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All numbers in this'note are real. We denote by En the w-dimen-
sional space; its points will be denoted by x = [xx,..., xn], y = 
= [yi> •••> Vn] ©tc, especially o = [0, ..., 0]. If X/fi are numbers, 
we put Ax + //y = [Xxx + fiyx, ..., Xxn + fiyn] etc. Jc points x1, ..., x* 
are called independent if X{*1 + ... + A*x* = o implies Xx = ... = 
= Xk = 0. Let M C En; we denote by Int M and Fr M the interior 
and the boundary of M, by ocM the set of all points ax where 
x € M, by M + a the set of all points x + a, where x e M (transla­
tion), by 9}(M) the set of all points x — y where x e M, y e M, by 
V(M) or Vn(M) the Lebesgue measure of M, (In the following, only 
measurable sets are considered.) A compact (i. e. closed and boun­
ded) convex set having an interior point will be called a convex 
body. We say that a set M possesses the center c, if x e M implies 

.2c — x € M. If M is a convex body, then ^(M) is also a convex body 
having the center o. Obviously <£(M) = <33(if + a). The set of aU 
points contained either in Mx or in M2... or in M* will be denoted by 
if, U M2 U ... U Mk or U Mi. By Kn wedehote the cube 0 <£ xx < 1, 
..., 0 < : : r n < l . JS*^* 

Lattice points are points with integer coordinates. Two points 
x, y are called congruent, x==y, i f x — - y i s a lattice point, i. e. 
-X{ == yi (mod 1). If M C En is a compact set having an interior point, 
we denote by ti(M) the least number T > 0 such that xM contains 
at least % independent lattice points. A theorem of Minkowski says 
(1. c , p. 211—219): If M C En is a convex body having the center 
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o, t>nen 
tl(M) r2(M)... rn(M) Vn(M) £ 2». (1) 

Simpler proofs of this theorem — and, in fact, of a slightly more 
general theorem — have been given by Davenport (1. c.) and Ester-
mann (1. c.). The reader will find this generalization in this note 
(Theorem 1(. In this note I shall show that Estermann's method 
also allows us to give the characterization fo all Cases in which the 
sign of equality occurs in (I) (see Theorem 2 and Remarks 5, 6). This 
cha acterization is also due to Minkowski (1. c , p. 235—236), but 
he used another and more complicated method. The method of the 
present note follows very closely Estermann's proof, only with 
supplementary considerations concerning the appearance of the 
equality sign in the different inequalities given by Estermann. In 
order to make this note self-contained, I repeat also some considera­
tions of Estermann. 

In the proofs I use some known results concerning geo­
metric properties of convex bodies (Lemma 5 and the inequality 
Vn(9}(S)) > 2nV(S), valid for convex bodies having no center — 
Remark 3), but I use no results of the geometry of numbers; on the 
contrary, I give in the proof of Theorem 1 and in the Remarks 2, 3, 4 
all auxiliary results of this kind necessary for the proof of Theorem 2. 

* * 

If x is a number and £ the greatest integer £ _., x, we. put 
T(X) = TX = x — £; thus 0 <[ TX < 1. If x = [xx, ..., xn], we put 
r*x = r*(x) = [xl9 ...,xk~i, Txk, xk+u ..., xn] andR*x = rxr2... r*x = 
= [TXV ..., Txk, xk+i, ..., xn]. Of course, TkM and T&kM (M being 
$ set) denote the set of all points r*x or R*x, where x € M. 

Lemma 1. Let 1 <L k <^ n;4&t S be a measurable bounded set in 
En. Let C be the set of all points x = [xl9 ..., xn] € S such that there is 
a pointy = [&, ...,pn]€S with x ^ y, x 4- y, ark+1 — yk+x = art+2 — 
- jfr+8 = ... = xn - yn -= 0. Then V(RkS) < V(S), if V(C) > 0, 
but F(R*#) = V(S), if V(C) = 0. 

