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Gasopis pro péstovani matematiky a fysiky, ro&. 75 (1950)

A CONTRIBUTION TO EMBRACING THE BASIC CONCEP-
TIONS OF THE INTEGRAL GEOMETRY WITHIN THE SCOPE
OF IDEAS OF LIE’S GROUP THEORY.

JOSEPH REZEK.*)
(Received January 25, 1949.)

Introduction: Since the publication of F. KLEIN’S so called Erlangen
Program in 1872 the conceptions of the group theory have proved extra-
ordinarily useful in many branches of geometry. On the one hand, KLEIN -
recognized their value for a suitable classification of those partial bran-
ches of geometry that were already developed at that time; on the other
hand, these new conceptions gave many suggestions for extensive gene-
ralizations, unthinkable without the basic ideas of group theory. Instead
of being satisfied with the groups of classical geometry, KLEIN demanded,
one should, starting from a highly arbitrary transformation group, de-
velop for it a ‘‘geometry’’ of its representative space, i. e., from the
algebraic-analytical standpoint, a ‘“‘theory of invariants’’. There appea-
red, however, an essential difficulty, while this development was being
worked out. Between the transformation-groups of classical geometry
and a general Lie transformation group there is an essential difference:
The underlying domain of a classical group is a total space, i. e., a certain
topological manifold, considered globally; the underlying domain of
a general LiE transformation group is, on the contrary, a neighborhood
in a space (e. g. EUCLIDEAN), generally not further defined in detail. While
building up the geometry. of transformation groups, G. Pick took these
circumstances in to consideration, restricting it, according to the sug-
gestions of the Erlangen Program, above all to a “local geometry”, espe-
cially to the differential geometry. It is, on the whole, without importance
that we are able to “continue analytically” a transformation group in
some cases to such a degree that itsunderlying domain becomes eventual-
ly the whole of a manifold. : :

. *) This paper is an extract of the author’s 1938 doctor thesis. The author
perished on February 12th, 1945 on one of the terrible death marches, organised
by the Germans, when they were compelled to evacuate some concentracion camps.
It was on the march from Falkenberg to Mauthausen. The thesis had been
written under direction of prof. BEFWALD; also murdered by the Nazis., -
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The present paper owes 1ts orlgm toa stlmulus s1m11ar to that giving

' '- rise to Prcx’s important papers (since 1906). If we consider, with KLEIN,

" the differential geometry as a ““‘theory of invariants” for a certain trans-. -
formation group, then we may regard accordingly the “integral geo- - -
metry”’, inspired by Crorrox and H. PoixcarE and developed in the last
'years by W. BLASCHKE and others, as a “theory of integralinvariants” of
a transformation group. The nature of the impulses that gave rise to
integral geometry restricted the development, rather naturally, to the
simplest geometncal groups, at least for the beginning, avoiding thereby
the necessity of using the procedures of Liw’ stheory (Cfr.toBrascEKE|1|,
" _|2],*) for the full group of motions in a plane or in a three-dimensional
“space and to BErwaLD |1| and BrascEKE |3 for translation groups.) The-.
_ present paper, however, intends a preliminar treatment of the develop-
ment of an integral geometry, taking as a basis a general L1t transfor-
mation group. Even so simple an example as the affine group of a stralght
line shows to what extent one may be able to achieve results, which are
' geometrically not without interest. )
" There are above all two questions to be dealt with: 1. The derivation.

“of integral invariants of the highest dimension for any L1k transformation -

group; we shall give only the results and refrain from proofs, which are
‘founded on well known principles. 2. At what a set of geometrical forms
_is it possible to speak, with regard to a given transformation group, of
a density that is an integral invariant of the highest dimension?

The first question has been treated in the literature about-integral

‘invariants proper, for instance in CARTAN’s book |1|. This question was = -

- put in the same way, and answered, in a paper of N. TCHEBOTAREV |1]. .
The present paper stresses rather the precise treatment of some details.
. Special groups are treated by A. MULLER |1]. As to the densxty determi-

nation of parameter groups-see E. CARTAN [2[..

