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All numbers in this note are real. We denote by £, the n-dimen-
“gional space; its points will be denoted by x = [z,..., 2,], y =
= [Y1, --+s Yn)] etc., especially o = [0, ..., 0]. If A,-4 are numbers,
we put Ax + py = [Az; + pyy, ..., ATy + pyn) ete. k points x1, ..., xF
are called independent if A,x! + ... + A:x* = o implies 4, = ... =
= A = 0. Let M C E,; we denote by Int M and Fr M the interior
and the boundary of M, by «M the set of all points ax where
xe M, by M -+ a the set of all points x + a, where x ¢ M (transla-
tion), by B(M) the set of all points x — y where xe M,y e M, by
V(M) or V,(M) the Lebesgue measure of M. (In the following, only
measurable sets are considered.) A compact (i. e. closed and boun-
ded) convex set having an interior point will be called a convex
body. We say that a set M possesses the center c, if x ¢ M implies
.2c — x e M. If M is a convex body, then B(M) is also a convex body
having the center o. Obviously B(M) = B(HM + a). The set of all
points contained either in M, or in M, ... or in M; will be denoted by
M,UuM,V...UM;orUM; By K,wedenote thecube 0 < z, < 1,
a0 2 < 1 1gigk -
Lattice points are points with integer coordinates. Two points:
x,y are called congruent, x =y, if x —y is a lattice point, i. e,
‘24 = y; (mod 1). If M C E, is a compact set having an interior point,
we denote by 7;(M) the least number 7 > 0 such that M contains’
at Jeast ¢ independent lattice points. A theorem of Minkowski says .
(1. ¢, p. 211—219): If M C E, is a convex body having the center -
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©o, then _
T, (M) Tz(M) e fn(M) Va(M) é 2n, (1)

Simpler proofs of this theorem — and, in fact, of a slightly more
general theorem — have been given by Davenport (1. ¢.) and Ester-
mann (1. ¢.). The reader will find this generalization in this note

- (Theorem 1(. In this note I shall show that Estermann’s method
also allows us to give the characterization fo all cases in which the
sign of equality occurs in (1) (see Theorem 2 and Remarks 5, 6). This
cha acterization is also due to Minkowski (l. c., p. 235—236), but
he used another and more comp.icated method. The method of the
present note follows very closely Estermann’s proof, only with
supplementary considerations concerning the appearance of .the
equality sign in the different inequalities given by Estermann. In
order to make this note self- contained, I repeat also some considera-
tions of Estermann.

In the proofs I use some known results concerning geo-
metric properties of convex bodies (Lemma 5 and the inequality
Va(B(S)) > 2V (S), valid for convex bodies having no center —
Remark 3), but I use no results of the geometry of numbers; on the
contrary, I give in the proof of Theorem 1 and in the Remarks 2,3,4
all auxiliary results of this kind necessary for the proof of Theorem 2.

%* *
*

If z is a number and & the greatest integer & < x, we put
rz)=re=a—§& thus 0 rz < 1. If x = [z, ..., 2,], we put
x = 1(x) = [a,, .. s Te-1, TTk, Tkt 1, - s¥p]and Rpgx =11y ... X =
= [rz,, ..., rap, xk“, ety Zn).. OF course M and R:M (M being
g set) denote the set of all points ryx or Rix, where x € M.

Lemma 1. Let 1 < k < n;Vet S be a measurable bounded set in
En. Let C be the set of all points x = [y, ..., x,] € 8 such that there is
apo"nty = [y‘l) teey gn] € S with x = YL, X FY, Tri1 — yk+ = Lkt —

= ... = Zn — y» = 0. Then V(R.S) < V(8), if V(C) >0,
-but V(R»S') V(S), if V(C) = 0. ’

Proof. Let Sp,, .., m; be the set of all points [z,, ..., #,] ¢ § such

that m; < z; < m; 4 1 for 4 = ...,k (mg integers). Then

S = U Sm,,...,mka RkS = U RkSm,,...,mk;
Comy e, my My, ..., My,

But RiSp,,..,m, arises from Sm,,...m; by means of a translation,
‘and so . ~ ' .

