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Časopis pro pěstováni matematiky a fysiky, roč. 72 (1947) 

On the equivalence of certain types of extension 
of topological spaces. 

B y Miroslav KatStov, Praha. 

(Received June 10, 1947). 

There are several types of H-closed or compact, as the case 
may be, extensions of a given topological space. Such extensions 
of a space R are: E. Cecil's [l]1) compact space /£R, defined for 
every completely regular space R, H. Wallman's [2] compact space 
coR, P. S. Alexandroff's [3] spaces ocR and oc'R, the first of them 
defined for regular R, the second for completely regular R. In the 
recent paper [4] of the author a descriptive characterization is 
given of four types of extensions, denoted by rR, r'R, oR, o'R, 
which are defined for any Hausdorff space R2). 

It is of interest to know for what spaces R some of these eight 
extensions coincide. It is well known [3] that oc'R = (3R whenever 
oc'R, PR exist, i. e. for every completely regular space R. It is further 
known that coR = jiR if and only if R is normal. In the present note, 
necessary and sufficient conditions are given for /Si? = rR, J3R = r'R 
/3i? == oR, f}R = o'R, as well as for coR = rR etc. It is shown that 
j3R = rR for compact R only, fiR = oR if and only if R = R1 + R2 
where Rx is compact, R2 is discrete. The conditions for f}R = r'R, 
fiR = o'R show the structure of R far less clearly and could be 
probably replaced by simpler ones. 

First of all we describe the extensions coR, (IR, rR, ... 
Defini t ions. Let J? be a topological space. A point x*R 

is called semiregular if, for every neighborhood H of x, there exists 
an open set G such that x eG C Int G C H. A set Q C R is said to be 
regularly imbedded (Cech and Novak [5]) in R if, for every point 

x) The numbers in brackets refer to the list at the end of the present 
paper. 

2) I take the opportunity to corect the erroneous statement of problem 
1 iri [4], p . 19. The problem should be stated as follows: „ I do not know 
what conditions a space P must satisfy in order that it might be imbedded 
in a H-clo8ed Hausdorff subspace of voP". 
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xcR and every closed set FcR — #, there exists a set AcQ 
such that F CA CR — #. Q is said to be combinatorially imbedded 

n 

[5] in R if ]~] Fi = 0 whenever FiCQ are relatively closed and 
w 1 

n ^=0-
i 

The following four theorems are known. For the first of them 
see [5]. 

" T h e o r e m 1. Any T^space R may be both regularly and combina-
rially imbedded, in an essentially unique way, in a compact T^space 
coR. 

T h e o r e m 2. Any completely regular space R may be imbedded 
in a compact Hausdorff space j3R such that every bounded continuous 
real function on R may be extended to a continuous real function on 
(}R. This imbedding is essentially unique. 

T h e o r e m 3. If R is normal, then (IR = coR. If coR is a Haus­
dorff space, then R is normal. 

T h e o r e m 4. A completely regular space R is open in fiR if 
and only if R is locally compact. 

D e f i n i t i o n s . Let R be a Hausdorff space, QcR> Q = R. 
n n 

Q is said to be hypercombinatorially imbedded in R if ]~J Fi = ]"[ Fi 
n i l 

whenever Fi C Q are relatively closed and J~J Fi is nowhere dense 
1 n 

in Q. Q is said to be paracombinatorially imbedded in R if J"] Gi C Q 
n 1 

whenever GiCQ are relatively open, and ~~J Gi = 0. 
I 

The following two lemmas and four theorems are given in [4]. 

L e m m a 1. Let R be a Hausdorff space, QcR, Q = R. The 
imbedding Q C R is hypercombinatorial if and only if F1 F2 = Fx F2 

whenever Fl9 F2 are relatively closed subsets of Q and F1 F2 is nowhere 
dense in Q. 

L e m m a 2. Let Rbea Hausdorff space, Q C R> Q = R. The imbed­
ding QcR is paracombinatorial if and only if GxG2cQ whenever Glt 

<?2
 are relatively open subsets of Q and Gx G2 = 0. 

The above lemmas assert evidently that we can put n = 2 
in the definitions of the hypercombinatorial and paracombinatorial 
imbedding without changing their meaning. I t is worth mentioning 
tha t an analogous lemma does not hold for the combinatorial imbed­
ding [5]. 
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Theorem. 5. Any Hausdorff space R may be hypercombinatorially 
imbedded in a H-closed3) space rR such that R is open in rR and the 
suhspace rR — R is discrete. The imbedding is essentially unique. 

Theorem 6. Any Hausdorff space R may be paracombinatorially 
imbedded in a H-closed space r'R such that R is open in r'R and 
every point x e r'R — R is semiregular. This imbedding is essentially 
uhique. 

