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_ Sasopis pro.pistovani matematlky a fysiky, rot. 76 (1950)

ON NEARLY DISCRETE SPACES
MIROSLAV KATETOV, Praha
(Received October 21, 1949)

Nearly discrete and nearly (R) discrete spaces investigated in this
note are, roughly speaking, Hausdorff (respectively, regular) spaces the
topology of which cannot be modified without either some open set
becoming non-open or some non-isolated point becoming isolated. It is
immediately ‘seen that discrete (i. e. such that every subset is open)
spaces as well as spaces investigated by E. Hewirt [1]*) and by the
present author [2] and called maximal (maximal completely regular)
in [1], minimal (R-minimal) in [2] are nearly [respectively, nearly (R)]
discrete. In.this note some properties of nearly discrete and nearly (R)-
discrete spaces are examined and a close relation is established between
nearly (R) discrete spaces and the Cech (bi)compactification of discrete
spaces .(for instance, every countable nearly (R) discrete space. may
be imbedded into the Cech compactification of natural numbers).

We begin with somé preliminary definitions and lemmas. All spaces
considered are Hausdorff topological spaces. The letters P, S always
denote spaces. Mappmg means a continuous transformad;mn, function
means a real:valued function.- - »

. Definitions. A space P is called dense- m-zt.self if it contamb no -
isolated point, dispersed if it contains no non-void dense-in-itself subspace. -
A set Q C P is called relatively dense-in-itself (in P), abbreviated r.d., if it
contains no isolated (in @) points except those isolated already 'in P,
relatively almost dense- m—ttself, abbreviated almost r. d., if the set of all
z € Q which dre isolated in @ without being isolated in P-is ¢ountable
(= finite or countable mfmlte) A one-to-one mapping @ of a space P,
into P, is called an L-mapmng if tp(:v) is an isolated point in P, whenever z . -
" ig'isolated in P,. If ¢ is an ¢- mappmg of P, onto P,, theix P, is sald to be ‘

an z-zmage of P1 o SO a

Lemma. 1. In any apace P the sum of an arb@tmry collectum o/ ,. d
ceta 18 .. d., every. open set 18 1..d., the infersection of an open seb ami ar.d.

*) Numbers in’ brg.ckets refer to the list at the end of the paper. - * ST
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setisr.d. Aset QC Pisr.d.if and onlyif Qisr.d. If Q C Pisr. d.in P,
MCQisr.d.in P,then M isr.d. in P.

Proof is easy and may be omitted.

The following lemma is obvious.

Lemma 2. Let ¢ be an t-mapping of Py onto Py, If Q C Py s r. d.,
then (@) C Pyisr. d.

Lemma 3. If ACPisr.d., BC A4, and no non-void M C B isr. d.
in P,then A— BD A, A—Bisr.d.in P.

Proof. Denote by C the set of all isolated (in B) points z ¢ B.
It is easy to see that B —Cisr. d., hence void. If z e C, then z is not
isolated in A(for otherwise x would be isolated in P, (x) C B would
be r. d. ), and therefore xe A — B. Thus C C A — B whence B C CcC
C A—RB B, AD A — B which proves (cf. Lemma 1) the lemma.

Lemma 4. Let A;C P, Z”A = P. Then there exist r. d. sets B; C A,
such that XV B; = P.

Proof. Let B; be the sum of all r. d. sets BC 4;; by Lemma 1,
B; is r. d. Suppose G = P — X7B; & . Then @ is open, hence r. d.,

@ = X}(GA; — B;), Q4;— B; contains no non-void r. d. set. Thls
is easily seen to contradict Lemma 3. -

Definitions. A space P is called nearly discrete if every (-mapping
of a Hausdorff space onto P is a homeomorphism. A semiregular?)
[regular, completely regular] space P is called nearly (SR) [nearly (R),
nearly (SR)] discrete if every -mapping of a semiregular [regular, comple-
tely regular] space onto P is & homeomorphism.

