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éasopls pro pdstovanl matematiky a f.ysiky,' rod. 75 (1950)

A THEOREM ON. THE LEBESGUE DIMENSION
MIROSLAV KATETOV (Praha)
(Received Novexﬁber 15th 1949)

~ 'Inarecent papér [1]*) of the present author, some results have been
established concerning the relations between the inductive (Menger-
Urysohn) dimension of a compact (= bicompact) space P and certain
properties of the ring C(P) consisting of all (bounded) continuous real-
valued functions on P. In the present note I intend to give a characteri-

_zation of the Lebesgue dimension (in a sense shghtly different, for
non-normal spaces, from the usual one) in terms of the ring C(P), namely,
to show that the Lebesgue dimension of P is equal to the a.nalytlc
pseudodunensmn of P, to be defmed in the sequel.

§1

We first summarize some definitions and results given in [1]. —

Space always means a Hausdorff topological space, mapping means .

a continuous transformation, function means a real-valued function.
The letter- P denotes a (non-void) completely regular space, B denotes
a metric space.

* Let C be a commutative ring (with a unity element) in which there

is defined, for any ze C' and any real number 4, the multiple Axe C

satisfying the usual axioms, and let C be, at the same time, a topological

space such that the operations z -+ y, xy, Ar are continuous. Then C
will be called a (real commutative) analytic ring (with a unity). We shall
say that a subrmg C, D C is algebraically closed (in 0) if (1) C, is an ana-

lytic subring, i.e. contains all Ae where A is real, e is the- unity element -

‘of C; (2) ze Cis contamed in €, whenever z" 4 a,2" 1+ ... 4 a, = 0,

a; € Cy; if, moreover, C; = C, (i. e. C} is a closed set) we shall say that 0’l '

is analytically closed (in C).

\

If-P is a completely regular space, then C(P) denotes the ana.lytlc :

ring consisting of all bounded continuous functions f in P- (Wlth the
- topology defined by the norm |f| = sup,.p|f(t)]). - :

") The number in brackets Tefer to the list at the end of the paper '
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Lemma 1. If SC P is connected and C; C C(P) consists of all
. x € O(P) which are constant on S, then C, is an analytically closed subring.

See [1], Lemma 17.

Lemma 2. If P is compact, C, C C(P) is algebraically closed, then,
for every tye P, the set of all t e P such that x(t) = (), for any x € Oy,
18 connected.

See [1], Lemma, 18.

Proposition 1. Let P be compact and let Cy C C(P) be an analytic
subring. Then C, consists of all x e C(P) such that x(t,) = x(t,) whenever
Y(ty) = y(to) for all y € C;.

See [1], Theorem 2; cf. [2], Theorem 82, as well as [3], Theorem 4,
and [4], Corollary 2.

It is clear that the intersection of an arbitrary system of analytically
(algebraically) closed subrings of an analytic ring C is analytically
(algebraically) closed. Consequently, there exists, for any M C C, the
least analytically closed subring C; C C containing M. We shall say that
M is an analytic base of C; (in C), or that C, is analytically generated*)
by M. )

If C is an analytic ring, then the least power of an analytic base of C
will be called the analytic dimension of C, denoted?) dimC.

Proposition 2. The analytically closed subring generated analytically
by a set M C C(P) consists of all functions x e C(P) which are constant
on every connected set 8 C P on which all functions y e M are constant.

Proof. The set of all xe C(P) which have the above property
is clearly a subring, contains M and is analytically closed by Lemma 1

- (since the intersection of analytically closed subrings is analytically
closed). ' :

Let C,C C(P) be an analytically closed subring containing M.
For any ¢ e P, denote by S() the set of all ¢’ ¢ P such that y(t') = y(?)
whenever y € C;. By Lemma 2, every S(t) is connected. If z ¢ C(P) has
the property described in the proposition, then 2 is constant on every
S(t) and therefore, by Proposition 1, x ¢ C; = C,.

We now state some further auxiliary definitions and lemmas refer-
ring, if necessary, for the proofs to [1].

If Pis a space, R is a metric space, then C(P, R) denotes the space
consisting of all bounded mappings of P into R, with the metric o(f, g) ="
= supspo(f(t), g(t)). E* (n=1,2,...) denotes the n-dimensional
Euclidean space, £° denotes the space containing a single point: instead
of C(P, EY), C(P) is written. N '

1) This notion is different from E. Hewitt’s [4] notion of e ,,set of analytic
generators‘‘, ) . . A
: %) Thus dim has, in this note, two different meanings: 1. the analytic dimension
of an analytic ring, 2) the Lebesgue dimension of a space, to be defined below.