Proof, Let Smit_ttnk be the set of all points [a^, ..., xn] e S such 
that mi <L Xi < mi + 1 for i = 1,.. . , k (mi integers). Then 

. S « U Smi_mk, R * £ = U R*Smi mk; 
tn,\, ...,mk tni,...,mk 

But Ri«5mo...,Wjfe arises from Smif^ttnk by means of a translation, 
and so -

V(S) = msmtf_mk) = £V(R*Sm ,mk) _- V(RkS), 
tbe sign of equality being valid if and only if the common part of 
every two sets T&kSmi,.„,mk has th£ measure zero. But this condi­
tion is equivalent to V(C) = 0 . 
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Remark 1. Let M be a bounded set. Obviously every point of 
Fr RkM has either at least one integer coordinate or it belongs to 
Rk Fr M. Thus, if F(Fr M) = 0, then also V(Fr RkM) = 0. 

Lemma 2* / / T arises from S by means of a translation, then 
P(R^Sf) = P(R*T). 

Proof. (Exactly the same as in Estermann, Lemma 1.) De­
composing the translation into its components along the axes, we 
may restrict ourselves to the case T = t]S, where t\ means the 
operation replacing the i-th coordinate X{ by Xi + I. If i > k, then 
RkT arises frdtn RkS by means of a translation, and the result ia 
obvious. Next suppose i <̂  k; we may also suppose 0 _ I < 1. Put 
RkS = U; since r(x< + I) = r(r(^) + I), we haveRfc(<J£) = Rk(t\U). 
Let U1 be the set of all points of U for which 0 <̂  Xi < 1 —-1, and 
U2 of those for which 1 — I <I Xi < 1. It follows that Rkl)U = 
= t)U1 U t\—xU%, where the two terms have no points in common. 
Thus 

V(Rkt}S) = V(Rkt\U) = FtfUJ + V(tUiU2) = 
= V(Ut) + V(U2) = V(U) = F(R^). 

Lemma 3. Let S cEnbea convex body, p > 1. Then V(Rn/uS) >̂ 
>̂ F(RnS). The sign of equality is valid if and only if V(RnS) = 1, 

t. e. (RnS being obviously closed in Kn) if RnS = Kn. 
Proof. Choose a point a so that T = S + & contains o in its 

interior, so that T C Int fxT. But fiT = /uS + //a, and so V(RnT) = 
= V(RnS), V(RnfiT) = F(Rn^) . But we have V(RnT) <^ V(Rn/uT). 
If V(RnT) < 1, there is a point x e Fr (RnT) in the interior of Kn and 
it is clear (see the Remark 1) that x e Int (RnjnT); thus obviously 
V(RnT) < V(Rn[xT). 

In the following two Lemmas a convex body S C En and an 
integer k (0 < k < n) are given. If xx = [xu ..., xk], x2 = [xk+i, ..., 
xn], we shall write" [xx< x2,..., xn] = [x,, x2]. We denote by S' the 
set of all points x̂ j e En-k such that there is a point xx e Ek with 
[*i, x2] e S (the ,projection" of S). If x2 € En-k is given; we denote by 
#(x2) the set of all points xx e Ek such that [x2, x2] € S (the „inter-
section" of S witji a ^-dimensional plane). 

Lemma 4. 2>eZ k be an integer,. 0 <k <n;let S C Enbea convex 
body; let ft > 1. TAen 

F(R^AST) ^ ^ F ( R ^ ) . 

The sign of equality is valid if and only if 

R* S(x^^K% for every xa€flf' 

(Kk is of course the cube 0 <I #i < I, ..., 0 <1 xt < 1). 
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Proof. x2 € En-k being given, the set of all points xx € Ek such 
that [xl9 xa] e JliS is obviously R* S(x2) and the set of all points 

Xj c 2.7* such that [xu x2] 6 RJLWS is obviously R*/z #j— x2|. Thus we 

have 
Vn(KkS) = fVk(RkS(x2))dx2, 

S' 

Vn(RkfiS) -=/ VkUkfisl— x2)\ dx2 = [i«-*fVk(RwS(y2))dy2. 
t<8' \ \r* / / S' 

Comparing these formulae, and using Lemma 3 (with k instead of n) 
we get the assertion of the Lemma. 