Theorem 1. Each of the following three conditions is necessary and
sufficient in order that a Hausdorff space P be nearly discrete: (a) every
relatively dense-in-itself set @ C P is open; (b) for any bounded function f
in P, limf(z) ewists, for any non-isolated x € P; (¢).if M C Pyxe M — M,

2T
then M 4 (x) 18 a neighborhoed of x.
. Remark. This theorem -is equlvalent for a dense-in- 1tse1f P to
Theorem 2 and 3 of [2]. The proof does not differ from the proof glven
in [2] and is given here for the sake of completeness only.

Proof. I. Let P be nearly discrete and let Q C P be r. d. Let P,

. be obtained from P by declaring every set G@Q + H, G, H open in P, for
open in P,. Clearly, P, is a Hausdorff space. It is easy to see (cf. Lemma 1)
that the identical mapping of P; onto P is an -mapping, hence a homeo-
morphlsm, and therefore @ is open in P. II. Let (a,) hold and let M C P,

1) A spa,ce P is called semu'egular if, for any open G C P and z ¢ G, there exist
an open H such that Te Hc IntH C G-
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@e M — M. By Lemma 4, there exist r. d. sets 4C M, BCP—M
such that 4 4+ B= P. Clearly, xe¢ A (for otherwise we would have

xe-ﬁ, B+ (x) r. d., hence open, and therefore xnone M), A -+ (x)
is r. d. and therefore open, M + (x) D 4 + () is a neighborhood of z.
III. Let (c) hold and let @ be’an ¢ mapping of a space P, onto P. Let

MCP,zeM—M. Then M -+ (x) is a neighborhood of z in P and
therefore ¢—1(M) + ¢—(x) is a neighborhood of ¢~1(x) in P. Since
@—1(2) is not isolated (¢ being an ;-mapping) we obtain ¢—(x) € g~1(M).
Thus ¢ is a homeomorphism which proves that P is nearly discrete.
IV. Let (c) hold and let f be a bounded function in P. Let z ¢ P be non-
isolated and denote liminff(z) by «. Clearly, for any ¢ > 0, z ¢ M, M

2>

being the set of all z e P,z == «, such that|f(z) — «| < &. Therefore () + M
is a neighborhood of z which implies x = limf(z). V. If (b) holds and

=T
M C P,ae M — M, then putting f(zr) = lifx ¢ M, f(x) = Oif xe P— M
we obtain limf(x) = 1 which implies |[f(x) —1| < %, hence f(x) =1,
2-a :
x e M, for every x == a in an appropriate neighborhood G of the point a.
Thus (b) implies (¢) which completes the proof.

Theorem 2. The following properties of a semzregular space P are
»equwalent (a) P is mearly (SR) discrete; (b) P is mearly (R) discrete;’
(c) P ts mearly (C’R) discrete; (d) if @, + @, = P, @@, = 0, @, and Q,
are relatively dense-in-itself, then Q, and Q, are open; (e) if @ C_ P,Q,CP
are relatively dense-in-itself, then Q,@, is so as well.

Proof. I. Let (a) [or (b), or (c)] hold. Let @, C P, @, = P — @;
be r. d. sets. Let P, be defined by declaring every set @,G, + @,G,
Gy, Gy open in P, for an open subset of P,. Then P, is semiregular
[respectively, regular or completely regular] and it is easy to see that
the identical mapping of P; onto P is an i-mapping, hence a homeo-"
morphism. Consequently, @, and @, are open in P (being so in P,).
Thus (a), as well as (b) or (c), implies (d). Since, for any open G, Int
G and its complement are r. d. (cf. Lemma 1), (d) implies, for a semi-
regular P, complete regularity of P. Therefore, (a) implies (b)and (c).