! V(S) = EY(SM.,....mk) =’2V(Bksml,....mk) 2 V(RJ;S),
" the sign of equality being valid if and only if the common part of
every two sets RiSw,,...,m, has the measure zero. But this condi-
: tlon i8 equivalent to V(C) = 0.
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Remark 1. Let M be a bounded set. Obviously every point of
Fr R M has either at least one integer coordinate or it belongs to
Ri Fr M. Thus, if V(Fr M) = 0, then also V(Fr ReM) = 0.

Lemma 2- If T arises from S by means of a translation, then
V(RiS) = V (ReT).

Proof. (Exactly the same as in Estermann, Lemma 1.) De-
composing the translation into its components along the axes, we
may restrict ourselves to the case 7' = {;,8, where {; means the
operation replacing the i-th coordinate x; by x; + l. If ¢ > k, then
R.T arises from RS by means of a translation, and the result is
obvious. Next suppose ¢ < k; we may also suppose 0 < [ < 1. Put
RiS = U;sincer(z; + 1) = r(v(z;) + 1), we have Ri(£iS) = Ri(tiU).
Let U, be the set of all points of U for which 0 < z; <1 — [, and
U, of those for which 1 —1 < z; < 1. It follows that RiiU =

= iU, U t;_U,, where the two terms have no points in common.
Thus

VR#iS) = V(R#U) = V(§U,) + V(ti1U,) =
= V(Uy) + V(U,) = V(U) = V(RaS).

Lemma 3. Let S C E, be a convex body, u > 1. Then V(R,uS) =
= V(R:S). The sign of equality is valid if and only if V(R,S) = 1,
t. e. (R,8 being obviously closed in K,) if R,S = K,

Proof. Choose a point a so that 7' = § 4 a contains o in its
interior, so that 7' C Int uT'. But uT' = uS 4+ ua, and so V(R,T') =
= V(RaS), V(RauT) = V(RnuS). But we have V(R.T) < V(RpuT).
If V(RaT) < 1, there is a point x € Fr (R,T) in the interior of K, and
it is clear (see the Remark 1) that x e Int (R,uT"); thus obviously
V(R,T) < V(RuuT).

In the followmg two Lemmas a convex body S C E, and an
integer k& (0 < £ < n) are given. If x, = [=,, ..., Z,], X, = [Zk+1, ...
z,], we shall write [z,. Z,, ..., Ta] = [X;, X,)- We denote by S’ the

set of all points x, € Bp—x such that there is a point x, € By with
[x15 %] € S (the ,,projection‘‘ of 8). If x, € .,y is given; we denote by
S(x,) the set of all points x, e £ such that [x,, x,] ¢ S (the ,,inter-
section* of § with a k-dimensional plane).

Lemma 4. Let k be an mteger 0< k <m; let S C E, be aconvex.
body; let 4 > 1. Then '

- V(RguS) = ,u"—"V(R.S) . -
The sign of equality is valid if and only if '
Re 8(x;) = Ka for every x, ¢ 8’
(Kusof course the cubeO£w1<l Wm0 m< ).

.N
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Proof. x; € Bn—k being given, the set of all points x, € E; such
that [x,, x;] € RiS i8 obviously R S(x,) and the set of all points

%, € By such that [x;, x,] e RiuS is obviously Riu S(; x,). Thus we

have
Va(ReS) = [Vi(Ra 8(x3) ey,

. : 1
Va(RiuS) =£‘ Vk(Rk,uS('lI xz)) dx, = H"_kg Vi(Ran S(y,)) dye.
u _ .

Comparing these formulae, and using Lemma 3 (with & instead of n)
we get the assertion of the Lemma.