.
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“Let P be a space, and let % be a finite open covering (abbreviated -
f.0.c.) of P;let M C P. If there exist M;such that TP M; = M, M;M; = ¢
(for ¢ &), and each M; is contained in some A €9, then we write
(M) < U. It is easy to see that M; are open and closed in M.— If U,
B are f. 0. coverings of P and every A e is contained in some B¢ B,
then U < B is written.— A set M C P is said to have property A(R)
in P, R being a metric space, if, for any f e C(P, R) any {. o. c. U of P,
and any &> 0, there exists ge C(P, R) such that o(f,g9) <e and
(Mg~ y)) < 91 for every y ¢ R. -

Lemma 3. If P is compact, MCP@sclosed Aisatf o c ofP
and §(Mf—y)) < U, for any y € R, then there emstsaf 0.c. Boff(P)CR
such that 6(f—1(B)) < U, for any Be B,

. Proof. Since IIM{~1(G) = M{~'(y), G running over all neighbor-
hoods of y e R, it is easy to see that there exists, for every ye f(P),
an open neighborhood @ = G(y) such that §(/~1(@)) < ?I Smce f(P)
is compact, {G(y)} contains a finite subcovering.

Lemma 4. Let A be a f. o. c. of P and let KCP be compact Then
O(K) < U if and only if every connected S C K is contained in some
Ae¥

Proof. The necessity being obvious suppose the condition to hold.
For every z € K, let S(z) denote the interséction of all H C K which are
open and closed in K and contain the point z. Then S(z) is connected;
for otherwise S(z) = S; + 8S,, S; closed non-void, 8,8, = 0, z € S;, and
there exist open (in K) G; C K such that G; D §;, G,G; = 0; therefore,
for appropriate Hj, open and closed in K, we have z ¢ MiH;C G, + Gy,
and. G117 H; is easily seen to be open and closed in K from which a contra-
diction follows at once. Since S(x) is connected, it is contained in some’
A e U. There exists an open and closed (in K) set H(x) such that x e S(x) C
CH (x) C A. Since K is compact, we have, for appropna,te z;, K = ).'.'1H@, .
each H; = H(x;) being open and closed (in K) and contained in some
4 € . From this the assertion of the lemma. follows at once.

Lemma 5. If R 18 oomplete then, for an arbztmry space P, O(P, R)
18 eomplete.
This is obvious. Cf. [1], Lemma 13.

Lemma 6. If P is compact, MCPzéolosed Aisat.o.c. ofP then
the éet of alll f € C(P, R) such that S(M}~'(y)) < ¥, for any y € R, is open. -
- Bee [1], Lemma, 7,

Defmitmn The order of a finite collection QR of sets is the largest
integer n such that there are n - 1 sets from M with a non-void inter-
section. Given a (non-void) normal space P, the least cardinal number m
such that, for any f. 0. c. A of P, there exist a f. 0. c. B < A of order

-
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Smis called the Lebesgue dimension of P, denoted dimP. Clearly,
OSdlmP<xo,forS ﬂ,weputd1mS=—-1 :

: We now proceed to establish the following proposition from which
our main theorem will easily follow.

“Proposition 3. The following properties of a compact space P are

equwalent (forn=0,1,2,...): (1) dimP < n; (2) property A(E") (in P);

- (3) every countable M C P is contained in an analytically closed subring
- C, C C(P) analytically generated by a set N C C(P) of power <n 4)

" property (3) with arbitrary finite, instead of countable, M

Proof. The propomtlon is easily seen to hold for n = 0 (observe
that a compact space P .is 0-dimensional if and only if no connected -
S C P contains more than one point and apply Lemma 4). Therefore’
we may suppose # > 1. — L. (1) implies (2). — Let ¥ be a £. 0. c. of P,
f € C(P, E»), & > 0. There exists a f. 0. c. @ < ¥ of order < 7 such that,
foreach @ € B, f(Q) is of diameter < }&. Let (& consist of sets G, ... G,.-
By a well known theorem on normal spaces (P is compact, hence norma.l)