I1. Suppose that (d) holds and P is semiregular. Let ¢ be an i-map-

ping of a semiregular P, onto P and let G; C P, be open. Choose z € G,.
Since P, is seiiregular, there exists a regularly open?) set H,; such that
z e H, C G,. By Lemina 1, H, and P, — H, are r. d. in P, and therefore,
by Lemma 2, ¢(H,) and ¢(P, — H,) are r. d. in P, hence open. This
proves that @ is a homeomorphism. Hence P is nearly (SR) discrete,
(d) implies (a). III. From I and II we obtain the equivalence of the
- conditions (&), (b), (c), (d). We are now going to prove the equivalence

2)Aset U C P is said to be regularly open (in P) if U = IntU.
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o of (&) and (). Let (d) hold and let @; be r. d. Suppose that a e Q =;Q1Q2

_.is isolated in Q. There exists' an open G C P such that GQ = (a). Let

1—-010 8, = @,G — (a), 1-81 (Sl_"gz)» z—S+(S—T1)
It is easy to see that TIT,._ g, T+ T,=8,+ 8, SiC T:;CS:.
Lemma 1 implies that Ty, 7'y, P — Ty — T, arer. d., hence, by (d), open.
From this we obtain a non € Sy; hence a is isolated in @,@ and therefore
in P (for Q,& is r. d.). Consequently, Q@ = Q,Q, is r. d., (d) implies (e). —
- Now let (e) hold and let @; be r. d., @, + @, = P, @,@, = @. Choose
zeQ, and put §; = Ql + (z) Then 8, is r. d. and therefore @,8, isso as
© well. We have either Q,8, =0 or Q,S, = (z). Suppose ze @Q,; then °
(:t) Q,Sl isr. d., z is isclated which contradicts x'e¢ @, — @,. Therefore
ze @y, Qs closed which proves the implication (e) = (d). -

. Remark. Theorem 2 asserts that nearly (SR), nearly (R) and
- nearly (CR) discrete spaces coincide. Henceforth we shall speak thetefore,
of nearly (R) discrete spaces only.

‘Theorem 3. Every Hauadorff space i8'an i-image of a nearly discrete
81)066

Theorem'4. Every regular space is an t-image of a nearly (R) discrete

. apace.

Proof of Theorems 3 and 4 is obtained by a slight modlﬁcatmn
of correspondmg proofs in [1] and [2] (Theorem 1 and 9) and may be
‘ omitted here. :

:Remarks. 1. It is possuble to give examples showing that it is not
sufficient to suppose, in Theorem 4, semiregularity instead of regularity -
2. I.do not know whether' there exist regula,r dense-in- 1tself nearly dxs-
crete spaces.

Theorem 5. Every subspace of a nearly discrete apace is nearly
'_doacrete C

’ Proof. Let P be nearly dlscrete QCP. Let MCQ ber d. mQ
Denote M + (P — Q) by S.Ifze & is isolated in S, then either z ¢ P—Q

- a.nd evidently z is isolated in P, or z¢ M, 1s isolated in Q, hence in Q,

" _hence in P =@+ (P—¢). Thus M+ (P—Q) is r. d. in P, hence,

" by Theorem 1, open, and therefore M —=-9Q is open in Q This proves,

. . by.Theorem 1, tha.t Q is nearly discrete.

Defimtlon Let PC S, let 8 be H-closed’) and let P be open

‘ "'»m 8, P 8. Let G+ (x) be open in § whenever & C P is open and

:;‘:'.-ze G — P. Then S’ (which is essentially umquely determined by the
> . abové propertles) is said to be a (H-closed) z-extension of P.and is deno-

. ted by tP (of. [‘8] where a formally dxfferent deflmtion is given).

o -.-—-..A‘_.___a i
<) A Ha.nsdorff space P is cslled H cloeed if it m cloaed in any Hausdodf :
spneS:)Px ) - Do
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1t is known (e g. [3],3,1) that there exists, for any Hausdorff spage
P,a tP.

.~ Theorem 6. Let 8 be a Hausdorff space, PC S, P= 8 and let P
be nearly discrete. Then 8 is nearly discrete if and only if S C TP.

Remark. 8 C 7P means, of course, that there exists a space
T D 8, denoted by TP, which is a H-closed 7-extension of P,

" Proof. ,,If*: by Theorem 5, we have only to show that tPis nearly
discrete. Let M C TP be r. d. Then MP is r. d., hence open; clearly, for

any e M — P, we have x ¢ M P (for otherwise 2 would be isolated in M),
() —l— MP is open, and therefore M is open. Hence, by Theorem 1,
7P is nearly discrete. — ,,Only if“: let T = 8. It is easy to show that
T is a 7-extension of P.