Lemma 5. Let k be an integer, 0 < k < n; let 8 C Ey be a convex
body; suppose that V(S(x,)) 13 tndependent of x, for x, € 8'. Then there
s a convex body Sy C Ey and k(n — k) numbers a;; such that S is the
set of all points [z, ..., x,], given by the formulae

Z i +y (= L..., k),

j=k+1
- where [Tk+1, ..., Tn] runs over S’ and (Y1 - yk] over S,.
For the proof see Minkowski, 1. ¢., p. 209—210. Obviously
every S(x,) arises from S, by means of a translation.

* *
* .

A We proceed now to the formulation of the main results. Theo-
rem 1 is the Estermann’s theorem, which is, as observed by Ester-
‘mann, implicitly contained already in Davenport’s proof of (1) and
which constitutes a shght generalization of Minkowski’s inequali-
ty (1).. .

Theorem 1. Let S C Ey be a convex body. Then

7(B(S)) ... T(BS)) V(S) < 1. : (@)

Theorem 2 contains the characterization of all convex bodies 8
for which the'sign of equality in (2) is valid. We shall prove Theorem
1 following exactly Estermann’s proof, but preparing at the same
time the proof of Theorem 2.

_ 8 being given, we put 74(B(8)) = Ai. There are n independent
lattice points uf (¢ = 1, ..., n) so that 4 B(S) contains the point uf,
thus. uf = v — wi, v'el,S wie 8. Some of the A’s may be

-equal; i. e. there are natural numbers m, ky, k,, ..., km (k4 + . +
+ kw = n) and m numbers 0 < p; < ... < Um such that puttmg

S l‘,-—-o l.—kx+ +k,(.,-1 m) @)
“we have - - '
. l‘ =. M3 fOl‘ l"'-l < Q' él” lm =n. L. (4)
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In this case we shall say that § belongs to the class (n; m; kys . ., km;
P15 - -+ um)- It is cléar that, for l;..; < ¢ < I, we have ute Fr M4 Q3(S),
vie Fr 1S, wieFr u;S. Applymg a homogeneous linear substitu-
tion of coordinates with integral coefficients and the determinant
unity (such a transformation — we call it U-transformation —
changes neither the 4;’s nor V(S)) we may attain that the points

= [u‘i, .. .,uf,] satisfy the conditions _
u::#Oforl_g_ign,u}:=0forl§_i<y’§n. (5)

This transformation transforms S into a body 8, which will be
called an ,,adapted body‘ (of course, it may happen that S may be
~ adapted in several different ways).

Proof of Theorem 1. Let S be a convex body of the class
(5 m; Ky ooy Koms s oo pim);
we may suppose S adapted The inequality (2) may be written
prus ... V(8) < 1. (6)
Put
S = RyueS (1 K k< m), Tr = Rym+1S (1 Z k <m),
so that .
: Si+1 =Ty ritn4z - T TR (1 S b < m).
Obviously. 8y, C Ky, and so _
VSm <1 (7)

For 0 <& < p; the body (4, — €) S contains no pair of congruent
points, and Lemma 1 and 3 give

i V(8) = V(uS) = V(8y) = V(By(uy — &) 8) =
= V((t, — &) 8) = (1 — &)* V(S),

V(8)) = pi V(8). (8)
Let1 < 1 < m, replace in Lemma 1 the operation R = 11, ... 1y by
T4 - and apply Lemma 1 to theset T =r, ... 1 y,ﬂS The

correspondmg set C of Lemma 1 is obviously conta,_med inr..rn.
. Fr (u3418); since V(Fr u;1,8) = 0, we have (Lemma 1) V(C) = 0
and so , ‘

V(Si+1) = V(rpes ... 1y, T) = V(Ty). (9
But, following Lemma 4, we have ‘ .
V(T z("'*’) VS) (1<]<m). (10)
’ .