Lemma 5. Let k be an integer, 0 < k < n\ let S C Enbe a convex 
body; suppose that V(S(x2)) is independent of x2 for x2 e S'. Then there 
is a convex body S0 C Ek and k(n — k) numbers a^ such that S is the 
set of all points [xlt . . . ,#„], given by the formulae 

n 

*i = 2 ai)xJ + Vi (i = 1, - -., k), 
7-=tfc+l 

where [xk+i, ..., $n] runs over S' and [yl9..., yk] over S0. 
For the proof see Minkowski, 1. c , p. 209—210. Obviously 

every S(x2) arises from S0 by means of a translation. 

* 
We proceed now to the formulation of the main results. Theo­

rem 1 is the Estermann's theorem, which is, as observed by Ester-
mann, implicitly contained already in Davenport's proof of (1) and 
which constitutes a slight generalization of Minkowski's inequali­
ty (1).. 

Theorem 1. Let S CEnbe a convex body. Then 
TimS))...rn(<X(S))V(S)<L\. (2) 

Theorem 2 contains the characterization of all convex bodies S 
for which thesign of equality in (2) is valid. We shall prove Theorem 
1 following exactly Estermann's proof, but preparing at the same 
time the proof of Theorem 2. 

S being given, we put Ti(93(£)) — A,-. There are n independent 
lattice points u* (i = 1,. . . , n) so that A< 93(£) contains the point u', 
thus u* -=- v*•— w*, v*€>ti/S, w^A /̂Sf. Some of the A,'s may be 
equal; i. e. there are-natural numbers m, kl9 k2i..., km (kt + ^. + 
+ hm = n) and m numbers 0 < / * ! < . . . < /im such that, putting 

1%=09li = kt+... + ki{i=*l,...,-m) (3) 
we have 

U*= (Xj for lj-\ < i ^h\ Im^n. (4) 
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In this case we shall say that S belongs to the class (n\m\ kt,^.., km\ 
/h, • •., jum). It is clear that, for lj-i < i <1 Z;, we have u* € Fr m 93(5), 
v* c Fr fjijS, w* € Fr /u^S. Applying a homogeneous linear substitu­
tion of coordinates with integral coefficients and the determinant 
unity (such a transformation — we call it [/-transformation — 
changes neither the .Vs nor V(S)) we may attain that the points 
u* = [u\,...,un] satisfy the conditions 

u\ #= 0 f or 1 <; i <: n, u) = 0 f or l<Li<j = n. (5) 
This transformation transforms S into a body Sx which will be 
called an ,,adapted body" (of course, it may happen that S may be 
adapted in several different ways). 

Prool of Theorem 1. Let S be a convex body of the class 
(n\ m\ K19 ..., fcm\ fil9 ..., f*m)\ 

we may suppose S adapted. The inequality (2) may be written 

^Ml'...^V(S)£L (6) 
Put 
-S* = Ry j i s (1 = k = m), Tk = R ^ t + i s (1 = k < m), 

so that . 
si+i = Tik+1T,k+2 . . • Tik+1Tk (1 = k < m). 

Obviously so, C Kn, and so 
V(Sm)<t\. (7) 

For 0 < e < fit the body (jttj — e) S contains no pair of congruent 
points, and Lemma 1 and 3 give 

lA V(S) = V^S) = V(St) = F(JJ,,(ft - s) S) = 
= V((/h-e)S)=(fi1-e)»V(S), 

V(St) = tf V(S). (8) 
Let 1 < j < m, replace in Lemma 1 the operation R* = r-Tj ... r^ by 
r/y+i... rj>+1 and apply Lemma 1 to the set T, = rx . . . T^+IS. The 
corresponding set C of Lemma 1 is obviously contained in rx . . . r j . . 
. Fr (M+IS)\ since F(Fr >*m/S) = 0, we have (Lemma 1) V(G) = 0 
and so ]. 

