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časopis pro pěstování matematiky a fysiky. ro£. 75 (1950) 

ON UNIVERSAL FORMS IN FINITE FIELDS. 

STEFAN SCHWARZ, Bratislava. 

(Received January 17, 1949.) 

In two recent papers1) I dealt with the representation of the ele­
ments of a finite field GF(pn) by the forms 

*!* + *!* +.-.+*** (1) 
and 

atxx
k + a2x* + . . . + akxk

k
} at e GF(pn), axa%... ak 4= 0. (2) 

I proved that these forms are universal2) 

(x) for the form (1), if we suppose 

(pn — l,k)£p— 1, 

/?) for the form (2), if we make the stronger supposition k\p — 1. 
The proof of the first statement was based upon an induction; the 

proof of the second on a method originally due to V. A*. LEBESGITE and 
generalised by several authors. 

The purpose of this paper is to show 
i) the form (2) is universal even, if we suppose only (pn — 1,1c) <^ 

<P-h 
ii) the proof of this fact (which cannot be proved by means of the 

LEBESGTJE method3)) can be given by a not too complicated induction in 
an analogous way as that for the form (1). 

We prove the following theorem. 

Theorem. Suppose that (i) GF(pn) is a finite field of characteristic p. 
(ii) alt a2 , . . . , ak are elements of the field GF(pn), axa% . . . ak 4= 0. (ii%)6 =. 

l) „On WABmG'S problem in finite fields", Quart. J . of Math. (Oxford), If 
(1048), 12a—-128; ,jOn the equation axx

k + a&k -f ... + ahxkk + b « 0 in finite 
fields", ibidem 19 (1948), 160—163. 

*) That is: every Jb e GF{pn) can be represented by the form (1) or (2) respecti­
vely witli xv a?„ ..., x% c GF{pn). 

8) See the footnote 1. c ;
l), p. 102* 
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-a (p» — l, k) <£ p — 1. Then the equation 

b = axxx
k + a2xz

k + ... + akxk
k 

has a solution with xx, xz,..., xk e GF(pn) for every b € GF(pn). 
To simplify the proof we divide it in five parts. 

1. Trivial cases. The only substantial case is (pn — 1, k) = k. 
I treat first the cases (p* — 1, k) = 1 and 1 < d = (pn — 1, k) < k. 

<x) Let (pn—1, k) = 1. Then it is well-known that if xx runs 
through all elements of GF(pn) the expression^* and the expressionaxxx

k 

take all values of GF(pn). There exist therefore to every element 
b e GF(pn) such elements 

4 + 0, f2 = ! 3 = . . . = |fc = 0, £xeGF(pn) 

that the relation 
b = ajx

k + a2.0
k + ... + ak.0

k 

holds. 

/?) Let 1 < d == (pn— 1, k) < k. Then there exist two integers 
x, y with x(pn — 1) + y . k = 5. Hence 

for every | 6 GF(pn). Every 5-th power is at the same time a k-th power. 
We have now (pn — 1, d) = <5. If we suppose the theorem proved in the 
case (pn— l,k) = k, then every b e GF(pn) is representable by means 
of the form 

axxx
& + ... + adxd

&, axa2 . . . ad + 0. 

There exist therefore elements fx, cf2, ..., £$ c GF(pn) such that 

h = ajx* + a2g2
d + ... + a£d

6. 

Thus, we can write 

b = ax(£xv)k + a%(^f + ... + a6(£6vf + ad+x .0* + ... + ak . 0*, 

q. e. d. 
In what follows we can and shall suppose therefore allways k \ pn—1. 

2. Construction of a special field GF(pn). Let Tpbe the field of 
all residue-classes modulo p. Without fear of misunderstanding we shall 
denote the elements of Tp by the integers 0 , 1 , 2, ..., p — 1. The field 
GF(pn) is obtained from the field Tp by adjunction of a root j of an ir­
reducible equation f(x) = 0 of degree n. Every element of the field 
Tp(j) = GF(pn) is of the form 

| ==. UQ + uxj + . . . + un_xj
n-1, Ui € Tp. 

We can formally realize the field TP(j) == GF(pn) in several ways accor­
ding to the choice of the irreducible polynomial f(x) the root ; of which 
we use in constructing the field TP(j). But it is weil-known that two such 
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fields (defined for the same n) are isomorphic with respect to Tp. There­
fore it is'sufficient to prove our theorem for a special field of this type.4) 

Let us now take for the irreducible polynominal f(x) by means o t 
whose root we realize the field OF(pn) such an irreducible polynomial 
of the field Tp of degree n which divides 

P W - I 

x k - 1 . 

