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Gasopis pro péstovani matematiky a fysiky, ro¢. 72 (1947)

On the equivalence of certain types of extension
of topological spaces.

By Miroslav Katétov, Praha.
(Received June 10, 1947).

There are several types of H-closed or compact, as the case
may be, extensions of a given topological space. Such extensions
of a space R are: E. Cech’s [1]!) compact space SR, defined for
every completely regular space B, H. Wallman’s [2] compact space
oR, P.S. Alexandroff’s [3] spaces «R and «'R, the first of them
defined for regular R, the second for completely regular R. In the
recent paper [4] of the author a descriptive characterization is
given of four types of extensions, denoted by TR, *'R, oR, ¢'R,
which are defined for any Hausdorff space R 2).

' It is of interest to know for what spaces K some of these eight
extensions coincide. It is well known [3] that 'R = SR whenever
«'R, BR exist, i. e. for every completely regular space E. It is further

known that o B —= BR if and only if R is normal. In the present note, -

necessary and sufficient conditions are given for R = 7R, R = ©'R

PR = oR, BR = o’'R, as well as for wR = ©R etc. It is shown that

BR = vR for compact R only, BE = oR if and only if R = R, + R,

where R, is compact, R, is discrete. The conditions for SR = 'R,

BR = a’R show the structure of R far less clearly and could be

probably replaced by simpler ones.

First of all we describe the extensions wR, R, TR,

_ Definitions. Let R be a topological space. A pomt xeR
is called semiregular if, for every neighborhood H of z, there exists

an open set G such that z ¢ G C Int GCH. A set @ C R is said to be
reqularly imbedded (Cech and Novék [5}) in R if, for every point

!) The numbers in brackets refer to the list at the end of the present
paper.

2) I take the opportumty to corect the erroneous statement of problem
1in [4], p. 19. The problem should be stated as follows: ,,I do not know "
what conditions a ?ipace P must satisfy in order that. it might be imbedded
in a H-closed Haus or,ff subspace of wP¢ . ) .
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ze R and every closed set F C R — x, there exists a set 4 CQ
such that F C 4 C R — z. @ is said to be combinatorially imbedded

[5] in R if [ | F; = 0 whenever F;C Q are relatively closed and
n 1 .

[TFi=o.
1 .

The following four theorems are known. For the first of them
see [5].

" Theorem 1. Any T';-space R may be both regularly and combina-
rially imbedded, in an essentially unique way, in a compact T,-space
wR. ‘

Theorem 2. Any completely regular space R may be imbedded
in a compact Hausdorff space BR such that every bounded continuous
real function on R may be extended to a continuous real function on
BR. This tmbedding is essentially unique.

Theorem 3. If R is normal, then R = wR. If R is a Haus-
dorff space, then R is normal.

Theorem 4. A completely reqular space R is open in SR if
and only if R 1s locally compact.

Definitions. Let R be a Hausdorff space, Q CR, Q = R.
Q) is said to be hypercombinatorially tmbedded in R if ﬁ F,= ﬁ F;
whenever F; C Q are relativeiy closed and I“—I F;is Iiowhere dlense
in Q. @ is said to be paracombinatorially imbe;lded in R if ﬁ GicQ
whenever G; C @ are relatively open and 1:'&[ G; = 0. 1

The following two lemmas and four theorems are given in [4].

‘Lemma 1. Let R be a Hausdorff space, @ CR_,_Q: R. The
imbedding @ C R is hypercombinatorial if and only if F, F, = F, F,
whenever F,, F, are relatively closed subsets of Q and F, F, is nowhere
dense in Q. ' :

Lemma 2. Let R be a Hausdorff space, @ C_Ri;Q = R. The imbed-
ding Q C R is paracombinatorial if and only if Gy Gy C Q whenever G,
@G, are relatively open subsets of @ and G, G, = 9.

The above lemmas assert evidently that we-can put » = 2
in the definitions of the hypercombinatorial and paracombinatorial
imbedding without changing their meaning. It is worth mentioning

that an analogous lemma does not hold for the combinatorial imbed-
ding [5].
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Theorem 5. Any Hausdorff space R may be hypercombinatorially

imbedded in a H- -closed?) space TR such that R is open in TR and the

subspace TR — R 1s discrete. The imbedding is essentially unique.

Theorem 6. Any Hausdorff space B may be paracombinatorially
tmbedded in a H-closed space t'R such that R is open in TR and

every point x € T R — R is semiregular. This imbedding is essentially
uhique.