V(Sj+1) = V(T,.+1 ... r/i+1Ty) = F(T,). (9) 

But, following Lemma 4, we have 

. V(T,)^l&i*\*~* V(St) (l = ? < m ) . (10) 

From (7), (8), (9), (10) we get 
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ž V(sя) Ž п (č~jm * • ̂ ^ ) -» !4-!Ф • • • І"> vw 

ajid (6) is proved. 
Remark 2. If in (2) (i, e. in (6)) the sign of equality is valid, we 

shall say that 5 belongs to the (extreme) class S(n; m; kx, ..., km; 
f*i> • • •• /*»•)• This happens (5 being adapted) if and only if in (7) and 
(10) the sign of equality is valid. 

Remark 3. Suppose that the sign of equality in (2) is valid; then 
8 has a center and A5 contains to every point of the space a congruent 
point, if A >̂ A*.1) 

Proof. I. If <x > 0, then Ti(ocM) = OC^T^M). If 5 is a convex 
body, then F(93(5)) > 2nV(S),2) except the following case: If 5 has 
a center, then 93(5) arises from 25 by means of a translation, and so 
F(93(5)) = 2*7(5). Because 93(5) has the center o, we have 
93(03(5)) = 293(5). Thus, if 5 is a convex body having no center, 
then (2), applied to 93(5), gives 

I ^ T,(93(93(5))) ... rn(<£(93(5))) F(93(5)) 
> T-(293(5)) ... rn(293(5)). 2»F(5) 
= ^(93(5)) . . .rn(93(5)).F(5). 

II. Following (7) and the Remark 2 we must have V(Sm) = 
= F(RnAn5) = 1 and so, following Lemma 3, F(RnA5) = 1 for 
A I> An, i. e. RnA5 = Xn. 

Remark 4. Especially, (2) implies A? V(S) <; 1; if the sign of 
equality is valid, we must have A- == A2 = ... = An. Considering the 
body XXS instead of 5, we see: If S is a convex body, ^(93(5)) = 1, 
V(S) = 1, then there are n independent lattice points contained in 
Fr 93(5), 5 has a center and 2.S contains, for every A 2> 1, to every 
point of the space a congruent point. 

Theorem 2. Let n,m,kx,..., km be positive integers, kx+ ... + 
+ km = n, let 0 < ixx < fi2 < . . . < ftm and put 

lo^O^i^^+.^ + ki (i= 1, . . . ,m), x (11) 

so that lm = n. Then a convex body K C En belongs to the class 

S(n\m;kx, ..., km; fix, ...,/*m) (12) 

if and only if it arises by means of a homogeneous linear transforma­
tion with integral coefficients and the determinant unity from a convex 
body S which has the following form: Choose m convex bodies Qi 
(i = 1,. . . , m), where 

l) These properties are changed neither by a {/-transformation (espe­
cially by an-adaptation) nor by a translation. J) See'e. g. Bonnesen-Fenchel, 1. c . p. 105. 
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Qi C Ekv V(Qi) = l, n(<%(Qi)) = 1 (I = 1,. . . , ki) 

(F means V*.) and real numbers ay, and let S be the set of all points 
[xl9..., xn] of the form 

n 
Xi = J ayx, -f yt- for l0<i<± ij, 

/= / i+ i 

#< = V a ^ + yi for lx < i <1 Z2, 

(13) 

*» = 2 ai>Xj + y< for lm-2 <i = t**-1' 
i=lm—1 + 1 

#* = y» for lm-i <i<Llm = ni 

where the points 

\.Vi> • • •> yd, [Vh+i> • • •> yit]> • • •> [^m-i+i> • • •> y*J 

nm — independently of each other — over the sets fi^Ql9 fx^lQ2, • •< 
^lQm respectively. 

To prove this theorem, it is sufficient to prove: 
I. Every adapted body S of the class (12) has the form descri­

bed by (13). 
II. Every set S given by (13) in the way described above be­

longs to the class (12). 
Proof of I. For m = 1, I is a mere tautology. Thus let m > 1 

and suppose that I is proved if m is replaced by a smaller number. 
Let S be an adapted body of the class (12). To simplify the notation, 
put fix = fi% fi2 — v, kx = k. We denote again with S' the set of all 
points x2 € En—k such that there is a point xx € E\ with [xx, x2] c S and 
by $(x2) (for x2 € Un-*) the set of all xx € E* with [xx, x2] e S. Follow­
ing (10) and the Remark 2, we have 