. there exist open H; such that H; C G, Z”H = P. By Urysohanwtze
‘Extension Theorem there exist g; e C(P) such that 0 < gi(2) <1, for
any zeP, g(x)=0, for ze P— @, Qiz)=1, for zeH; " Choose
points-z; € E* such that (1) the distance p(z;, f(G,-)) is < }e, (2) every
hyperplane in E* contains = points z; at most. Put, for every z¢ P,
P(z) = (Zgi(x))~! (this is possible, for every « lies in some H; which’
. implies g;(x) = 1), and put g(z) = y(z) . Px1 19:(z)z; € E», points 2; being
“considered, of course, as vectors. Evidently, g € C(P, E") For any z ¢ P,
" 9i(*) 0 only if ze@Gy since, for .ze Gy, f(z) € f(Gi), o2 f(@)) < &,
we have p(g(2), /(2)) = o(Z7 V(Z)m(x)zu ZTy(x) !h(x)f(x)) <zt V(x)%(w) ,
-e(z;, f(x)) < e. Hence, o(f, 9) < _
. Foranarbitrary y € g(P), depote‘ by 4, t.he setof alld = (4, ... )c,,) €
€ E? such that Z7A;z; = y, and for some z € P, A; = P(z)gi(z) 1 = 1, ..., p).
~ The set 4y is finite, for otherwise there would exist (since, for any ze P,
gi(x) = 0 for all k except n - 1 at most) points 2y, ..., zip r< 2+ 1,
* such that y = Z{Auzq for infinitely many r-uples (4, .. ,1,,) which
s mposmble (i1, --+» 2ir ‘are independent). Since, for any given 4=
= (A4 +.., Ap) € EP, the set of all x € P such that g;(z) = 4; i = 1,....., p)
is clearly conta.med in some @, we have; consequently, d(g"l(y)) < @,
8(g1(y)) < U: Hence P has property 4(E"). -

II. (2) implies (3). — Let P have property A(E") (m P). Let f; € C’(P)

(t=1,2,...). Itmeasytoseethatthereexxsts,form_.1 -2,...,af.0.c
‘N, of P such that the diameter d(fi(4)) is.< m—1 whenever A eQI,,,,
- k< m (to find such.af. o. c., we-have only to choose f. 0. coverings

%b of fi(P) such that d(B) < m—* whenever B e B and to take for U,
. the eollectxon of all H,,_ll YBy), Bie 53;) By Lemmas 5 and 6,’and

*.
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Baire’s Theorem, property A(En) 1mphes that there exists ge C(P, E”)
such that 6(9‘1(y)) <Y, (m=1,2,...), forany y e E». Put, for xe P
k=1,...,n, gi(r)=Fk-th coordmate of g(£); then greC(P)."

SC P be connected and let every g be constant on S; then, for some y,
S.Cg—Yy) and therefore, for m=1,2,..., 8 is contained in some
A4 e UA,,. Hence d(fi(S)) < m—! (k,m= 1 2 sk m), d(f(S))=0
(k= 1,2,...), every f; is constant on 8. Hence, by Proposition 2, all the
functlons fk are contained in the subring analytlcally generated by

15 +++s @n. Thus P has property (3).

III (3) implies (4) (trivially). IV. (4) 1mp11es (l) — Suppose that (4)
holds. Let @ = {G,} (¢t=1,...,p) be a f. 0. c. of P. There exist open
sets H;such that H;C G’,,ZIH = P, and continuous functions f; e C(P)
(¢=1,...;p) such that 0< fi(x) < 1, for any ze P, fi(z) =1, for
Te H{, f,(x) =0, for ze P— G;. Smce (4) holds, there exist g; e C(P)
Gg=1,...,m) such that every f; is contained in the ring C; C C(P)
generated analytlcally by the functions g;. By Proposmon 2, every f;
is ‘constant on every connected S C P on which each g; is-constant. Put,
for any ze P, g(z) = (g,(2), ..., gn(z)) € E7; then g¢e C(P, E*). Every
(non-void) connected S C P which is contained in some g—1(y) is clearly
contained in some G; ¢ B, for otherwise we would have, for appropriate
. u;'e S (t=1,...,p), uje P— G, fi(u;) = 0 (since -every f; is constant
on S), f, x) = 0 whenever ze¢S (i=1,...,p), hence S C Hi(P— H))
which is impossible. Therefore, by Lemma 4, 8(g7(y)) < @, for any
y € B, which, by Lemma 3, implies that there exists a f. 0. c. B of g(P)
such that for each Be B, d(g—1(B)) < B. Since T = g(P) is n-dimensio-
nal at most, there exists a f. 0. c. £ < B of order < n. Let £ = {U), ...

,} Since d(g—1(U;)) < B, for ea.ch U,;, there exxst ViCP@E=1,.
r, j=1,..., k) such that Vi, .V =0 (for b % j), ZhV,, =g~ 1(U.),
every V;, is conta.med in some G ¢ ®. It is easy to see that the collectlon .
of all V;is a f. 0. c. (of P) of order < =, This completes the proof. .

