complement of [^?(Q)]{ in [H(Ky is a bijection onto a nonzero 
subspace of H(K4) (see Paragraph 3.6). Such a restricted K is a nonzero [Hilbert-
Schmidt operator, hence it has a proper function j e Q. It follows that [//(K)]4 = 
= [&(Q)f. Evidently [i?(Q)]{ «= [K H(K)J c [H(Kj]t c [H(K)f. Thus a) is 
true. 

We have 

(3.6) [J?(Q)ft = H(K,), 

since [-S?(2)]{ = [H(K)J (as we have just proved), since K &(Q) = SC(Q) and 
since K restricted to [H(K)Y is an isometry onto H(K4) (Paragraph 3.6). From (3.5) 
and (3.6) we obtain 

H(Kt) = [&(Q)]K* <= [&(Q)J • 

Thus [H(i^)]K <= [&(Q)]K- On the other hand, [&(Q)]K c [K H(K)]K <= [H(Kj]K, 
evidently. Thus [K H(K)]K = [ # ( ^ ) ] x . 

If a e S4, then £(U) > 0 for every open set U containing a. Denote by G„ the open 
sphere in the metric space A, which has the center a and the radius l/n. We write, 
using (3.2) 

If [K(;a)-K(;b)]dt(b)( = 
\\jG„ IIK 

- £ ([*(•. «) - *v. *)] . | [«0. «) - K(;b')] <6')) «(*) = 

= f |l-(-,c7)-X(-,6)|| Idf(6)||f [X(-,a)-X(.,fc')]d^')| • 
J c IIJC„ IK 

Consequently 

\K(;a)-(K(;b)XG„(b)dZ(b)IZ(G„) S 
II J K 

K(;b)\\KXG„(b)^(b)I^G„)-,0 = JÌK%«) 
with n -» co. Thus K(% a) e [H(Kj]K for every a e S^. On the other hand, according 
to (3.2) 

(Kh, f)K = (hf dt; = 0 ; he L2(S) , f e N(S4) . 

It follows that H(K4) c JV1(S:) and the latter is the span of the set {K(; a):ae S4} 
in H(K) (see Paragraph 3.2). • 



3.8. Proposition. K restricted to [K H(K)]K is a bijection onto K H(K). 

Proof. Denote by P the projection of H(K) onto [K H(K)]K. 

Using the statements from 3.2, we obtain (Pf) (a) = f(a) for every feH(K), 
a e St, since [K H(K)]K = [-§?{£(•, a) : a e St]

K (see 3.7). Hence, from the definition 
of K we obtain 

(3.7) K/ = K P / ; feH(K). 

that is K maps [K H(K)]K onto K H(K). 

K restricted to [KH(K)]K is a bijection, since [KH(K)]K c [H(K)]S and K 
restricted to [H(X)]4 is a bijection (Proposition 3.6). • 

3.9. Proposition. The functional (\j/, ')Ki defined on H(Kt) is continuous 

a) with respect to | ||K? if ^ e H(Kt) 

b) with respect to | ||K if i/̂  e K H(K) 

c) with respect to | ||. if ip e K H(Kt). 

Proof, a) is obvious. To prove b) take (p = Kh, ip = Kf, where h e L2(£),f e H(K). 
We may write, using (3.4) and (3.2), 

(3.8) (rp, cp)Ki = [fh d£ = (f, Kh)K = (/, <p)K; <pe H(Kt). 

In order to prove c) write \p = KKh = $Kth d£, for some h e L2(£). Using (3.2) (but 
writing Kt instead of K in (3.2)), we obtain 

fy> <P)K< = [ k{h d£, cp\ = (h, q>)t; cpe H(Kt) . U 

3.10 Consider in more detail the case ^ K H(K). According to (3.8), the functional 
(f, -)K restricted to [H(Kj]K is an extension of the functional (\p, -)Kl, from H(K() 
onto [H(Kt)]

K. We shall denote also this extension by (ip, ')K(. Hence we may consi­
der the integral 

!K(b,a)(ip,K(;a))Kidi(a), 

since K(-, a) e [H(Kt)]
K if a e St (Proposition 3.7). Using (3.2) we obtain JK(b, a) . 