V(RlVS) = llX~~kV(RwS) 

and Lemma 4 and 1 give 

^V(S(x2))^,V(RkfiS(x2))=, 1 

for all x2 € S'. But (fx —• e) S(x2) contains, if 0 < e < fi, no pair of 
congruent points, and so, putting Qi = Ti(Q3(iSf(x2))) (i = 1,. . . , k), 
we have QX > fi — e and so 

(fi - e)k V(S(x2)) < e\ V(S(x2)) _ Ql... Qk V(S(x2)) £ 1; 

thus, finally, 
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//* v(S(x2)) = i, Ql = Q2 = . . . = Qk = ^. ; 

Thus F(5(xa)) is independent on x2. 
Following Lemma 5 the body S is the set of all points [xl9..., #n] 

such that 
n 

# t = 2 a ^ x > + ^ (i = i, ...,&); (14) 

here [afc+i-..., #n] runs over 5 ' and [*/],..., J/*] over a convex body 
ti>~~xQi which of course arises from S(x2) by means of a translation, so 
that 

& C Ek> V(QL) = 1, T?(93(<?X)) = 1 for j = 1,.. . , fc. (15) 
Evidently 

Vn(S) = ^Vk(Q,)V^ h(S'). . (16) 
Put Ai = ^(93(5')) for 1 <: i = 7i - k, Xi = r<(93(5)) iorl£i£n. 
We shall prove that Ai -= Xt+% for i = 1,... , n — k. 

First: From (5) we see that the points u* == [u\+u ... un] 
(i =. k + 1,.. . , ft) are independent, u' <? A,- 93(5'); and so obviously 
Ai <1 At+i. Conversely, let p*+1, ..., pi be independent lattice points, 
p2+1 € Fr /It 93(5'). Taking a fixed value of i, put V = Max (Aif jn). 
We h a y e ^ p ^ e A/93(5'), so that there are_ two points q*+t = 
= [?*+li • • •> ?n J ^ / i 6 , S2 = [S* + i, . . . , 8n ] € / i /S With p2 = 
= q|+i - 4+i- We shall define 2k numbers qk^\ 8-+{ (j = 1, ..., k) 
as follows: choose [yl9 ..., yk] e Xifi~lQ1 and put 

n 

then put 
?*+i = 2 amî+i+m ö'-=i,-..*); 

Z=* + l 

n 
Jb+i • V* ~ „*+* = 1 o^?+i + y/ (7 = i,-..,*) 

*=*+i 
where [^', ..., y*'] e Xi'(jr~lQ1 is chosen so that [8?+\ ..., 8*+1] ss 
355 fei+*> •••>}***]; this is possible following Remark 4, since 
A-'/*-1 >̂ 1. Putting 

q*+< =. [rf+<, • •., gkn+% »*+' = [8i+i, • • . 4+t'3 
we see that q*+* € A/S, s*+' € A/S and that u1,..., u*, q*+* — s*+x,..., 
q* -— sn are independent lattice points. Thus A/ ^Lv> fi and so 
V s= /I*. Since q*+* — s*+* € V 93(5) =- .4* 93(5), -we see that 
A.t+i <£ ./lx, A*+2 ^ A , - • -, An <1 -4n-> Thus 

Ai ==s A*-K for i =-= 1,.. . , n — k. (17) 
Using <16)> (17), we obtain 

1 « Ax... An T(5) == / V i a . . • ;tn-* V(S')9 

138 



i. e. S' is a body of the class 

$(n — kl9 m — 1; k2, . . . , km, [x2, . . . , / / m ) ; 
in addition, S' is adapted, as it can be seen from the form of 
uk+1, . . . , un (see (5)). Following our supposition, S' is given by the 
formulae of the form (13), but only for i > ll9 i. e. for i > k. Combin­
ing these formulae with (14) we see that S is given exactly by the 
complete set of formulae (13). 

Proof of II. Let S be given by the formulae (13); we write 
(13) in the condensed form 

Xi = ZatjXj + yi (i = 1, . . . , n). 