Definition. Let C be an analytlc ring. The least cardinal number
m such that every countable M C C is contained in a subring generated

analytically by a set of power < < mis called the wnalytw pseudodzmenswn
of C, denoted psdimC.

Remarks. (1) Proposmon 3 xmphes that for C=C@P),P cmnpact
,finite*’ may be substituted for’ ,»countable* in the‘above definition. -

(2) Evidently, (a) psdJmC’ < dme (b) psd1m0 < ao, (c) psdme' d1m0
whenever dimC' < %.. .. . -

Proposition 4. dimP = psdme(P) for any compaci bp.:
. This follows at once from Proposition 3. -
-Remark. By Proposition 4 and the preceding rema.rk (2), dme = .
= dimC(P) whenever P is compact, ‘dimC(P) < ®,. The main theorem
of [1} a.ssert.s thet the inductxve (Menger- Urysohn) dxmensxon of a com«

" -
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pact space P is equal to dimC(P) whenever dimC(P) < 8, Thus
dimC(P) < &, implies, for @ compact P, dimP = indP, indP denoting
the mductlve dimension. .

As a matter of fact, the main theorem of [1] is virtually contained
in the above Proposition 4. For it is easy to show that indP < dimC(P)
" (cf. [1], Theorems 1 and 3). On the other hand, it is known (see [5]) that,
for a compact P, dimP < indP; hence, by Proposition 4, psdimC(P) <
< ind(P) and therefore indP = dimP whenever dimC(P) = psdlmC'(P)
which is equivalent to dimO(P) < N,

§ 2.

We are now gomg to extend the equality dimP = psdlmC’(P)
to arbitrary completely regular spaces, after defining the Lebesgue
dimension of non-normal completely regular spaces in an adequate way.

Let P be completely regular. It is well known (see e. g. [6]) that there
exists an (essentially unique) compact space PP, called the f-extension
of P, such that (1) PC P, P= BP; (2) every fe C(P) admits of an
extension F e C(ﬂP) :

Tt is clear that the correspondence between a function f e C(P) and
its extension F ¢ C(fP) is one-to one and preserves algebraic operations
as well as closures of sets (in fact, even distances). Therefore, analytic
rings C(P) and C(BP) enjoy: the same propertles and may be conSJdered
as identical.

Lemma 7. If P ts normal, then, for arb@tmry closed (in P) sets
Fi C P, the closure of TIT'F; in BP is equal to the indersection of closures
of F; in P.

Remark. Lemma 7 and the following Proposmon 5 are essentially
" due to H. Wallman [7] (observe that, if P is normal, Wallman'’s extension
P and f-extension coincide).

Proof. It is sufficient to _prove F,F,= FIF Obkusly, F.F,D
D FIF Suppose be F,F, — F,F,. Choose an open (in ﬂP) set G such
that be@, GF,F,= 0, and put 4; = GF;. Then A,4,= 0, be 4;.
There exists, by Urysohn’s Lemma, a function f ¢ C(P) such that f(z) = k
for x € A;. Since f admits of an extension F e C(fP), we have a contra-
diction (namely, F(b) = k for k = 1, 2).

Proposition 5. For a normalP dimP = dJmﬁP .

Proof. I. Suppose dimBP < n. Let @ = {Gy, ..., Gn} be af. o. e
of P. Put U;=pP — P —G; Lemma 7 implies E"'U BP. There
exists a f. 0. c. {Hj} of P, of order < n, such that each Hj; is contained
in some U;. Clearly, {PH;} < &: II. Suppose dimP < n. Let - &=
= {Gy,... Gr}bea»fO(:ofﬂP Let H;be open in 8P, H; D G , ZiH; = pP.

._.“8‘



There exists a f. 0. ¢. D = {V;} (j=1,...,'s) of P, of order < n, such
that each V; is contained in-some H;. Put U; = P — P —V,. Then
Lemma 7 implies XU; = P — [1{P — V; = BP. If [IV; = §, j running
over a given set of integers 1,...,s, then P — V; = 8P, II(BP — P—V,)
= @, IIU; = 9. Hence {U,} is of order < n. If V; C H;, then

pP—P—V,CpP—P —H;CH;CG.

Hence {U;} < & which proves the proposition.

Propositions 4 and 5 imply (since C(P) and C(SP) may be considered
as identical): ,

Proposition 6. For a normal space P, dimP = psdimC(P).