• (<l>, K(; a))Kf d£(a) = (f, $K(-, a)K(b, a) d$(a))K = («A, Kt(; b))Ki = f(b). 

3.11. Proposition. A (linear) functional g defined on H(K) is continuous with 
respect to | IL iff g(K) e H(K). It is continuous with respect to | ||. iff g(K) e H(Kt). 



Proof. The functional g is continuous with respect to | \K iff g(-) = (i/>, -)/c 

for some \p e H(K). Evidently xjj(a) = (\j/, K(-, a))K = g[K(-, a)]; a e A. 
If g(K) e H(Kz), then g(K) = Kh for some h e L2(£) (Proposition 3.6). Using 

(3.2), we obtain 
g(f)=(Kh,f)K=(h,f)i; feH(K). 

That means o is continuous with respect to | [|.. On the other hand, if g is conti­
nuous with respect to | ||^, then there is an h e L2(%) such that g(-) = (h, •).. Taking 
\p = Kh, we obtain with the use of (3.2) : g(-) = (il/, -)K. D 

4. THE PROPERTIES OF ITERATIVE PROCEDURES 

4.1. Theorem. A functional a on H(K) is estimable (i.e. has a linear unbiased esti­
mate) under the design £ iff one of the following four equivalent statements is true. 

l) There is an / e L2(l) such that 

g( ) = Г/0 dç ; 0 є H(K). 

2) g[K] is in the range of the operator K defined in 3.6. 

3) g[K] e H(K,). 

4)geH(M,). 

g[K] is the unique element of H(K) with the property g(0) = (g[K], 6)K; 0 e H(K). 

The variance of the best linear estimate for g under the design c is equal to 

(4-1) var,a = | a [ K ] | | ^ = | | a | | ^ = | |P,/|J 

Proof . The necessity and the sufficiency of 1. or 3. as well as the equalities. 

var ť a = \\g\\Mf = | |P ť / | 

may be proved by a modification of Parzen's construction (for a detailed proof see 
[8])-

Obviously 1) implies g[K] = K/. From (3.2) in 3.6 there follow the equalities 
J/0 d£ = (Kl, 0)K; 6 e H(K). Evidently, K/ is the unique element of H(K) satisfying 
these equalities. On the other hand, if g[K] = Kl, then, again from (3.2), we obtain 
g(6) = J/0 d£; 0 6 0 . Thus 2) implies l) The equivalence of 2) and 3) follows from 
Proposition 3.6 as well as the equality ||P4/|f = | # [ X ] | K 5 -

Using (3.2), several times, we obtain for every 0, 0' e H(K) : (K{(-, a), 9)K = 
= (KK(-, a), 6)K = JK(-, a) 0 d^ = (K0) (a). 
Thus 

(0, (K>, 6%)K = (9, K0')K = [ w d^ = M^e, 0') ; 0, 0' e H(K). Q 



4.2. Proposition. A sequence of designs £0, £ t , ... is an iterative procedure iff 

a) there is a sequence {c„},™=0 of numbers C„ s (l, co) such that F[ c„ < co, 
n = 0 

b) for n = 0, 1, 2, ... there is 

£„ < c„+ 1 and dc„/d£„+1 g c„ 
or 

4 + 1 « £ „ and d£„+1/d£„ g c„. 

Proof. If dc„/d£„ + 1 5S c„, we define a„ = 1 - l/c„ and x„ = (l/a„)c„+ 1 — 
— [(1 — a„)/a„] £,„. Thus we obtain (2.5) immediately. Conversely, if (2.5) is true, 

we have d£„/d£„+1 < 1/(1 - a„). Further £ a„ < oo iff F] c„ < oo, since for a„ < 1/2 
n = o „ = o 

we may write the inequalities 

a„ <> - In (1 - a„) < 2a„ 

and since c„ = (l — a„)_1 . 