Theorem 7. Any Hausdorff space R may be imbedded both 
hypercombinatorially and regularly in a H-closed space GR. This 
imbedding is essentially unique. 

Theorem 8. Any Hausdorff sphce R may be imbedded both para­
combinatorially and regularly in a H-closed space G'R such that every 
point x € G'R — R is semiregular. This imbedding is essentially unique. 

Now we proceed to establish the conditions for the equivalence 
fiR = rR, ... 

Lemma 3. If every nowhere dense closed subset of a regular 
space R is compact, then R is normal. 

Proof. Let Fl9 F2 be disjoint closed subsets of R. Denote Int F1 

by G, Fx — G by K. For each point x e K choose an open set H(x) 
such that x e H(x), H(x)F2 = 0. Since K is compact there exist X{ 

n n 

such that 2 H(xi) D K. Setting H = G + 2 Hfa) we have H D Fv 
I i 

HF2 = 0. Hence R is normal. 
Definit ion. A subset M of a topological space R is called 

regularly nowhere dense if M = Gt G2 where Glf G2 are open, Gj G2 = 0. 
Lemma 4. / / every regularly nowhere dense closed subset of 

a regular space R is compact, then, for every pair G, H of open sets' 
such that G CH, there exists a continuous real function f on R such 
that f(x) = 0 for x eG, f(x) = 1 for x e R — H. 

Proof. Denote Int G by G0, G — G0 by K. For each point 
x e K choose an open set U(x) such that x € U(x\ C U(x) C H. 
Since K is closed and regularly nowhere dense, therefore compact, 

n n 
there exist x* € K such that 2 U(X() D K. Seting U = G0 + 2 Ufa) 

_ __ I I 

we have G C U C U C H. The rest of the proof is now completely 
analogous to that of the well known Urysohn's lemma. 

Theorem 9. Let Rbea completely regular space. The imbedding 
MCfiR is hypercombinatorial (paracombinatorial) if and only if 

8) A Hausdorff space E is called^ H-closed if [it is closed in any 
Hausdorff space in which it is imbedded. 
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every nowhere dense (regularly nowhere dense) closed subset of R 
is compact. 

Proof . I. Let the imbedding RcfiR be hyper combinatorial. 
If F CR is nowhere dense and closed (in R), t henF = F and since 
(}R is compact, so is F. 

I I . Let the imbedding R C fiR be paracombinatorial. If F C R 
is closed and regularly nowhere dense (in R), then F = RG1 G2, 
where Gl9 G2 are disjoint open subsets of R. Therefore F C Gx G2 C R, 
whence F = F. Thus F is compact. 

I I I . Suppose tha t every nowhere dense closed set F C R 
is compact. Let Fl9 F2 be closed subsets of R and let F = FXF2 

be nowhere dense. Choose a point x e F± F2. If we had x e fiR — F, 
there would exist an open (in fiR) set H such that H D F,x e fiR — H, 
hence x e F1 — H F2 — H. This contradicts the fact that, R being 
normal by lemma 3, there exists by theorem 2 a continuous real 
function / on fiR such that f(x) = 0 for x e F2 — H9 f(x) = 1 for 
xeF2 — H. Therefore Fi Y2 = F = F = F1F2. Hence by lemma 1 
the imbedding R C fiR is hypercombinatorial. 

IV. Suppose that every regularly nowhere dense closed set 
F cR is compact. Let Gl9 G2 be disjoint open subsets of R. Denote 
R Gx GT2 by F; F is compact, hence F = F. Suppose that"©! G2 4= F\ 
choose a point x c G1G2 — F. Then there exists an open set H such 
that HZ)F9 xe pR — H9X€GX — H9 x e G2 — H. This is a contra­
diction since by lemma 4 and theorem 2 there exists a continuous 
real function / on fiR such that f(x) = 0 for x e G± — H9 f(x) = 1 

for x € R — G2 — H. Hence GXG2 = F CR which by lemma 2 
proves tha t the imbedding RcfiRis paracombinatorial. 

From the theorems 4, 6, 7, 8, 9 we obtain the following 
T h e o r e m 10. Let R be a completely regular space.* Then 

(i) fiR = T'R if and only if R is locally compact and every regularly 
nowhere dense closed setF CR is compact] 

(ii) fiR = oR if and only if every nowhere dense closed set F C R 
is compact; 

(iii) fiR = o'R if and only if every regularly nowhere dense 
closed set F CR is compact. 

In the theorem 11 we succeed to replace the condition for 
fiR == oR by a more illuminating one. As to fiR = T'R it is clear 
tha t if R = Rx + R2 where Rx is compact, R2 is closed dicrete, then 
the conditions for fiR = T'R are satisfied. I do not know whether 
they may be satisfied by a space R which does not admit of a decom­
position of the above kind. 
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L e m m a 5. In order that every nowhere dense closed subset of 
a Hausdorff space R should be compact it is necessary and sufficient 
that the set of all non-isolated points of R be compact. 