Definition. If P is completely regular then the Lebesgue dimension
of the compact (hence, normal) space SP will be called the Lebesgue
dimension of P, denoted dimP.

Proposition 7. The above definition coincides, for a normal P, with
the usual one (this note, p. 81—82).
This follows at once from Proposition 5.

Remark. It is possible to replace the above definition by an equi-
valent one not making use of the f-extension. This may be done e. g. by
restrlctmg the considerations to normal (Tukey [8]) . 0. coverings or,
which is the same, to f. o. covenngs possessing refinements of the form
{f~Y(G;)} where f is a mapping of P into Er, {G;}is a {. o. c. of f(P

We now state our main theorem.

Theorem 1. For any completely regular space P, dlIIlP psdimC(P).

This follows immediately from Propositions 4 and 5 and includes
Proposition 6 as a special case (cf. Proposition 7).

We now have to shew that the above generalized definition of the
Lebesgue dimension is ,,reasonable which essentially means that the
inequality dimM < dimP, for M C P, and the Sum Theorem obtain,
under some reasonable assumptlons This will be shown below (Theorem 2).

Definition. A subset M of a completely regular space P will be
called normally closed if it is closed and every fe C(M) admits of an
extension F e C(P).

Proposition 8. If P is completely regular, MCP s normally
closed, then dimM <dimP.

Proof. Clearly, M CBP is compact, and every fe C(M) may be
extended over SP. Hence M = M. Now let & = {G}beaf. o c of M.
There exist open (in fP) sets H; such that MH;=G;. The sets H;
together with SP — M cover BP. Therefore, supposing dimP < #, there
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. existsaf. 0.0 D= {V,} of 8P, of order < =, such that, each V; is con:"
tained either in 8P — M or in some H;. The {. o.c. U= {MV;}of M =-
== BM is of order < =; N<®. -
. " Proposition 9. If. P 1s normal Ar C P are closed; P= 21 Ak,
dimd; < n, then dimP < n.

. This well known result is due to E. Cech [9]; of. E. Hemmingsen [10]

Propos1t10n 10. 1, / Pis regular and every open covering of P contains
a countable subcovering, then P is normal.

Remark. This result is due to E. Cech (unpublished). The idea oi
the proof is due to A. Tychonoff [11].

. Proof.Let A C P, BC P be closed, AB = @. For For every z ¢ P choose

. an open set G(z) such that z e G’(a:) and either AG(x) or BG(x) is void.
The covering {G(z)} contains a countable subcovering {G,}. Denote
by Fp (n=1,2,...) the sum of @, k < n,such that AG: = ¢, and put
G = X(G, — F,). Since X7'Q, = P, FA_Q (n=1,2,...), we have
" ACG. If ze B, then z ¢ Gy, for some m, and clearly G,,,(G —F,)=29
(n— m,m -1, ...) whereas, for n» < m, we have either G, — F, =0
or G,B=0; therefore znon € G. Hence GB ® which proves the
normality of P.

Lemma 8. If there exwt in a space P, compact sets K CP such

that P = 37K, then every open covering ® of P containg a countable
“subcovering. v

~ Proof. Since K, is compact, ( contains G,,, such that PG D K,,
The collection of all Gn; covers P,

" Theorem 2. If P is completely regular, P = Z{ A,, A are normally
closed in P, then dimP = sup dim4,,.

Proof. Denote by B, the closure of 4, in SP and put B= EB
Since: 4,, are normally. closed B, = 4, and therefore dimB, = dim4,,.
Clearly ﬂP BB which implies dimB = dJmﬁP dme Now apply
- Lemma 8 and Propc)sltlons 10and8. .

- Remark. It is sufficient to suppose; in Theorem 2 mst,ead of Ay
being normally closed only that every fe C’(A,.) admxts of an extension
Fe C'(P) : . .
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Véta o Lebesgueové dimensi
(Obsah piedeslého &lanku).

Hlavnim vysledkem éldnku je véta: Je-li P uplné reguldrni prostor,
pak dimP = psdimC(P). Pfi tom je dimP definovéna jako Lebesgueova
dimense Cechova obalu P (takZe pro normélni prostor P se shoduje
s Lebesgueovou dimensi, definovanou obvyklym zplsobem pomoci
koneénych otevienych pokryti prostoru P), psdimC(P) je pak nejmensi
" kardindlni é&slo m takové, Ze kaZdd spodetnd M C C(P) je obsaZena
v jistém analyticky uzavieném podokruhu C; okruhu C(P) (jen se sklddd
z omezenych spojitych funkei v P), vytvofeném nejvyse m funkcemi
z C(P).
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