Corollary. A dispersed space P ts nearly dzscrete if and only if
- P C vJ where J C P consists of all isolated x € P.

This follows from the well known fact that, in a dmpersed space,
the set of isolated points is dense.

Lemma 5. Let P be nearly or nearly (R) discrete. Then every M cP
may be represented (umquely) as a disjoint sum M = M, + M,, M;being
open in M, M, dense-in-itself, M, dispersed. ‘

~ Proof. Let the sum of all dense-in-itself subsets of M be denoted

by M,, and put M, = M — M,. Clearly, M,M C M,, M, and P — M1

arer, d., hence, by Theorem 2 or 1, open in P, Therefore, M, = M 1M
.M, = (P — M,)M are open in P. The uniqueness is obvious.

Definition. Let P be completely regular. A compact space. R '_') P

such that P =R and every bounded continuous function in P may
‘be extended to a continuous function in R will be denoted by pP and :
called & B-compactification of P.

- It is'well known (cf. e. g. [4]) that every completely regular space
possesses a - compactlfxcatlon which is essentially umque -

*  The following lemma is almost obvious.

Lemma 6. Let 8 be completely regular, P C S P= 8. Then 8 CﬂP_
if ‘and only if every bounded contmuous funchon in P may be extended
to a continuous function in S:

Lemma 7. If P is nearly (R) dwcrete QCP, Q= P, then P CﬂQV
" Remark. This is, essentially, Theorem 13 of [2]. . . o
Proof. Let f be a bounded continuous function in Q Put F(x) = f(x), '
for.ze @, F(z)= hmsup/(z), for ze P—Q. Choose.ae P, &> 0 and

denote by ‘A the set of all.z € Q such that [H(z) -—-I"’(a)] < &. Clearly,
_Ais open in Q, henoe, by Lemma 1,r. d. in P, By Lemma 1 and Theorem
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9, A4 and P— 7 are open. Ewdently,aeA and, for any z € 4, IF(x)
— F(a)| < &. Thus F is continuous. Now apply Lemma 6.

‘Theorem 7. Let PCS8, P= S8 and let P be nearly (R) disérete,
S oompletely regular. Then S 18 nearly (R) discrete if and only if S C P
and 8 — P is a dispersed_space.

Proof. I. ,,Tf: let @1, @, be disjoint r. d. subsets of 8, Q; + Qx;
we have to show (see Theorem 2) that @,, @, are open. The sets Q; — P
contain no isolated point of S, are dispersed and therefore contain nor. d.

(in 8) set. Therefore, by Lemma 3, PQ; D Q4, the sets PQ;arer.d.in S,
hence in P, and consequently, by Theorem 2, are open in P. Puttmg
f(x) = k, for z e PQ;, we obtain a continuous function f in P. Let f
be extended (cf. Lemma 6) to a continuous function F in . Then @) C

C PQ, implies F(z) = k, for z ¢ @z. Hence @i are open. II. ,,Only if:
suppose S nearly (R) discrete; then, by Lemma 7, § C BP and no non-
void M C 8§ — P is dense-in- 1tself for otherwise M and S — M would
ber. d., hence, by Theorem 2, open which is impossible.

Definition. Subsets 4, B of a space P are said to be sepamted
(mP)1fAB+AB— 0.

Lemma 8. If countable sets A, B are separated na regular space P,
then there exist disjoint open sets G D A, H D B. : .

" This lemma is well known (UrysoxN [5], 8. 265).