We proceed in the same way if £n+1 < £„. D 

4.3. Theorem. A sequence of designs {£„}„"=o> which is an increasing or a decreasing 
iterative procedure, is weakly convergent, and 

(4.2) <P*[ lim £„] = lim $*[<*„] 

for every optimality criterion <£. 

Proof, l) Consider an increasing iterative procedure {£„}„"= o- We may write 

C+t - Z « i ft ( l -« j )* . + n(--<-;)€o-
> = 0 j ' = i + l j ' = 0 

(Conventionally we put F] (l — a,-) = 1 if .m < k). We shall denote by £ the design 
; = fc 

« = I «. ft (1 - «>« + ft (I - «y) So • 
i = 0 j = i + 1 j = 0 

The sequence {£„}„==o converges weakly to £', since for every continuous function/ 
defined on A 

- f /d^„ + 1 Umax| / (a) |{f ;« i | ft (l - «;) - ft (- " 4 ) 1 + 
aeyt 1 = 0 j = t + 1 J = > + 1 

+ i «»•+1 n ( - - « o - n ( i - « * ) | } « 
; = n + i fc=o 



2. We denote c = (1 — a«) 1 a n £ l w e u s e Proposition 4.2. We define 

Kn = f\ciKin; n = l,2,... 

The equality 

(4.3) t Plc» Kdat> «j) ~ «fa+,(«i. «;)] ft -
",;=i 

-J[|ftic(,.ff(,-^)«.ao 
which is valid for any reals Pu P2, ••••> implies K„ > K„ + 1. Hence from Paragraph 3.3 
we obtain H(KB + 1) cr H(K„) and || \\Kn = || ||Kn + 1 on H(Kn+1). From the first part 
of Paragraph 3.4 we have 

(4.4) Jim 1^1^ = Jim U4HI = Mh ' *6j}0
H(*«-) 

and 

H(K,) = H(limiC„) = n H ( K j . 
n^oo n = 0 

3) Consider now the case of a descreasing iterative procedure {£„}„*= 0. We may 
write for every p > n 

L = nV - «.K,+jVnV - «>. • 

Hence for a function / , which is continuous on A, we have 

\h-\ í/dd = max |/(a)j {1 - ' п ( l - «,-) +'£«,} . 

It follows that {£„}„*= 0 is a Cauchy sequence in the (weakly) compact metric space 
3, hence it converges (weakly). We have 

lim Kin(a, a') = X«(a, a') ; a, a' e A , 

since K is continuous and since Kin(a, a) = J"X(-, a)K(', a') d£„. 

4. Define now 

K„=YlCiKin; n = l, 2, ••• 
> = i 

From an inequality similar to (4.3) we obtain that Kn+1 > Kn, hence H(Kn+1) => 
=5 H(K„) and | / | K „ + 1 = 1/fl^ for every / e H(K„). Further 

limX„(a, a') = J ] c;K,-(a, a') ; ftfl'ei, 



thus, according to the second part of Paragraph 3.4, 

(4-5) | M | i . « Um |tfr||2eii; tfr e \J H(Kfn) 
„-»co n = 0 

and the set U H(Kfn) is dense in H(Kf). 
„ = i 

5) The equality (4.2) for both, the increasing and the decreasing cases, follows 
now from the contibuity of <P, from (4.4) and (4.5) and from the equality 

(*. <P)K< = -Hi* + <P\\K, - ! * - ?!- ,} 5 <P^eH(K^). • 

4.4. Theorem. If <P is an optimality criterion which is such that <f>* is convex on S, 
then there is a decreasing iterative procedure weakly converging to a ^-optimum 
design. 

