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Conformal Invariants in Two Dimensions II.
Harry Leyy, Urbana, Illinois.
(Received April 19, 1938.)

In a previous paper?!) the author studied conformal properties
of two or three curves on a surface. Here we continue that
investigation obtaining a series of functions determined by a one
parameter family of curves on an arbitrary surface. These functions
- are relative invariants under transformations of coordinates and
absolute invariants under conformal transformations. In §2 we
obtain some relations between these functions; in § 3 we obtain
the main theorems of this paper, necessary and sufficient condi-
tions, expressed in terms of the invariants, that a given transfor-
mation be conformal, and that given one parameter families of
curves (or given orthogonal nets) be conformally equivalent.

1. Let {C,} be a one parameter family of curves on a surface V
and let {C;} be its orthogonal trajectories. We can orient the normal
to any curve intrinsically by requiring that the positive normal
lie on the same side of the tangent geodesic as does the curve
itself.2) The tangent to a curve admits of no intrinsic orientation.
But for an orthogonal net we are able to orient the tangents
intrinsically by parametrizing the curves of each congruence so
that the positive tangents of each congruence coincides -with the
positive normals to the other. With this convention, the Frenet
equations become

D1;~1‘. = kllzi . . DAy = _‘k_l;nf (1)
Dyiyt = — kydyf Dodf = kody, 1 =1, 2. ~

~ where D, represents the covariant differential operator along {C.},
and k, is the (geodesic) curvature of {C.}.

' If V" is a second surface in conformal correspondence with V,

and if the correspondence is established by pairing those points

1) Conformal Invariants in Two Dimensions I, Casopis. We shall
refertothls paper as I. .

!) Cf. I, §4, and Hlavaty, Differencidlnf geometrie k¥ivek
a ploch a. tensorovy poéet
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on the two surfaces which have equal coordinates, the fundamental
tensors are related by the equations )

9's = ogij. (2)
Let A’ be the oriented unit components of the family on ¥V’
corresponding to {C.}, so that

o = eso—tA 3)

where ot is the positive square root and where e, are each
numerically equal to unity3.)

= 4 1. - (4) -
From (3) (for « = 1) we obtain by differentiation that
k1o = o=l kA + 0iAf A — o), (5)
where o; = —1—% log ¢ and from (3) itself 1t follows that
k') = eyo—(ky — AJa;) (6)
and the analogous relation obtained from {C,}
Ky = o=k, — 4)0)). ‘ - (7

"~ Let us desagnate directional differentiation along {C’l} and {C,}
by the subscripts S and N respectively, so that for example

o of
fs—llﬁ-i, fN—z'a_x.-‘

Then equations (6) and (7) may be written
os = ky — e,0%k',,

oy = ky — egot'. ®

We shall have occasion to refer to the well known integrability
conditions.*) '
fsv — fxns = kufs — kaf v. S )

Finally we observe, if we indicate with &’ and N’ the correspondlng
differentiation in V' that )

fs = qoifs,  fx = eo My - (10)

If we differentiate equations (8) with respect to N and S

respectively, eliminate o5 and oy by means of (8) themselves

%) If we assign a (non-intrinsic) positive direction of rotation on each
surface by-defining the directed angle frem O -te Oy by sin-6 = Vg—} A,’l,”l N

it follows that the given correspondence is directly or inversely con-
formal aecording as e;eg = 1-or — 1.

4) Graustein, Invariant "Methods in Classwa.l ‘Differential
Geometry, Bulletin, Am. Math. Soc. 36 {1930), p. 497.
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~ and apply the integrability conditions (8), we obtain by an ‘im-
‘mediate calculation (in which we must also use (10)) that
ee{(k'))s — (Ky)w} = o= {(ky)s — (kz)w}- ' (11)

g =y -2
t\fhere follows our previous result,’) that

Vet t)s — (ke

is an absolute conforma,l invariant for directly conformal trans-
formations while for inversely conformal transformations

V7 s)s — Ea)w} = —Voilka)s — (o).
¢ If we designate by 4,4 the invariant analogous to Beltrami’s
second differential parameter

Azl = Aij g%

Since

it follows that

and consequently Vg{(kl)s — (kz) N} is expressed explicitly in terms
of the family {C,} alone. The above equations thus interpreted
give us ‘a conformal mvarlant of a smgle congruence (or semi-
invariant, if ee, = —1).