Lemma 9. If P is nearly (R) discrete, then, for any separated coun-
table A, B, there exist disjoint opéen @ D A, H D B such that G + H = P.
Proof. By Lemma 8, there exist open G, D 4, H,D B, G,H,=9.
PutG =G, H=P— G‘1 and apply Lemma 1 and Theorem 2. _
Lemma 10 Let f be a bounded continuous function in a space P .
-such that {(P) contains no interval. Then f may be represented as the sum
ofa um/ormly convergent series X1 g, of continuous functions each assuming
two values.at most and such that 21 max[g,,(x)[ < 0.
* Proof. Let o= mff(P), f= supf(P), choose (if &« &= pf) a real
number y non € f(P) such that 2« 4+ 8 < 3y < « + 28, and put g,(z) =

=+ ) i f(2) <y, gi(2) = Ry + B) if f(x) >y, and fy(2) = f(z) —
— g,(z), for any z ¢ P. It is easy to see that starting from f, to obtain

gz and f, and proceding indefinitely in this way we obtain a series P 1 gn()
-possessing the properties requn'ed in the lemma. .
' Lemma, 9 and 10 imply:

. "Lemma'11. Let P be nearly (R) discrete and let M C P be countable
Then every bounded continuous functwn tn M may be extended to a conti-

. nuous funciion in P, -

i
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Theorem 8. Lel P be nearly (R) discrete and let Q be relatively (in P)
almost dense-in-itself. Then (1) Q ts nearly (R) discrete, (2) every bounded
continuous function in Q may be extended to a continuous function in P.

Proof. Let H denote the sum of all r. d. (in P) subsets of @, and let
A denote the set of all ¢ P which are isolated in @ without being

isolated in P; then 4 is countable, AH = @. H = HQ is closed and open

in Q, for H and P —H are r. d., hence open, in P; clearly, Q — H C A.
By Lemma 11 and 6, we obtain A C'Q — H C pA from which, by Theo-
rem 7, follows that @ — H is nearly (R) discrete (for @ — H is dispersed).
Now, if M, C' H, M,C H arer. d. in H, then, by Lemma 1, they are both
r. d. in P-and therefore, by Theorem 2, M, M, is r. d. in P, hence in M,
as well. Thus, by Theorem 2, H is nearly (R) discrete and therefore
Q = H + (@ — H) is nearly (R) discrete (for H and @ — H are open
and closed in Q). — If f is a bounded continuous function in @, then f
may be continuously extended from 4 over P — H, by Lemma 11, and

from H over H, by Lemma, 7 (for H is clearly nearly (R) discrete). From
this the assertion of the theorem follows at-once.

Corollary Every countably compac#) subspace of a mearly (R)
discrete space is finite.

- Proof. Suppose that K C P is countably compact infinite, P being
nearly (R) discrete. There exists a countable infinite discrete A C K.

B = AK is countably compact and, by Theorem 8, nearly (R) discrete.
Therefore, by Theorem 7, B — 4 is dispersed. Choose a point xe¢ B — 4

which is isolated in B — 4 and choose an open G such that GB — 4

contains a single point . Clearly, GB is countably compact, infinite,
consists of isolated pomts except the point z, and is, by Theorem 8,
nearly (R) discrete. This is a contradiction.

We are now going to give some examples.

Example 1. (showing that there exist non-normal nearly (R)
discrete spaces and that the property of being nearly (R) discrete is not
hereditary). Let I be a countable infinite discrete space. It is known [6]
that BI — I contains a discrete subspace X of power expX,. Denote
I + X by P,. By Theorem 7, P, is nearly (R) discrete. Evidently, there
exist exp¥, continuous functions in I, hence in P,. Since there exist
expexp¥, continuous functions in X, it is clear that P; is not normal .
(for otherwise every continuous function in X would admit of a conti-

nuous extension over P;). Choose a point xe X — X C I such that
X + (@) CBX does not hold (it is easy to see that such points exist
for otherwise we would have §X C fI). Denote P; 4 (z) by P,. Then,
by Theorem 7, P, is nearly (R) discrete but X + (x) C P, is not so. :

4) We call a épa.ge countably compact if every countable open covering contains
a finite subcovering, compact if any open covering contains a finite subcovering.
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Example 2. Let P be a countable infinite dense-in-itself nearly
(R) discrete space (such a space exists,_by Theorem 4). Choose an ipfinite :
discrete 4 C Pand a pointx e § P,z ¢ 4, and put § = P + (a). By Theo-
rem 7, 8 is nearly (R) discrete; § — A4 - (a) is dense but is not open.
Therefore, by Theorem 1, § is not nearly discrete. By Theorem 3, S
is an (-image of a nearly discrete space S;. Clearly, 8, is not regular.