Proof . Take a sequence of designs {x„}n=0 so that {#*(x„)}"=0 converges mono-

tonely to the inf <P(£). Take a sequence of reals a0, a1( ... e (0, l) such that £ a; < oo. 
«eS ; = o 

Define 

(4.6) « . = f « / f f ( l - « i ) « * 
t=n ;=„ 

Evidently ^„ = (1 — a„) <i;„+1 + a„x„, hence {c„} °̂=i is a decreasing iterative procedu­
re. Denote by c* its weak limit. From the convexity of <P* and from (4.6) we obtain 

<2>*(C„) S m a x <P*(xk) = <P*(xn) , 
k^n 

hence 

$*(£*) - lim 4>*(Q = inf <£*(£). • 

4.5. Proposition. Let £, // be designs allowing the estimation of every g e G and let x 
be a design defined by 

ti(Ts)x(-)=n(-nTf). 
Then 

varz g < var^ g ; g e G . 

Proof . We repeat that T. is the set {a : a e A, K(-, a) e [H(Kf)]
K}. For any ft 6 A 

we denote by Hb the span of K(-, b) : Hb = &{K(-, b)}. By P6 we denote the pro­
jection of H(K) onto Hb, and by P the projection of H(K) onto [H(K?)]K. The space 
[H(Kf)]

K is an RKHS with the kernel [PK(-, a)} (a') and Hb is an RKHS with the 
kernel [Pb K(; a)] (a') see Paragraph 3.2). Take b e A - Tf. Since H6 n [H(Kj]K == 
= {0}, we know (Paragraph 3.3) that Hft is orthogonal to [H(Kf)]

K in the RKHS 



242 [H(K^)]K 0 Hb, which has the reproducing kernel [(P + Pb)K(-, a)] (a'). Hence 
be A - T4 implies that X(-, b) is orthogonal to [H(X:)]K (in H(K)). As a conse­
quence 

(4.7) K(a, b) = 0 ; a £ T., 5 c- A - Tt. 

Take g e G. As g is estimable under the designs {, fi, we may write 

(4.8) g[K(-, a)] = |x (a , •) I d{ = |x (a , •) n dju ; a e A 

for some / e [H(X)]«, h e [H(K)f. If a e A - T4, then (4.7) implies that «[X( •, aj\ = 
= JX(-, a) I d{ = 0 = J r { X(-, a) h d/i (since S. e T?). If a 6 T4, then (4.7) implies 
o[X(-, a)] = Jx(a , •) h d^ = J J { X(a, •) h dw. Thus a[X(-, a)] = M(T.) JX(a, •) h . 
. dx; a e A. It follows (Theorem 4.1) that * 

var, g = L2(T() [P»h]2 dx S W dji = var„ g . Q 

4.6. Theorem. The iterative procedure {{„}„"= 0 described in Section 2 converges 
to a design {* such that 

<?>*({*) ^ inf <*>*({) + e . 

Proof . From the equality 

[U© ; ]*=tf(x) 
i = i 

stated in Section 2, we obtain 

(4.9) [ U ©ty = {[ U ©FY = [H(K)f ; { e E 
> = i > = i 

since | / | | f ^ supX(a, a) | / | | | for every /e H(K) (see Paragraph 3.5). Let us denote 
aeA 

by P£° the projection of L2({) onto [0 f t]
4 (P4 remains the projection of L2(£) onto 

[H(K)f). 
From (4.9) we obtain (see [4] § 28) 

(4.10) Hm | (P . - P»>) fc|c « 0 ; he L2({), { e S . 
fc->co 

If o e G is estimable under a design {, then it may be expressed as 

g(0) = th8 d{ ; 0 e H(X) 



for some h e [H(K)]i Hence the restriction g(k) of g to 0k is also estimable under £ 
(statement 1, in Theorem 4.1) and vice versa as may be shown by the use of (4.9). 
From the formula (4.1) we obtain 

(4.11) v a r ^ W = ||P»>&|4- <: va r^ ( f c + 1 ) (= | |Pf+ 1 ) / i |2) £ 

£ va r , a (= ||/y.| |f) 

and, according to (4.10), 

lim var4 o(k) = vars- a . 
fc-»co 

It follows that 

lim D(k\Z) = D{H) ; £ e S c . 
fc-»CO 

Thus 

(4.12) lim * * ( { ) - * • ( { ) ; ? e S c . 
t-»0O 

Moreover the sequence {$*'(£)}& = o is increasing, according to (4.11) and to the proper­
ty c of optimality criteria (see Section 2). 