Although we shall speak throughout the remainder of this
paper of the conformal invariants of an orthogonal net we must
bear in mind thaf the invariant is determined complete]y by
- a single one parameter family of curves.

) 2. From the invariant of the preceeding section we can develop
a sequence of invariants in the following way. Suppose F and F’,
functions referred to ¥V and V' respectively, satisfy the equatxons

P = . ; - (13)

If we differentiate Wlth respect to S or N, make use of (10), and
ehmmate the derivatives of ¢ by means of (8) we obtain that

F’, = a"1F,, v . (14).
L ezF g = 0" iF,, - : (15)
Where A

a.nd F', and F o are the same functlons of the prxmes. e
. Let us define a sequence of functlons

L f=s—®w (e
e a,l'—(fa. a,)s—(r+2)kf,. SR )

') Cf. I, 54 and the references there gwen to Kasner.
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fa,.»..a,.2 = (/a,...c;,)N'— (1' + 2) kl fﬂa.;.&, ' . (18)
where . &, &g, .. ., 0p =1, 2; r=10,1,2... and f',,_,, is defined
by (17) and (18) written with primes. Then

ePtlettlg t fa iy =0"* fu...q o (19)
where p is the number of subscrlpts l g of 2 in the set oy .. . &,
ptg=r

From (19) we see that the functions f.. s as thus defined
are conformal invariants of the net (except poss1bly for sign),
. and therefore of a single congruence. They are not all algebraically
independent. For if we express f. . .12 and f, . .31 in terms
of f... and its derivatives and make use of the integrability
eondltlons (9) we obtain at once that

foo..813— fa.pa1= (" + 2) ffa...p ) (20)

where 7 is the number -of indices «...pg. Moreover from ”(20)
itself we obtain by differentiation that

fa..p12y — fur. p2iy = @ + 2) (fa...pv + frfa..8) . (21),

By induction it consequently follows
fo..6=h-. PR

where * represents f’s w1th fewer indices than appear in f.. ..
and 1...1 2...2 is a permutation of «.

: From (20) we observe that if all the functions,f,,,“_,, with
a given number of subscripts are equal, their common value must
be zero and that finally f itself must be zero. Likewise if f... g, = 0
and f....p; = 0 we obtain by applying the integrability condi-
tions (9) that f... s must vanish,
3. In this section we shall seek sufficient conditions that -
a given point correspondence between two surfaces be conformal
and that given orthogonal nets be conformally equivalent. Let. us
recall that in any point. correspondence between two surfaces
there necessanly exists on each surface an orthogonal net whose
transform is also orthogonal. We shall call any such net a Tissot
net of the correspondence.- We <can associate with a pair of
¢orresponding Tissot nets two numbers e, and e, (g = ;* = 1)
in the following way: let the Tissot nets be parametric on each
surface and let the directions of increasing parameter on.one
surface be the intrinsic orientations of the tangent vectors of the
net. Then on the second surface the intrinsic orientations deter-
_mined by its net may ditfer in sign from the directions of i increasing
parameter. Let. e, and e; indicate these differences in sign. With
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* this agreement the functions f and f’ are completely determined;
we shall proceed to prove the following theorem:

If, in a point correspondence between two surfaces,
for a pair of corresponding Tissot nets

V7 eek'))s — (Ka)w} is equal to Vg{(k)s — (ka)v}
the two nets.are conformally equivalent.
The linear elements of the two surfaces may be written

ds? = E du? + G de? - (22)

and
' dg? = ET,2du? 4+ GT.2dv?, T, > 0, T, > 0. (23) .
The curvatures of thé parametric curves of (22) are given by®)

by = ]og VE, &,= ————log Ve (24)

V_ VE

Vit = e o8 |/ % (25)

On the surface with fundamental form (23) we will have

so that

e
). 1= ——1—_, 2 =
‘CrlE il
so that we obtain in place of (24) and (25)

K, = TV— log (TIVE),
: (26)
| A
and consequently
prayy 0* T a- .
elezl/g / =m10g(ﬁl/ﬁ)‘ _ (27)

-By virtue of our hypothesis the left hand sides of (25) and (27)
are equal; comparing the right hand sides it follows that

log Ty —log T’y = @,(u) — @a(v).