Definition. A space P is called hypernormal (cf. [1], Definition 17)
if, for any two separated sets 4 C P, B C P, there exist open sets G D 4,
H D Bsuch that GH = 0.

Hypernormality is clearly hereditary.

Theorem 9. 4 space P is hypernormal if and only zf every bounded
continuous function f in a subspace M C P may be extended to a continuous
function in P.

Proof.I. ,,Jf“:let 4, C P (k= 1,2) be separated Putting f(x) = £,
for z e 4, we obtain a continuous functlon fin 4, + A,. Let f be
extended to a continuous function ¥ in P and denote by G or, respectiVely,
by H the set of xe P such that F(r) < 4 or, respectively, F(x) > §.
Clearly, G, H are open, G DA, HDO B, GH = 9. II. ,Only if*: let f
be a bounded continuous function in M C P. Denote sup,, le(x )| by «;
denote by 4 or, respectlvely, by B the set of x € M such that f(z) < —3}o
or, respectively, f(z) = }u, and choose (which is possible, for A B are
separated) open @ D A, H D B such that GH = 9. Since @, P — @ are
clea,rly separated, there exist open G, DG, H,DP— @ such that

= §; evidently, G, D 4, H,D B, Q, +- H, = P. Putting F,(x) =

= ——-%oc, for xeGl, Fy(x) = o, for ze Hl, we obtain a continuous
function F; in P. Clearly, |F1(:c 1< )| < 4, for any ze P, and |Fy(z) —
— f(#)| < §o, for any z e M. It is noweasy to find, by induction, conti-
nuous functions F, (n=1,2,...) in P such that |F,(z)| < 2—13"«,
for any z ¢ P, | Z7Fy(z) — f(z)| < 2"3~"«, for any z€ M. We have now
only to put F(z) = X7 F,,(x) for any x € P, to prove the theorem.

Remark. A hypernormal compact ( = bicompact) space P i is finite.
For otherwise let I C P be infinite discrete. Then, by Theorem 9, I = 1.
But I is not hereditarily‘ normal (cf. Example 1), hence cannot be
hypernormal. — It is possible to show more, viz. that an infinite count.
ably compact space cannot-be hypernormal.

. . Theorem 10. If a space P satisfies one of the followmg equwalent
conditions (1) P is nearly (R) discrete and completely normal, (2) P is
 normal and hereditarily nearly (R) discrete, then P is hypernormal.

' Proof. I. If (2) holds, let / be a bounded continuous function in
M C P. Since M is nearly (R) discrete_,“_ it is possible, by Lemma 7, to
-extend f to a continuous function in M, hence (P being normal) in P.
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This ‘proves, by Theorem 9, that P is hypernormal and (1) holds. II.
If (1) holds, let again f be a bounded continuous function in M C P.
Since P is completely, hence héreditari_lz normal, f may be extended
to a continuous function in @ = P — (M — M), hence, by Lemma 7,
in P = Q. Therefore, by Theorem 9, P is hypernormal. We have now -
only to prove fhat every @ C P is nearly (R) discrete. By Lemms 5,
there exist separated @; such that @, 4 @, = @, @, is dense-in-itself,
@, is dispersed. Evidently, it suffices to prove that Q; are nearly. (R)
discrete. Now, @, is so by Theorem 8, and hypernormality of P, implies,
- by Theorem 9, that @, C fI (where I denotes-the set of all isolated
points of @,) and therefore, by Theorem 7, @, is nearly (R) discrete.

Remarks. 1. A nearlﬂr (R) discrete space need not, of course,
be hypernormali(see Example 1). 2. There exist countable hypernormal
spaces which are not nearly (R) discrete — see Example 3 below..

Lemma 12. Let P be regular and let the set of all non-isolated x ¢ P
be countable. Then P is completely normal.