Proof . The sufficiency being evident, wre have only to prove 
the necessity of the condition. Denote by S the set of all non-isolated 
points of R. Let F% be, for every ordinal £ < oc, a non-empty closed 
subset of S; let K| D Fn for | < rj < oc. We have to prove Yl F$ =f= 

4= 0. If, for some f, Fn (Fs — Int K|) 4= 0 for every r\, f < r\ < oc, 
then we obtain \ \ Fn 4= 0 since F$ — Int F$ is nowhere dense and 

n 
closed, therefore compact. Hence we may suppose tha t there 
exists, for every f < <%, a £' such that £ < £ ' < # , F? C In t FY 
Further we may suppose, for convenience, replacing if necessary 
{Ki} by an appropriate subcollection, t ha t iY+i C Int F$9 F§+1 =f= F$ 
for every f < oc. For each £ < <%, choose a point â  € Int _F£ — F$+1 

and denote by A the set of all a$. Evidently a§ non € Gn = In t F^ — 
— K^+i whenever rj < <xf rj ^ £. Hence every point x € A is an 
isolated point of the set A, but is not an isolated point of the whole 
space R since A C S. Hence A is nowhere dense and so is B = A 
as well. Therefore B is compact and from F^B 4- 0 we obtain 

n F* * 0. 

Theorem 10 and the above lemma imply 
T h e o r e m 11. Let R be a completely regular space, f$R = oR 

if and only if the set of all non-isolated points of R is compact. 
L e m m a 6. / / the set of non-isolated points of a locally compact 

Hausdorff space R is compact, then R = Rt -f- R2 where Rx, R2 

are disjoint closed sets, Rx is compact, R2 is discrete. 
Proof . Denote by S the set of all non-isolated points of R. 

For every point x e S choose an open set G(x) such that x c G(x) 
and G(x) is compact. Since S is compact, there exist Xi such tha t 

n 
H = 2 Gf(xi) D S. The set R — H is both closed and open since 

1 __ n 

it contains isolated points only. Hence H = H = 2 @(%%) - s eom-
*". 

pact. Setting Rx = H,R2 = R — H we obtain the required decompo­
sition. 

T h e o r e m 12. Let R be a completely regular space. (}R = rR 
if and only if R is compact. 

Proof . If R is compact, rR = R = fiR. If /?i? = rR, then 
by theorem 5 and 9 and lemma 5 the set all non-isolated points 
of R is compact. Hence by theorem 5 and 4 and lemma 6 we obtain 
R = Rx + R2 where Rx, R2 are disjoint closed sets, Rt is compact, 
R% is discrete. This yields /3JR2 = rRt which is possible only for 

105 



a finite R2 since otherwise the infinite subspace /3iž2 — R 2 = xR2—R2 

would be both discrete and compact which is a contradiction. 
Since R2 is finite, R = R± -f- R2 is compact. 

T h e o r e m 13. Let Rbea Hausdorff space. Then 
(i) coR = xR if and only if R is compact; 
(ii) coR = x'R if and only if R is normal and locally compact 

and every regularly nowhere dense closed subset of R is compact; 
(iii) coR = oR if and only if the set of all non-isolated points 

of R is compact; 
(iv) coR = oR if and only if R is normal and every regularly 

nowhere dense closed subset of R is compact. 
Proof . If coR = xR, .... then coR is a Hausdorff space, hence 

by theorem 3 R is normal, coR = /3R. Therefore the necessary condi­
tions for coR = xR etc. are the same as for (}R = xR etc. with the 
additional assumption of normality. I n (i) and (iii) this assumption 
is superfluous by lemma 3. The sufficiency of the conditions follows 
from theorem 10, since the normality of R implies coR = /3R. 
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0 ekvivalenci některých typů obalů topologických prostorů. 

( O b s a h p ř e d e š l é h o č l á n k u ) . 

V tomto článku se studují podmínky pro ekvivalenci obalů 
f}R, coR, xR, x'R, oR, o'R topologického prostoru R. Hlavní výsledky 
jsou ty to : 

Nechť R je úplné regulární prostor. Potom (1) f}R = x'R když 
a jen když R je lokálně kompaktní a každá regulárně řídká uzavřená 
množina F C R je kompaktní; (2) (IR = oR když a jen když každá 
řídká uzavřená množina F C R je kompaktní; (3) /?iž = ďR když 
a jen když každá regulárně řídká uzavřená množina F C R je kompakt­
ní. 

Necht R je úplně regulární prostor. (}R = oR když a jen když 
množina všech neisplovaných bodů prostoru R je kompaktní. 

Necht R je úplně regulární. fiR = xR když a jen když R je 
kompaktní. 
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