- Tt does not seem that the second question has been asked before in

Jthe present form. It 1s bound to lead to a confrontation of two kinds of

'~ geometrical objects (one kind of them can always be considered as points),” - »
* which can be conceived as a generahzatlon of the duahty prmclple of the
pro; ectxve geometty

1. The density function of a transformation group: — Let_-.j’v

X 25”(’”)8 e=12..,n, - .(1)'_‘?;::

be the symbols of the mfxmtesunal transformatlons of an r-parameterf

"/Lik transformation group, which operates in an open domain G, of an "~

“n-dimensional EUCLIDEAN space R,. and is determmed by the fxmte,'. :

feqna.txons e

i yr": ’,(f ’IL) f'(xlo xg') .o .rxn: Uy, ’M’, ) uf) (" = 1 2,00 n) (2)
*) 'rhe bﬂwcketed ﬂumbat-s réfer to thﬁxbhogrﬂphy at the end of the paper
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_The points of this Spacé aré given by their coordinates in a coordinate.
system S,. Besides, let B denote an n-dimensional closed domain, lying
totally in the operational domain G, of the group and therefore also in

the domain of definition of the functions

Eva = Ere(x) = éve(xb enXy) (r=1,...,m e = 1,..,r), (3)
the boundary of B bemg a closed (n — 1)-dimensional hvpersurface In
this closed domain let the function

F =F(x)= F(x,, ..., Z) 4) -
be continuous and continuously differentiable. Let us now consider the
integral : o o
I fBF(xl» Ty eus xn)[dxl da, .. dx,,] - B (5)
Ifwe a.pply a transformation of the group (2) to the coordinate system Sy,

the'integral (5) is transformed into the following function of the para-
meters uy, Uy, ..., Uyt

= ff fBF(:le LR un)[dyl dy, .. ' . dy,] .
6
=S Sy F ) [ 05y 2y . O

We call the integral (5) an integral invariant of the group (2), if the
tunction Jp(u) is independent of u,, u,, ..., u,, whatever the choice of B
~ within @. Under this condition, the integrated function F, the den-
~ sity function of the integral invariant, must satisfy the functional equa-
tions . .

‘ . a . .
FWys s Un) al = F(z,, ..., Za). M

. In order to determine the density function F of a transformation '
group (2) it is how sufficient to consider the functional equatlon (7) as
apphed to an infinitesimal transformation

y. =z, + &8 &, =’Ze;,£-@, C®
" Insuch a case the Jacobian %—— has the va.lue N
ot + £)| |, %, I T
[ogel e (E)i-1+38
(where E is the umt matrix), whence, together with- ' .
S 'ae., o
x(Xol—Z (9= L2,.n) . (10)




follows the system of partiai differential equations for the determination
of the density function F:

XJF+ 3, F=0 (0=1,2,...,7). (1)
The function y,, which appears in these equations, will be called the
divergence of the p-th infinitesimal transformation of the group (2).
It can easily be proved by direct computation that the divergences
Xe satisfy the partial differential equations .

,
Xoxto— Xaye + Zlc;,x, =0 (0o=12,..7), (12)

if ¢, denote the 3 structure constants of the group (2). Consequently
the system of differential equations (11) is complete.

It does not involve any restriction, if we admit for the time being
only such domains B, where the required function F(x) > 0. Introducing
now, instead of F, the new unknown function

@ =1gF, (13)

we receive, equivalently to (11), the inhomogeneous system of differential
equations
XoG + 2o = 0. (14)

There follows immediately: If for a group (2) there are two different density
functions F\, F,, the difference of the corresponding two functions G, =
= IgF,, Q, = IgF, is an invariant of the group. We conclude:

Theorem . For a simply transitive transformation group (2) there is
always, but for a multtplzcatwe constant, one-uniquely defined denssty
function F.

In order to decide about the existence of a density function for
multiply transitive groups (2) we proceed as follows. Owing to the inde-
pendence of the r parameters u,, ..., u, the infinitesimal transformations
of the group are certainly hne&rly independent, considering constant
coefficients only. Nevertheless, there can be functions

(pQ = ‘Po(xl» RS ] xn) (Q = 1, 2: LS T), (15)
not all of which wre identically zero and for which '
Xy @ Xo+ ...+ X, =0 (16)

hdldé true. Let us assume, however, the symbols X, X,, ..., X, to be

linearly independent, considering variable coefficients as well. Let us’

assume, further,

We shall now consider the matrix

20

-

/ r>mn and q_.n (17)-' ’