It is obvious that S is a convex body and that a\x... fx™ V(S) = 1. 
It remains to show that, putting Ti = Ti(93($)), we have rt- = fijy 

i. e. 
Xi <̂  fij for lj~i <i <Llj. . (18) 

Xi I> jLtj for lj—i < i <I lj. (19) 

First we shall prove: If x = [a^__1+1, . . . , ^J is a lattice point in 
93(d) (there are kt independent lattice points in 03(Qt)) then there 
aredntegers xl9 x2, ..., ^it_x such that 

, [x1,...,xh,0,...,0]^t^Q(S). 

(This obviously will prove the inequality (18).) 
Proof. We have x = y' — y", where y<w e Qt (p == 1, 2); let 

2/W (Z/—i < i <1 Zi) be the coordinates of y<*>. We complete these 

sequences of fee numbers to sequences of n numbers y{
1
)
9 . . . , yn 

(p = 1, 2) in the following way: 
(i) The numbers y<p> with Z;-i < i <Llj determine a point in 

PJ^tQj. 
(ii) Putting 

.a*' = Zaihxj; + y{9 xC = Zaihxh" + y{ (i = 1, ... , n), (20) 

we put y{ = yi and so x{ — x{ for i > lt and choose for i <̂  Zt—i 
the numbers y / arbitrarily and the numbers y/' so that x{ === x{ 
(mod 1); this is possible, since fiJxfitQ) contains, for j < t, to every 
point of space a congruent point (see the analogous considerations 
in the proof of (17)). 

•It is then obvious that the point [a?/ — xl9 . . . , xn — xn] has 
the required properties. 

Next we shall prove: • -

If [x19 ..., xn] = [a?/, .. . , xn'] — [a?/, /.., xn
m] is a lattice point, 
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[x{?\ ..., xT] elS (p = 1, 2), where 0 < A < /#«, then xt = 0 for 
% > Zt-i. (This obviously will prove the inequalities (19).) 

Proof. We have again the formulae (20), but now the numbers 
y^ (Z,_! < i <i Z?) determine a point in X[xJxQ}. For i > Zt„-i we 
have x{ — a;<" = y{ —- y{* == 0 (mod 1) and so (since A//^1 < 1) 
yV — y{ = 0, a:/ —- x{' = 0. Thus we get for Zm_2 < * S ^»-i : 

a:.' _ a;." _- y.' __ <,." = o (mod 1) 

and so, if" J/*«Li < i, we have y{ — #i" = 0, cr/ —- aV = 0 for 
Zt̂ -i _! i > lm-2- This consideration may obviously be put forth 
as long as i > Z(-1 and we get, for these values of i, the desired 
equation x{ —- x{ = 0. 

Remark 6. We know that Q} has a centre (Remark 4) the coor­
dinates of which may be denoted by //,ct- (Z _̂! < i :_ I,). I t is 
obvious from (13) that S has the centre the coordinates of which 
are the numbers dXi..., dn given by the equations 

di = Zdidj -f a (i = 1,.. . , n). 
I t is obvious (see the explicit form (13)) that [dx, ...,dn] = o is 
•equivalent to fa,..., cn] = o. 

Eemark 6. If a convex body S has the centre o, we have 
<£(S) = 2S and so 

rx(S)... rn(S) V(S) = 2»T1(<33(#)) . . . TW(93(£)) F(S). 
Thus Theorem 1 gives Minkowski's inequality (1) and Theorem 2 
(see Remark 5) gives also the characterization of the convex bodies 
with/centre at o for which the sign of equality occurs in (1); it is 
only necessary to put ca = ... = cn = 0 in Remark 5. 

0 Estermannově důkazu jedné vety Minkovského. 
(Obsah předeš lého článku.) 

Estermann podal nedávno nový jednoduchý důkaz Minkow-
akého nerovnosti (1), v níž S je konvexn* těleso se středem v počátku, 
Ti(S) jsou postupná minima tělesa S. V tomto článku ukazuji, jak lze 
Estermannovou methodou dokázati další větu Minkowského,'jež 
oharakterisuje ona tělesa S, pro něž v (1) platí znamení rovnosti. 
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