~ From (7), (8), (9), (10) we get
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12 V82 T] (”':Tl)m D uimV(8) = phubs . pukn VIS)
i=1 .

and (6) is proved.
Remark 2. If in (2) (i. e. in (6)) the sign of equality is valid, We

- shall say that S belongs to the (extreme) class & (n; m; kl, voey Koms

Py, --., im)- This happens (S being adapted) if and only if in (7) a.nd
(10) the sign of equality is valid.

Remark 3. Suppose that the sign of equality in (2) is vahd then
8 has a center and AS contains to every point of the space a congruent
point, if A 2> Ax1)

Prool. I. If « > 0, then ri(aM) = a—17i(M). If 8 is a convex
body, then V(B(S)) > 2*V(8),?) except the following case: If S has
a center, then B(8) arises from 25 by means of a translation, and so
V(DB(S)) = 2"V (S). Because c13(»5’) has the center o, wé have
B(B(S)) = 2B(S). Thus, if S is a convex body havmg no center,
then (2), applied to B(8), gives

12 5(B(B(S))) -+ wa(B(B(S))) V(BV(S))
> 5(2B(8)) ... 7(2B(S)) . 2*V(S)
=5(B(S) ... wa(BV(S)) . V(S).

I1. Following (7) and the Remark 2 we must have V(S,,) =
= V(RpiaS) = 1 “and so, following Lemma 3, V(R,.}.S) 1 for
AZ An, 1. e. RyAS = K,.

Remark 4. Especially, (2) 1mp11es Y V(S) < 1; if the sign of
equality is valid, we must have 3, = A, = ... = 4,. Cons1dermg the
body 4,8 instead of 8, we see: If S is a convex body, 7,(B(S)) = 1,
V(S) = 1, then there are n independent lattice points contained in
Fr.QB(S), 8 has a center and AS contains, for every A = 1, to every
point of the space a congruent point,

Theorem 2. Let n, m, k,, ..., ky be positive mtegers, ey + ...+
+km=n,let0<p1</z2 .o < tm and put

I, = 0, l.-=lc1+.:.+k.- G=1,...,m), (11)

80 that Ly = n. Then a convex body K C E, belongs to the class

T Emymiky, ol ks pr ey fm) o (12)

. sf and only if tt arises by means of a homogeneous linear transforma-

tson with integral coefficients and the determinant unity from a convex

‘body S which has the following form: Choose m convex bodies Qs
{8 = 1,..., m), where’

1) These propertles are changed neither by a U- transformat:on (espe

,. eially by an-adaptation) nor by a translation.

4) See e. g. Bonnesen-Fenchel, 1. ¢., p. 105.

\ - =
. —
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Qt‘ C -Ek‘-’ V(Qi) =1, rl(%(Qi)) =1 (l = ls LR k‘)

(V means Vi) and real numbers a;, and let S be the set of all points
{z,, - ., xa] Of the form
r; = z ai;x, + Yi for lo < :_<: l]y
i=l1+1 .

Xy = $ ai)xj + y" fOI' ll < 1: é lz_,

Zd
j=lat1
...................................... (13)
n
T= >  a%+ Y for Ip-o <t by,
i=lp—1+1
Ty = Y; for lp <ty =,

where the points

[y - s s o s <o [?/t,,,_1+1, ) ?/lm]
run — independently of each other — over the sets [l N T P
K, Qm respectively.
To prove this theorem, it is sufficient to prove:

I. Every adapted body S of the class (12) has the form descri-
bed by (13).

II. Every set S given by (13) in the way described above be-
longs to the class (12).

Proof of I. For m = 1, I is a mere tautology. Thus let m > 1
.and suppose that I is proved if m is replaced by a smaller number.
Let S be an adapted body of the class (12). To simplify the notation,
Put u, = u, py = v, ky = k. We denote again with S’ the set of all
points x, € B, such that there is a point x; € B¢ with [x,, x,] ¢ S and
by S(x,) (for x, € E,—;) theset of all x, € Ex with [x,, x,] € S. Follow-
ing (10) and the Remark 2, we have

n—k
V(RurS) = (%) TV RasS)
and Lemma 4 and 1 give

R V(8(xe) = V(R S(xp)) = 1

for all x, € 8'. But (u — &) S(x;) contains, if 0 < ¢ < u, no pair of
congruent points, and so, putting ¢; = 1(B(8(xy))) ¢t =1, ..., k),
we have g, > u — ¢ and so , '

(1 — eF V(S0)) < o} V(S0xa) < @ - 01 VSOG) < 1;
thus, finally, '

137




VM) =1, g =@=..=@=4p .
Thus V(8(x,)) is independent on x,.

Following Lemma 5 the body 8 is the set of all points [z, ..., Z,}
. such that

n

ri= 3 at;+yi (G=1,...k) (14)

j=k+1

here [zz+1, ..., 4] runs over 8’ and [y, ..., y&] over a convex body
#—'Q, which of course arises from S(x,) by means of a translation, so

that .
Ql CEk’ V(Q.l) = 1, T"(Q}(Ql)) =1 fOI‘ 7= 1’ ceey k (15)

Evidently
Va(8) = p=*Vi(@) V- (S"). (16)
Put A; = 1(BVB(S))for1 <1< n —k, 4; = n(%(S’))forl i
We shall prove that A; = Age;fori=1,...,n —
First: From (5) we see that the pomhs u' = [uH,, e u:,]
(1 =k + 1, ..., n) are independent, u¢ 4; B(S’); and so obviously
A‘ < Ak+ie Conversely, let p"“, ., pz beindependent lattice points,
pstt e Fr A B(8’). Taking a fixed value of 4, put 4" = Max (A,, )
We have pitie A’ B(S'), so that there are two points qit’=
=gkt e A, S = st L Y e 4087 with p"“ =
= qitt — s'z‘“ We shall defme 2k numbers ¢i* ST (G =1,...,k)
as follows: choose [y, ..., yx] € A4’u—'Q, and put

= Dagttry G=1,..,k);

: 1=F+1
then put '
- k-H z a,ls, + y,’ (7 =1, ceey k)
: : 1=k+1
. where [y, .. o y;]e A/u—1Q, is chosen so that [s}*%, ..., sf""] =
=[¢"" ..., i) this is possuble following Remark 4, since

2..' -1 > 1. Puttlng

. qk.‘-i [qk+‘ * q?k‘+'] sk+i = [sll-:+1’ * 'gfkl+‘]
- we gee that q¥+i ¢ 4;'S, s¥+7 ¢ 3’Sand that u?, ..., u¥, qk+1 — sk+1 | .'.,
- q® — s* are independent lattice points. Thus /I. > > pu and so
A = Ag. Since g+t — sk+ie }. B(S) = A; B(S), we see tha.t
lh-}.l < Al' &k-f.g < Az, ceey l A”-k Thus .
. .’1{"’1]‘44 fOl‘Z‘“l, .,'n-—k -(].7)_
, Usmg (18), (17), we obtain : R )
) ]. = ll An V(S) AlAﬂ oo An—-—k V(S'),

~

Ly



i. e. 8" is a body of the class :
_(r‘;’(n _ kl; m — l, kz, ooy km; Moy <oy .um)’
in addition, S’ is adapted, as it can be seen from the form of

uk+1, ..., u” (see (5)). Following our supposition, S’ is given by the
formulae of the form (13), but only for ¢ > [,, i. e. for # > k. Combin-
ing these formulae with (14) we see that § is given exactly by the
complete set .of formulae (13).

Proof of II. Let S be given by the formulae (13); we write
(13) in the condensed form

x,-:Z'ai,x,-—{— Yi (’I/= 1,...,n). .
It is obvious that § is a convex body and that u?" ... yfn’" V(S)= 1.