Xv €1 as oo Em
Zz’ 12’522r sy E‘nz

M) = (18)

Xm Elm 521!1 coey E:nﬂ
xf, Eln EZr, veey gnr

Its rank s is evidently equal to n or » + 1, and we obtain
Theorem 2. For a transitive transformation group (2) there is, but
for a multiplicative constant, a umquely defined denszty function, if, and
only if, the rank of the matriz M(x) is n.
2. Example: We consider the “doubled’ affine group of a stralght
line:

;

n=>0+ ul) Zy +~u2, Y2 = (1 + %,) @3 + u,. . .(19) ‘

We see at once that the group is simply transitive in every domain @, of

the z,, z,-plane that does not cover the straight line z; = z,. The differen>.

tial equations (11) take the form

oF oF ©OF . |
xla +x2 +2F 0, 87:1‘-*—5;;=0' (20)
The solution is, but for a constant factor, ’
1
=— 21
v (m — ) . 1)
A two-dimensional domain B is here defined by two intervals
a1, 510, a3, b9, (a3 < by < @y < by), (22)

and the integral invariant of the group.can be explicitly represented as
a functlon of the endpoints of both intervals. We get

b (b dz, du, .

fal m %lgAr aq, bl’ az, b ), (23)
where Ar is the anharmomc ratio of the four points within the bracket.
This result may be said to reduce the entire content of the “integral
geometry of the group (19)” to known facts, i. e., the properties of the

- anharmonic ratio of four points on a straight line. This can be interpreted
geometrically, considering the group (19) as the affine group of pairs of
points on a straight line.

3.A group theoretical prmcnpleofduahty. Oneofthefundamental

ideas of integral geometry consists in allotting a measure not only to
sets of points but also to sets of other geometrical entltles, i. e., straight
lines, circles, conic sections, etc. This idea originates in the theory of
- geometrical probabilities (see H. PoiNcARE’s book |1|). The systematical
determination of the content of straight line sets brought about, besides
. the transformation group of EvucLIDEAN motions, also other transforma-

- twn groups, which, in abstracto, are identical with l motion group in

. . . 21 -



point coordinates, differ, however, from it as.transformation group. In ~
_ order to use for these relations a special term we shall speak about the
different ‘‘realization forms” of the motion group. We confront its original
realization, in point coordinates, with its realization in straight line
coordinates, provided the group is built in R, i. e., in the EUCLIDEAN
plane. This confrontation is based on the duality: point «— straight line.
We shall now try to transmit this idea to the treatment of any transfor-
mation group. The most important question, which arises at once, is
this: Assuming two realizations of a transformation group, which are, in the
- underlying space of its first realization, the geometrical forms g that agree
- witha duahty
) ) point ~—g (24)
“om account of a confrontation of both realizations?

With regard to the simple example, mentioned above (motion group-
in point and straight line coordinates), see the paper of G. PoLva |1|. We -
shall return to this matter a little later, changing somewhat the symbo-
lism. ,

" In order to discuss this whole process in general we start from two .
different realizations of the transformation group (2):

_ Y= frlz;u), " Y= fld;u) (»=12,...,,n). - (25)
For the sake of generality let us assume that these two isomorph trans-
formation groups are not similar, though they have the same parameter
groups and, therefore, the same structure constants cy,; their infinite-
simal transformations, i. e,, the symbols

? - r_ 3 : ‘
X, = le‘, .. X=Z§,‘,a—, =12,...,n), (26) -

' respectlvely, satlsfy therefore Lie’s bracket relations with the con-«
stants ce,, :

N

(KK zc,,,, . (ff,):Zc;aZ. @

) - We shall ca.ll a szmultaneous invariant of two realizations - (25) of -~
the group (2) a function of 2n variables .- s

T g =g T) = g2y, 2, . o Tn; Ty, Ty - xn)5 (28) .