The set S* = {£*, £0, ^1( ...} <= 3 C is compact in the weak topology of 3 and, 
according to Theorem 4.3, <?*(•) and #*(•); fc = 0, 1, 2, ... are continuous functions 
on S*. By the use of Dinni's theorem we obtain that the convergence in (4.12) is 
uniform on S*. As a consequence there is a limit 

(4.13) lim inf<2>*(c) = inf <?*(£). 
fc-co JsS» &E* 

Further, from (2.7), we obtain 

(4.14) inf #*(«) <I inf #*(£) <: * * & ) <J 
S'ES cJeS* 

g inf **({) + 6 | ; fc = 0 , 1 , 2 , . . . 

The limit lim inf $*(£) does exist, because the sequence {<£*(£)} "=o is increasing 
fc^CO &S 

for every £ e SG. 

The formulae (4.13) and (4.14) imply 

(4.15) inf **({) = lim inf **(£) <, lim inf $*(£) + e 

Since <?>*(£) <i <£*(£); { e S c , we may write 

(4.16) lira inf *?({) g inf *•({) 
«c-»oo ieS ieS 



244 Taking both (4.15) and (4.16), we obtain 

(4.17) 0 < inf $*(£) - lim inf #£(£) < £ 
{ « - fc-.cc (ES 

Since the convergence in (4.12) is uniform on _*, we have the limit 

(4.18) lim $?({„) = lim lim $t(Q = $*(!;*) . 

fc->a> n - o o fc->oo 

From (4A4) we obtain further 

(4.19) 0 < lim $*($k) - lim inf #?«) < e . 

By a comparison of (4.17), (4.18) and (4.19) we obtain finally 

£*(£*) - inf **(£) < £ . • 
(ES 

4.7. Take a design £ e 3, a point fc e A and a number a e <0, 1). Denote 
x = (1 - a) £, + ax{b}. As in 3.9, A{ is the set {a : a e A, K(-. a) e H(K{)}. 

Proposition. For every (p, \jj e H(K{) 

(4.20) ' f o . ^ . M k . ; if b£A{, 
1 - a 

_(j_ik ( g i M - M A . if fcei4 

1 _ « i _ a ' 1 - a + a||K(., fc))|£, ' 

Proof. Since 

(4.21) iQa , a') = (1 - a) K{(a, a') + a K(a, b) K(b, a') 

we may write, according to Paragraph 3.3, 
(4.22) H(KX) = {f:f=fl+f2,fle H(K{), f2 e Hb} 

where Hb is the one-dimensional space spanned by K(; b). If K(; b) $ H(K{), then 
Hb n H(K{) = {0}, hence (see Paragraph 3.3), Hb and H(K{) are orthogonal sub-
spaces of H(KX). The equality (4.20) follows directly from (3.1) in 3.3 and from the 
formula 

(<p, <Ak = U\W + HL + Ik - HI) • 
If K(; b) e H(K{), then (4.22) implies H(KX) = H(K{). From (4.21) we obtain 

I N ' , -)!*, = (- ~ «)*«(-. «) + «K(a, &)(£„(-, a),X(-, fc))K? 

and 

(„ x ( . ,a ) > X(. ) %,= s ( l -« + «|i-('^)|i,). 