It remains to show that, putting 7; = 7;(B(S)), we have v; = y;,
1. e.

Ti é M for l;—l <1 g l,'. . (18)
> pfor iy <1 < 1 (19)
First we shall prove: If x = [21,_+1,..., %] 8 @ lattice point in

B(Q:) (there are k; independent lattice polnts in B(Q:)) then there
areJntegers Ty, Xy - .y Ty, Such that

[®1, «e0s 21, 0, ..., 0] € e B(S).
(This obviously will prove the inequality (18).) _
Proof. We have x =y’ —y”, where y® ¢ @, (p = 1, 2); let
Y (-1 <1 < I;) be the coordinates of y®).-We complete these

sequences of k; numbers to sequences -of n numbers ¥, .y

(p = 1, 2) in the following way:

(i) The numbers » with l,_1 < ¢ £ I; determine a point in
,u ,Uth .

(ii) Putting -

g = Xagpxy + v, x" = Ea};.xh” + y” (t=1,...,n), (20)

we put y;” y, and so ;" = z; for © > [, and choose for 1< l,_l .

the numbers yi’ arbitrarily and the numbers y;" so that =/ = ;"
(mod 1); this is possible, since u;'u; contains, for j < ¢, to every

oint of space a congruent pomt (see the analogous conmderatlons
in the proof of (17)). .

. +It is then obvious that the point [2," — 2, ..., 2, — z,"] has
the required properties. ‘

Next we shall prove: . o
If {2y, ..., @] =[2), ..., @' 1= [2, ..., 2a"] i3 @ laittice point,



{z‘,”’, cen xﬁ.”’] €eAS (p=1,2), where 0 < A < p;, then ;=0 for
¢ > l—y. (This obviously will prove the inequalities (19).)

Proof. We have again the formulae (20), but now the numbers
¥$” (1, < i < 1;) determine a point in Auj '@ For i > l—; we
. have #/ — 2" = yi’ — y" = 0 (mod 1) and so (since uqt < 1)
¥ —yi" =0, 2/ — ;" = 0. Thus we get for l,y—» < 1 < Iy

x.' —_ xi” — y'-' —_ yi” =0 (mod 1)

and so, if" Auml; < 1, we have i —yi" =0, i — 2" = 0 for
l-1 22 > l,,._z This consideraticn may obvmusly be put forth
as long as @ > l¢_1 and we get, for these values of 1, the desired
equation z;' — ;" = 0,

Remark 5. We know that Q, has a centre (Remark 4) the coor-
dinates of which may be denoted by wjc; (i1 <1< ). It is
obvious from (13) that S has the centre the coordinates of which
are the numbers dj, ..., d, given by the equations

d.' = Za.-',dj + Cq (’L == 1, ceay n)
It is obvious (see the explicit form (13)) that [d,,...,ds] = 0 is
equivalent to [c,, ..., ¢y] = o.
Remark 6. If a convex body S has the centre o, we have
B(S) = 28 and so
7,(8) . <. Ta(S) V(8) = 2",(B(S)) ... ta(B(S)) V(S).

Thus Theorem 1 gives Minkowski’s inequality (1) and Theorem 2
(see Remark 5) gives also the characterization of the convex bodies
with centre at o for which the sign of equality occurs in (1); it is
only necessary to put ¢, = ... = ¢, = 0 in Remark 5.

*
0 Estermannov® dikazu jedné v&ty Minkovského.
(Obsah pifedeslého ¢lanku.)

Estermann podal neddvno novy jednoduchy dikaz Minkow-
-ského nerovnosti (1), v niZ S je konvexnf téleso se stfedem v pocatku,
7{8) jsou postupné minima télesa S. V tomto élanku ukazuji, jak lze
~Estermannovou methodou dokézati daldi vétu Minkowského, jed
charakterisuje ona télesa S, pro néz v (1) platf znamen{ rovneosti.
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