; whlch is defined (continuous and dlfferentxable), with regard to the first n .
variables z,, <., z, in the underlying domain of the first realization (2), < -

- " -and, with rega.rd to the variables Z,, ..., Zy, in the underlying domain of

* .the second realization; it shall, moreover, have the property that, under : -
-'these condltlons and on account of the equatlons (25), the expression "

~ oy 9y : (29).;
fj’;s mdependent of u,, Upy ooey Upe WE agree to regard the 2n vanables_,
Tise oty B3y, ooy Ty 88 mutual.ly independent; we can therefore consider- -
the equatlons (25), within ‘a 2n-dimensional underlymg space of t,he o
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variables z,, &y, ..., %n; Z;, Ty, .., Tn»-28 & representation of a transform-.

ation group, isomorphic to (2). The infinitesimal transformations of this -

group are given by the symbols

Y, =X, +X e=12,..,1), . (30)
and a mmultaneous invariant of both realizations (25) may be character-
ized as an invariant of a 2n-dimensional group, composed of both in the

way just described, i. e., as the solution of thefollowing system of lmear,
homogeneous partlal deferentlal equations

Xg+Xg=0 (0=1,2,...,7). ) (31)

It follows: Since g is a simultaneous invariant of two realizations, the
same holds true for (g 4 const) and for any arbitrary (differentiable)
function of g. We shall, however, regard such simultaneous invariants,
created from g, as not essentially differing from g. In order to get a survey
of all possible simultaneous invariants of two group realizations, we have
to integrate the differential equations (31). The totality of the solutions
depends on the rank of the coefficient matrix of the system (31). Suppo-
sing the linear independence of exactly ¢ among the X, and of exactly g .

among the X,, the rank is equal to
m g+ q; (32)

,m=q+§,thenq+§§r. . . (33)
" Two group realizations that can be composed into a transitive
group in R, are therefore of no importance for our consideration, for there
isno not-constant simultaneous invariant. Of great interest are, however,
cases that offer essentially one, and only one, simultaneous invariant.
This condition is fulfilled, as we shall seeinsection 4, with the motion group
in point and straight line coordinates, and this creates the unique position _
of the straight line, among the geometncal objects, for measures of the
mtegml geometry. -

Let g(x; ) denote a simultaneous invariant of both realizations -
(25). We assume this function not to be constant, but to become 0 for
certain real values of the variables z,, Z,. (In-a given case, this can
_ always be achieved by addition to [ of a suitable constant.) Lot us con-
sider the equation

-if

gl %) = 0. ST

- In the space R, of the points z, transformed by the group in the first
realization (2), it represents an (n — 1)-dimensional hypersurface, the
position of which depends on the parameters Zy, Z,, ..., Z»; more precis-

ely: To every & within-a certain range of R,, equation (34) . coordinates . :

a certain (n — 1)-dimensional ‘hypersurface, from a certain n- parameter
“family of such forms. The second realization (25) of our group “‘describes”

how the hypersurtaces of this. n-parameter family change into one ano- - :

- ther, lf we transform, accordmg to the law of the fu'st rea.hzatxon, the



points of R,, which contains the surfaces of the family. We call mutually
dual, with regard to the transformation group (2), the points and those
hypersurfaces (34) of R,, in the same sense as we call dual, with regard to
the group of all EucLipEAN motions, the points and straight lines of
a plane. There are as many duality principles to every transformatlon
group as there are different non-similar realizations.

In the following section we are.going to outline briefly the working
of these statements in the case of motion groups in two and three dimen-
sions.’

4. Application to motion groups: The plane motion group in
point coordinates is given by

Yy = Uy + X, COSx — Ty 8iNx, Y, = Uy + &, Sinx + Xy cOsx, (35)

where the third group parameter (the angle of rotation) is denoted by «.
Let the equation of the straight line in the x,z,-plane be

gty P =2 + 2 —1=0 (36)
1Y P12 P, Py — Y,
where p,, p; are the straight line coordinates. (We write now p,, p,
instead of z,, z, and, correspondingly, ¢,, ¢, instead of ¥, ¥,.) If we .
transform, according to (35), the straight line equation (36), and reform
it, in the new coordinates ¥, ¥,, again into the normal shape (36), we
-arrive easily at the following transformation law of the straight line

coordinates
+ w, CoSx Sino
0 = uy + P1Pe 2(?’1 + Ps )
) — p, sinx -+ Py cox _ 37)
' + Uy (— py sinix 4 COSx .
s = Uy + P1P2 1(— Py P2 )

- Py COSx + Py Sing

this is the motion group in the second form of realization, in straight line
coordinates p;, Ps. '