Thus -45 

(4.23) \K(;a)\\Ki=(l-a)\\Kx(;a)\\l + 

(Kx(-,a),K(-,b))2 

+ a v v ' ,, ~L-; a e A . 
1 - a + a\\K(-, b)\\2

Ki 

As a consequence we have 

\K(; a)\\l < -L--5 1 - » + " B ^ - ; ^ HJK/.. «)[* . 
II *V ' / | | * s — „ / , \ 2 II *V ' /ll*x 

a ' ||«M.•, b)\\K( 

It implies that the set {Kx( •, a) : a e A] spans H ( ^ ) (since it spans H(KX)). Using 
this we may prove without difficulty that (4.20) is true, since (4.23) is the equality 
(4.20) taken for q> = \fi = Kx(-, a). • 

4.8. Proposition. If gu ..., gr are estimable under the design f then 

^ W = (/~i-Y; if htA, 
det £>(£) \l-ttj 

1 1 1 - -
Ę (^И,jc(.,%ЛI>-1(0}У(^И^(->ь)k| 

v l - aj [' 1 - a 1 - a + a[|K(-, fe)|[|, J 

if 5 e ^ . 

Proof . We know that cov. (a;,#,•) = (o,[iC], j 7 j M ) i t (Theorem 4.1). We use 
the Proposition 4.7 for cp, i//e{gi[K\ : i = 1,..., r}. Finally we use the matrix 
formula 

det {B + cc'} = det B{\ - c'JT-c} , 

which is valid for every nonsingular matrix B and every vector c. • 

4.9. Theorem. Suppose that the design f anr the set of functional G are such that 
to every g e G there is an / e H(K), so that 

g[K\ = JK.d{. 

Then 

(424, i s u p d e ( a , { ) a M ) ] ' " 
r o es„ |_det xO(/i)J 

for every design n, which allows the estimation of every g e G and such that #(£, , ) <= 



246 Remarks. We have S„ <= T„ c T4, since H(£„) <= [H(JFC4)]K. Hence dG(-, {) is 
continuous on S^ and the sup dG(a, {) is well defined. 

aeS„ 

Further the expression det {D({)/D(p)} does not depend on the choice of the 
linear basis of G, hence the right side of (4.24) is well defined. 

Proof . Let qu ..., qr be a linear basis of G. Denote by D(fi) (by 5(£)) the co variance 
matrix of the best linear estimates for qu ..., q„ under the design /i (the design {). 
The functionals qu ...,qr may be chosen so that D(n) is the unit r x r matrix I. 
Further there is an orthogonal matrix C (such that CC = 7) so that 

£ {%)}„• Cj, - XsCis; i ,s = l , . . . , r 
J 

for some reals Af,..., Ar. 

We define Aj, .... gr by 

0. = £ £ . . « . » s = l , . . . , r . 

Evidently aj, ..., ar is a basis of G. We may check directly that for such a choice 
of fli, ..., gr we have D(/i) = I and D({) is a diagonal matrix: !>;;({) = ^.- From the 
assumption of the theorem it follows that there are hu ..., h, e [H(K)Y and /1; ..., /r e 
e ff(X), so that 

gj(8)=(lfld' = (hfldfi; i = l , . . . , r , 9eH(K). 

Thus we may write 

A, = D;i({) = fe d{ = fl;(/,.) = f/,/1, dM ; i = 1, ..., r . 

We now proceed to the proof of (4.24). We have 

sup - £ /<(«) { i r »(<)}<, / » = f i t S2) d/. = i 1 1 U " J = 
« s M r u = i J r i=i A, r i=iA,- L - ^ 

-iz^tfi^r-MT". . • 
r i=i i=i |_det DKuH 

4.10. Theorem. If G and { are as in Theorem 4.9, then 

1 A ( * ^ r d e t D(t) T / r 

- SUp dG(fl, {) ^ ^7— 
raeTí

 V ; LinfdetD(jí)J 



Proof. From the Proposition 4.5 and Theorem 4.4 it follows that there is a design 247 

£* such that det D(£,*) = inf det D(x), and such that S?» <= T«. Hence using the state­

ment b) of Proposition 3.7 we obtain 

[H(Ki.)Y = [^{K(;a):aeSi.}Yc 

<=[j?{K(;a):aeTs}Y = [H(Ki)Y. 

Thus the assumptions of Theorem 4.9 are satisfied if we take <̂* instead of /x. • 

(Received February 4, 1976.) 
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