Theorem 7. Any Hausdorff space R may. be imbedded both
hypercombinatorially and regularly in a H-closed space oR. This
1mbedding is essentially unique.

- Théorem 8. Any Hausdorff spdce R may be imbedded both para-
combinatorially and regularly in a H-closed space ¢'R such that every
point z € o' B — R is semiregular. This imbedding is essentially unique.

Now we proceed to establish the conditions for the equivalence
BR =R, ...

Lemma 3. If every nowhere dense closed subset of a regular
space R is compact, then R is normal.

Proof. Let F,, F, be disjoint closed subsets of . Denote Int F,
by G, F;, — G by K. For each point x ¢ K choose an open set H(z)

such that x € H(z), H@x)F, = 0. Since K is compact there exist a;

such that Z H(z)D K. Setting H = G 4+ Z H( x,) we have HD F,,

HF, = 0. Hence R is normal.
Definition. A subset M of a topologmal space R is called
regularly nowhere dense if M = @, G, where G, G, are open, G; Gy = 0.

Lemma 4. If every regularly nowhere dense closed subset of
a regular space R 1is compact, then, for every pair G, H of open sets-
such that G C H, there exists a continuous real function f on R such
that f(x) = 0 for x ¢ G, f(x) = 1 forz ¢ R — H. -
Proof. Denote Int @ by G,, G — G, by K. For each ach point

z e K choose an open set U(x) such that ze U(x)C U(x) CH.. |
Since K is closed and regularly nowhere dense, therefore compact,

there exist z; ¢ K such that >, U(z;) D K. Seting U = G, + > Ula)
1 T

we have G C U C U C H. The rest of the proof is now completely
analogous to that of the well known Urysohn’s lemma.

Theorem 9. Let R be a completely regular space. The imbedds _
R CPBR is hypercombinatorial (paracombinatorial) if and only )

3) A Hausdorff space R is cal]ed/ H-closed if [it-is closed in a.ny' .
Hausdorff space in which it is imbedded. -
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every mowhere dense (regularly mowhere dense) closed subset of R
18 compact.

Proof. I. Let the imbedding R C SR be hypercombmatonal
If F C R is nowhere dense and closed (in R), then F = F and since
SR is compact, so is F.

II. Let the imbedding R C SR be paracombinatorial. If ¥ C R
is closed and regularly nowhere dense (in R), then F = RG1 G,
where G,, G, are disjoint open subsets of E. Therefore F cG,G,CR,
whence F = F. Thus F is compact.

IT1. Suppose that every nowhere dense closed set F CR
is compact. Let F,, F, be closed subsets of R and let F = F, F,
be nowhere dense. Choose.a point = € ¥, F,. If we had x « SR — F,
there would exist an open (in fR) set H such that HD F, z e pR — H,
hence x ¢ F; — H F, — H. This contradicts the fact that, R being
normal by lemma 3 there exists by theorem 2 a continuous real
function f on R suchjhit f(x) =0 for z e F; — H, f(z) =1 for
z e Fy— H. Therefore F, F, = F = F = F, F,. Hence by lemma 1
the imbedding R C SR is hypercombinatorial.

IV. Suppose that every regularly nowhere dense closed set
F C R is compact. Let ¢;, G, be disjoint open subsets of E. Denote
R G, G, by F; F is compact, hence F = F. Suppose that G, G, + F;
choose a point z € ¢; G'y — F. Then there exists an open set H such
that HO F,x ¢ R — H, x ¢« G, — H, x ¢ G, — H. This is a contra-
diction since by lemma 4 and theorem 2 there exists a continuous
real function f on R such that f(x) = 0 for x e G, — H, f(z) =
for e R—G,— H. Hence @, G, = F CR which by lemma 2
proves that the imbedding R C SR is paracombinatorial.

From the theorems 4, 6, 7, 8, 9 we obtain the following

Theorem 10. Let R be a completely regular space. Then
(1) BR = 'R if and only if R is locally compact and every regularly
mowhere dense closed set F C R is compact;

(ii) BR = oR if and only if every nowhere dense closed set F C R
- 18 compact; A

(iii) BR = o'R if and only if every regularly mowhere dense
closed set F C R s compact.

In the theorem 11 we succeed to replace the condition for
BR = oR by a more illuminating one. As to R = 'R it is clear
that if R = R, -+ R, where R, is compact, R, is closed dicrete, then
the conditions for ﬂR = 17'R are satisfied. I do not know whether
they may be satisfied by a space R which does not admit of a decom-
position of the above kind.
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Lemma 5. In order that every nowhere dense closed subset of -
a Hausdorff space R should be compact it s necessary and sufficient
that the set of all non-isolated points of R be compact.