Proof. Let A C P, B C-P be separated. Denote by 1 the set of all
isolated x e P. There exist, by Lemma 8, disjoint open sets G D 4 — I,
HDOB—1I.Let G,=G—B+ AI, HH= H— A + BI. Then G, H,
are open, G, D 4, H, D B, G,H, = §. '

Lemma 13. Let I be a discrete space It P c pI and P—1Iis coun-
table; then P is hypernormal.

Proof. If f is a bounded continuous function in M C P, then,
by Lemma 12, f may be extended to a continuous function in I -+ M
and, therefore, to-a-continuéus function in P C f(I 4+ M) = BI. Hence,
by Theorem 9, P is hypernormal ’

-Definition. The least power of a dense subset of Pis called the
density ‘tharacter of P. :

Theorem 11. Any nearly (R) discrete space P may be imbedded into
BI, I being a discrete space’of power equal to the density character of P.

Proof. I. Suppose that P is dense-in-itself. Let Q C P, @ = P.-
Let @ be a one-to-one transformation of @ onto a set I, IP = §. Let
8= P+ I and let the f&mlly cons1stlng of all H+ pH)—K,HCQ -
being r. d. in @ or (which is the same) in P, K finite, and of all (z), z ¢ I,
be an open base of the space §. It is easy to see that § is' completely
regular, T=28, and P (with its original topology) is imbedded in §.
IfzeP, ACI, ze A, then Htp—’(A) =i=¢ for any r:d. HC @ such ¢ that
¢ H. Denote the sum of all r. d. sets M C¢—1(4) by B. Then z ¢ B, for
otherwise, for some- -open G C P, a¢ @, Gp—1(4) would contain no non-
. void r. d. set aqd therefore, by Lemma 3, U = G—o (A)would be r.'d.,

Te U U(p‘l(A) = @ which is a contradiction. Hence B 4+ ADB+ IP(B)

e S 7"_'



is'a nelghborhood of the pomt z, nonel —A. Thus 4.7 — 4 ’¢,', ,

“for any A C I. From this, it is easy.to deduce (cf. [4], p. 833) that P C
C BP = BIL. 11 For an arbitrary nearly (R) discrete space P, the assertion -
of the theorem follows from I and Lemmas § (with M/ = P) and 7.

. Theorem 12. Let I denote a countable infinite discrete space and let P
be a countable space. If P is nearly (R) discrete, then P may be tmbedded
inta BI; if P.C PI, then P is hypernormal. .

. This follows from Theorem 11 and Lemma 13. - ‘
~ : Example 3. Let. P be countable dense-in-itself. nearly (R) dxscrete'
(cf. Theorem 4). By Theorem 12, P.C fI, I being, countable discrete.
Let A C P. be an infinite dlscrete subspace. Clearly (cf. Lemma13)

A=pACHI Choose’ & countable’ dense- in-itsef BCA— A, BP=0
and put S= P 4 B. Then SC ﬁI 8 is hypernormal but is not nea,rly
(R) discrete (for Pand Barer. d.in S without being open).

++ Problem. I do not know (not even for countable spaces) whether
it is always possible to imbed a hypernormal space into g1, for an a.ppro-
priate discrete .

-
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) skoro isdbvanf’éh prostorech .
o ‘~ .,.- . (Obsah ptedeslého élénku)
Nazyvé,me AHF-prostor skoro tsolovanym, kdyi Jeho topologn
nelze zeslabiti, aniZ by se néktery nelsolovany bod stal molovanym (a.nebo
"prostor presta] vyhovovat axiomém 4, H, F); regulé,rni prostor nazy-
véme skoro (R) isolovanym, kdy jeho topologu nelze zeslabit, ani? by se
néktery’ nelsolovany bod ‘stal isolovanym ‘anebo prostor pi‘estal byt
- regulérnim. V- U4nki jsou studovény vlastnosti téchto prostori. Mimo
- §iné,-v #lénku jo dokdzéna véta: kaidy skoro (R) wolovany .prostor P lze
" vnofit do.prostoru 1, kde BI znadé Cechiv bikompakind obal isolovaného -
o 'ptoetom I, jehof mohutmat se. rozmd neymenél mohumostt husté &dat
. prost
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