U
Tl =T27

~ Consequently

¢) Cf. Bianchi, Lezioni di Geometria Differenziale, Pisa (1922),
p. 267. When we take geodesic curvatures as necessarily positive the formulas
of Bianchi are valid only if the directions of i mcrea.smg dlrectxon coincide
with the intrinsic directions of the net. Cf. Hlavaty, 1.

12



where U(V) is a function of u(v) alone Substituting thls value
of T, in (23) we obtain that .

dg? = ——2- (BU? du? + GV2dv?). © (28)
Now the transformatlon
u—fUdu v—dev '
whlch represents only a change in the parametrization of the

curves of the net shows that the parametric net on (28) is con-
formally equivalent to the given net on (22).

The linear element (28) shows that a transformation which

leaves |/g f invariant (except possibly for sign) is not necessarily
conformal. We are able however to obtain sufficient conditions
that a transformation be conformal. The theorem follows:

If in a correspondence between two surfaces, gif,
g1f;, and g1f, formed for a Tissot net on one surface
are equal respectively to eeg?f, eg'tf,, and eg?f,
formed for the correspondlng net and if f =0 the .cor-
respondence is conformal. .

To prove this theorem it is sufficient to prove it for the linear
elements given by (22) and .

s® = EU?du? + GV?2 dv? (29)

(where U and V are functions of # and v alone) since the.

correspondence from (28) to (29) is already conformal and cor-
résponding invariants for (28) and (29) are equal.

From (24) and (25) it follows that for the parametric net of (22)

we have

. BM M oM |
: g h= (F) {am ov + ou ov Fa—a—} . (30)
and aaM 02M oM -
2 X .
gt fz ( ) {au 61)2— ou ov _55-} - (3,1) .
where o ’ '

= log.l/g—; | , (32)

If we compute ', a and f', for the parametric net of (29) the equations
~ corresponding * to the hypotheses of the theorem become the
following

VE v_(VU VV) @3

123 .



and .
VG V_(VU v (34)

We shall show that functions U and V satlsfymg these equations

are necessarily equal (and therefore constant), so-that (29) is

conformal to (22). If we differentiate (33) and (34) with respect

to v and u respectively and eliminate the derivatives of U and V
by means of (33) and (34) themselves, we obtain

Vo —y7 (SVEL_LVECH)

T 7 (.2 Vafz 1 VEGf1fz
YT —17) (G ol — L PEGRR)
By expanding the second factor in each of these equations and
making use of the defining equations (17) and (18) we find they

are reducible to
2”12 - 3f1fz’ 2”21 - 3f1f2

respectively. If these quantities were zero it would follow from (20)
that f would necessarily vanish. But this is contrary to our hypo-
theses and therefore the first factor in (35), namely |/U — VV
must be zero. _

4. It is well known that the vanishing of f is a necessary and
sufficient condition that a net be isothermal.?) In this section
we propose to give some examples of nets for which f, = 0, f + 0.
Let us take a linear element in the form

(35)

ds? = du? 4 G de? : (36)

and then it follows from (25) and (30) that
Vafl = Ryuw + Ruo Ry, (37)
where ' '
R =log V@— : ’ (38)

and where the subscripts indicate partial differentiation. If (36)
2.
were Euclidean, %EVG would be zero and it would easily fellow

that the vanishing of f, inplies the vanishing of f, so that there
exists no family of curves in the plane with rectilinear orthogonal
trajectories and such that f, =0, f &= 0. We can however find
other examples of curves for which }, = 0. We obtain from (37)
that a necessary and sufficient condition is that

Ru w -+ R, R, = 0. ’ (39)

kY

7) Cf. Hlavaty, 1. c.
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Mu]t;ply by e® and mtegrate w1th respect to u, obtammg
. wo =.Ve R, V= V(v) , - (40)
If we multiply (39) in turn by R, and ?Rv (which is possible °

since the vanishing of V implies that f also is zero) we obtain

75 (Bt = — 2 (T, (a1)
il(Ro)* —rgem “2)

By makmg use of (40) we can mtegrate (41) Wlth respect to v
and (42) with respect to u obtammg ' :

Ruu'—EU—'Ru, : ’ U= U(u)’ .
-Rve =——2'R92+R07‘+'§—VV1’ (Vl = Vl(v)'

We can show that for any choice of the 'arbitra.ry functions U, V, V,,
(40) and (43) are completely integrable and. consequently the
system (40) and (42) is equivalent to (39)..