Proof. The sufficiency being evident, we have only to prove
the necessity of the condition. Denote by S the set of all non-isolated
points of R. Let F be, for every ordinal & < x, a non-empty closed

subset of §; let F¢ D F, for £ <n < . We have to proveHF; =+

+ 0. If, for some &, F, (F;— Int F;) & 0 for every 7, &£ < n < a,
then we obtain | [ F,, + 0 since F: — Int F; is nowhere dense and

n

closed, therefore compact. Hence we may suppose that there
exists, for every & <«, a & such that & < & < «, Fp C Int Fe..
Further we may suppose, for convenience, replacing if necessary
{F:} by an appropriate subcollection, that F: ., C Int F¢, F¢ ) + Fe
for every & < «. For each & < «, choose a point a; € Int Fe — F¢
and denote by 4 the set of all a;. Evidently a; non € G, = Int F, —
— F, ., whenever 7 << «, 1 * £ Hence every point ze¢ 4 'is an
isolated point of the set 4, but is not an isolated point of the whole
space R since A C S. Hence 4 is nowhere dense and so is B= A4
as well. Therefore B is compact and from F:B + § we obtain

1;[111S + 0.

Theorem 10 and the above lemma imply -

Theorem 11. Let R be a completely regular space: PR = oR
if and only if the set of all non-isolated points of R is compact.

Lemma 6. If the set of non-isolated points of a locally compact
Hausdorff space R is compact, then R = R, + R, where R,, R,
are disjoint closed sets, R, ts compact, R, is discrete.

Proof. Denote by S the set of all non-isolated points of R.
For every poirt x ¢ S choose an open set G(x) such that z ¢ G(z)

and G( ) is compact. Since S is compact, there exist x; such that
H = Z G(x;) D S. The set R— H is both closed and open since

it contams isolated points only. Hence H = H = ? G(z;) is com-

pact. Setting R, = H, R, = R — H we obtain the requn'ed decompo-
sition.

Theorem 12. Let R be a completely regular space. BR = 1R
if and only if R is compact.

Proof. If R is compact, TR = R = BR. If ﬁR = 1R, then
by theorem 5 and 9 and lemma 5 the set all non-isolated points
of R is compact. Hence by theorem 5 and 4 and lemma 6 we obtain
R = R, + R, where R,, R, are disjoint closed sets, R, is compact,
R, is discrete. This yields SR, = tR, which is possible only for
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afinite R, since otherwise the infinite subspace SR, — R, = tR,— R,
would be. both discrete and compact which is a contradiction.
Since R, is finite, R = R, + R, is compact.
‘Theorem 13. Let R be a Hausdorff space. Then
(i) oR = tR if and only if R is compact;
(i) wR = 'R if and only if R is normal and locally compact
and every regularly nowhere dense closed subset of R ts compact; :
(ili) wR = oR tf and only if the set of all non-isolated points
of R is compact; ' :
(iv) wR = oR if and only if R is normal and every regularly
nowhere dense closed subset of R is compact.

Proof. If R = 1R, ..., then wR is a Hausdorff space, hence
by theorem 3 R is normal, ¢ R = SR. Therefore the necessary condi-
tions for R = tR etc. are the same as for R = TR etc. with the
additional assumption of normality. In (i) and (iii) this assumption
is superfluous by lemma 3. The sufficiency of the conditions follows
from theorem 10, since the normality of R implies wR = gR.
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0 ekvivalenci nékterych typi obalii topologickyeh prostori.
(Obsah predeslého &lanku).

V tomto ¢lanku se studuji podminky pro ekvivalenci obald
PR, oR, 1R, t'R, oR, o' R topologického prostoru R. Hlavni vysledky
jsou tyto:

Necht R je uplné reguldrni prostor. Potom (1) SR = 'R kdyZ
a jen kdy% R je lokdlné kompakini a kaZdd requldrné Fidkd uzaviend
mnoZina F C R je kompakini; (2) R = oR kdy? a jen kdy? kadd
Fidkd uzaviend mnoZina F C R je kompakini; (3) BR = o'R kdyZ
a jen kdyz kaZdd reguldrné fidkd uzaviend mnoZina F C R je kompakt-
. o . , o
Necht R je vuplné reguldrni prostor. fR = oR kdyZ a jen kdyZ
mnoZina véech neisolovanych bod@ prostoru R je kompakini.

Necht R je uplné reguldrni. SR = tR. kdyZ a jen kdyZ R je
kompakini. '
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