If we compute the infinitesimal transformations for either realiz-
ation, (35) and (37), we can derive the most general simultaneous invari-
ant, according to the scheme in the preceding section, from the following
system of partial differential equations in four independent variables

15 gy Py, Po:

og 09 |, Py 09
= 2,
3z, t T
o9 , P O o
A < A = =0, 38
. Oz, P2 0Py 0p» (38)
L pRl pte
- ? GEN ag, P op, P1 apz ' -

The rank of the matrix of this system is 3, and there is, therefore, exactly
4 — 3 = 1 simultaneous invariant. By explicit integration we can easily

24 ' . A




ascertain that g is nothmg else but an arbltrary function of the left hand
term of the straight line equation (36). It-follows

Theorem 3. The straight lines are essentially the only plane curves
that are dual to'the points of the plane, with reference to the motion group in
point and straight line coordinates.

Incidentally, it is not difficult to compute the densn;y function in
straight line coordinates, as a solution of a system of differential equa-
tions, formed according to (11); we obtam uniquely but for a constant
factor,

Pﬂ’z
F(pl’ pZ) ) (39)
v ' . (Vp12 + p?)? A
We can proceed in the same way with the spatial motion group
y= Az + u,

where A is an orthogonal matrix. If we write the general equation of a
plane in the form

n .
pr—1= Zp,x,— 1=0, . (41)
v=1

we derive the simple law of transformation
‘ Ap
14+ uw'Adp
for the plane, respectively hyperplane, coordinates. This represents also
the realization of the motion group in plane coordinates p,, ps, ..., Pn.
. For n = 3, the result is again an easily integrable system of partial
differential equations for the determination of the most general simul-
taneous invariant of both realizations (40) and (42). The most general
solution is an arbitrary function of the expression p’zx — 1, and there
‘follows again , .
. Theorem 4. The planes are essentially the only surfaces of a three-.
dimensional space that are dual to the points of the space, with reference to
the motion group in point and plane coordinates. °
It is not difficult to derive a corresponding theorem for an arbitrary
number n of dimensions, and to prove it. - -
The densxty function of the motlon group in plane coordmates
N P1s Pgs -<+» P is

g= | (42)

p__ 1 1
. © (PR (p1+pz+ +p2)2

5. Final remarks: We shall not proceed in denvmg the straight
line density function in a three-dimensional space, because this would -
‘involve some considerations of different kind, which would not easily fit
into the development, stated hitherto. But the case is of great interest,
" because there evolves a “‘self-duality’’, which has not appeared up to

(43)
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- now, A generahzatlon for a wxdely arbitrary transformation group would
- “involve a fundamental question, which would form the main part of the
mvestlgatlon Which.are the k-dimensional forms in an n-dimensional -
space R,, (k < n), for which, with reference to a given transformation
_ group (2), we can find a family of (n — k — 1)-dimensional forms that are -
dual to them? Evidently, this duality ’

I~ Jn—t—1 . (44)

must, for a motion group, include the duality (straight line «— straight
- line). Generally it will be found, however, that not every dimensional
. number & is admissible. It depends on the choice of the transformation
.- group (2), whether or not k¥ admits an unambigous duality (44).
~ - A further problem may be challenged by the computation of the
‘ den81tles of gi and gn_g—1, according to the method of Lir’s theory
(as we did in the case of k¥ = 0), and by the study of the geometmcal pro-
perties of the integral invariants derived at.
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Zékladni pojmy mtegrélm geometrie z hledlska theorle )
o ‘j. o ST Lle-ovych grup. . ' =
kS : T (Obsah predeslého &lanku.) '

Y

~ Autor vychézi z Klemova pojeti geometrie, takZe problemy mt.e.
" gréin{ geometrie pfevadi na studium integrdinich invariantf vadi n&jaké . .
< . grup® transformaci. A% dosud byly zdkladem téchto iivah jen nejjed--
- nodus&l grupy (na piiklad grupa translaci); v. této préici snaif se autor-
“plipraviti zdklad k vybudovéni integrdlnf geometrie na podkladé obec- s
nych Lie-ovych grup transformaci v, prostorech vicerozmérnych. Zv14sts .
‘porovndvé rizné druhy geometrickych utvard z hlediska integréInich .~
mva.na.ntl’l, co% vede k Jakésl analogn prmclpu duality v prOJektxvni
geometﬂio . &
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