~ Let us now define a function a(u) as a solution of
" =3U—@)? . (44)
and let us denote by B

. . R=R—a. ' (45)
The first of (43) then becomes ' S
Ruw=—13R2—Ra'. . (46)

- Since R., cannot be zero we obtain by one integration that »
etR R, — 2¢la—’
and mtegratmg a second time it follows that '
“—a+2log{fe—¢du+ﬂ}, - @
where . and ﬁ are arbitrary functions of ». Returning to (40) and
the second of (43) we find that for R to be a solution the arbitrary.
functions already introduced must satisfy the-following conditions
‘ V = —2ef, PR .. (48)

o +———(oc)’—Ko¢———VV1—O : ,'(49)
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Finally since @ = ¢2&, it follows that
o G = ex=+o) (fe—2 du + B4

anversely if 'we select arbitrary functions «(v), B(v), and a(u)
(subject to the restriction that g’ % 0) and if we define ¥ by (48) .
it follows that f; =0, f = 0. If we introduce new parameters
along the net by the transformation u = Je—rdu, v = fexdv
we obtain the canonical form

dst = du? + (u + f)* do*.
The invariant f, consequently vanishes for the parametric
. curves of the linear element
. 1
S 1+t By

But here the parametric curves are the bisectors of a net of
Tchebychef in which the angle w of the net is given by?®)

tan o = (u + B)%
We can find an example of such a net in the plane by
requiring (50) to have zero Gaussian curvature. One solution
'is f = v; then one family of the net of Tchebychef consists of

parallel straight lines and the other family is generated by the
curves whose parametric equations referred to Cartesian coor-

dinates. is?)
14 16at v 8az
o= [Tt v=[rriemd

More generally we can show by direct computation, the
following: let a net of Tchebychef in the plane be generated by
a straight line 7 and a curve C; its bisectors form an orthogonal
mnet for which f, = 0 if and only if the angle w between C and
the lines parallel to [ satisfies the equation

(du? + (u + Byt dv?). (50)

ds?

2
(((li—(:) = sin w (@ + a cos w + b sin w),

where a, b are arbitrary constants and s is the arc of C.

As a last example we consider a net for which f,..., =0,
where the number of indices is m. If the linear element referred
to the net is E du? 4 @ de? then f, ..., will still be zero for the

parametric net on a surface with linear element %duz + do2.

8) Cf. Bianchi, 1. c., p. 153.
’) Cf. Bianchi, L. c., p. 161.

126



But here the curves dw = 0 are geodesics, and therefore k; = 0;
then f, . .., = 0 becomes (k)ss...s = 0 so that a net for which
fi.. .1 (mindices) vanishes is equivalent to a net of geo-
desics and their geodesic parallels in which the latter
have curvature whose (m + 1)* arc derivate is zero.

Institute for Advanced Study, Princeton, N. J., and University

of Illinois, Urbana, Illinois.
*

Konformni invarianty ve dvou dimensich IL.
(Obsah piedeslého &lanku.)

Autor rozsifuje vysledky predeslé price (stejné pojmenované)
na studium konformnich invariant kongruenc{ kfivek na plochéch.
Naléza systém hustot, jeZ jsou absolutnimi konformnimj invarianty,
udéva jejich vzidjemné vztahy a pouZivé jich k FeSeni problému
konformni ekvivalence kongruenci.

%
‘Konforminvarianten in zwei Dimensionen II.
(Auszug aus dem vorstehenden Artikel.)

_ Der Verfasser verallgemeinert die Resultate seiner vorigen
gleich benannten Arbeit auf die Konforminvarianten der-Kon-
gruenzkurven auf einer Fliche. Er findet ein System von Dichten
auf, welche absolute Konforminvarianten sind, untersucht ihre
gegenseitige , Beziehungen und beniitzt die erhaltenen Resultate,
um das Problem der Equivalenz von zwei Kongruenzen zu lésen.
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