The existence of such a polynomial is assured by the following 
Lemma: 

Lemma: Let n, k be two integers such that 

n^ 1, k\ pn — 1, 1 < k<^p — 1. 

Then there exist in Tp an irreducible polynomial of degree n which divides 

4) The explicit proof of this statement is as follows. 
Let us suppose that oux theorem holds for the field T (j) generated b y the 

root / of the irreducible equation c T f(x)- = 0. That is, let us suppose that every 

form axx
k + a2x

k + ... + akx
k,alt at, ...,ak€ T (j) As universal in T (j). 

Let be T (j*) the field generated b y a root j * of an other irreducible poly­
nomial f*(x) € T of degree n. We have to show tha t every form 

a*xk + a%*xk + ... + ak*xk
k, (A) 

ai*> a.*» • • •» ajfe* € T_(/*),is universal in T (j*). We prove tha t the equation 

b* = ax*x? + a%*x%
k + ... + ak*xk

k (B) 

has for every b* e T (j*) at least' one solution with xl9 x2, ...,xke T (j*). 
It is well-known that the numbers /, /* depend one on another rationally. That 

is, two relations of the form / = (p(j*)t j * -= yf(j) hold, where q>(z) and \p(z) are poly­
nomials in z (with coefficients in T ) of degree at most n — 1. 

The transformation 

/ * - > y ( / ) (C) 

is a one to one mapping of the field T (j*) into the field T (j). The mapping (C) 

carries the form (A) into the form axxx + ... + o^kt
 ai» a., •••» a>k € T (j). The 

number b* e T'(/*). is carried into the number 6 c T (j). 
Consider now the equation in T (j) 

b «-= axx
k + atx

k + ... + akx
k. 

According to the supposition this equation has at least one solution. There exist 
therefore numbers £{, «f.,..., £k e T (j) such tha t the relation 

h = a^k + a%^k+... + ak^
k (D) 

holds. 

The inverse mapping j -> <p(j*) carries (D) into the true relation 

b* - ax* :^*k + a%* . S%*k + .I. + ak%*k 

with f x*, cf,*,..., ik* c T (j*). The equation (B) has in T (j*) a solution, q. e. d. 
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the polynomial 
xQ*-i)l>_h { 3 ) 

The proof of this Lemma for n > 1 is given 1. c.1) p. 124—125. (The 
case n = 1 is trivially true.) 

The irreducible polynomial f(x) divides (3). Thus, ; satisfies the 

equation ^pn""x)'* = 1. The element;' is a &-th power in GF(pn),h) that is, 
there exist a number | 0 € GF(pn) such that / = £0

k holds. 
This choice of the number j will very simplify our later investiga­

tions. 
3. Futher notations. Let us denote by © the multiplicative group 

of the field GF(pn), by £ the sub-group of k-th powers. The decomposi­
tion of © modulo $$ has the form6) 

® = d1& + d2& + ... + dk$b (4) 
[di € GF(pn), one of the d{ is equal to 1 (unity element)]. 

In what follows I call the numbers u0> uv ..., un^.1 e TP the coordina­
tes of the element 

d = u0 + uxj + . . . -f tV-if"*1 

and the number of coordinates different from zero the length of the ele­
ment d. The length I is an integer, 1 <^ I <1 n. The following remark is of 
great importance: If a co-set d{$) contains an element d of the length I, 
then there exist in dtSy an element of the same length I having the first 
coordinate u0 different from zero. For, if the number 

UJP + U^P*1 + . . . + u*-,}*-1 (up -# 0, Q ^> 1) 

belongs to d{S>t so does the number 

J~P[U0JP + ...+ U^f-1] =Up + Up+1j + ... + Un^-P-1 

(since j~p, being a ifc-th power, belongs to $y). 

4. The arrangement of the co-sets of j?>- Now we choose the 
arrangement of the co-sets of 5) in (4) in a special way. 

First take the co-set axS). Then take the co-set c2(%&)> where c% is 
chosen as follows. Among alljnumbers c2 satisfying the condition 

caK&) C © — <*>!& 
we take those with the smallest length l%. From them we choose the 

8) The multiplicative group of the field OF(pn) is cyclic. See van der 
Waerden , Modeme Algebra I. Teil, 2. Auflage, p. 123. Therefore every element 

satisfying the equation zr& —•*//* -= 1 is a k-th power. 
•) The group © being cyclic, the subgroup of the k-th powers has under © 

tne index k. 



element ' -
c2 = c02 + ci2) + • • • + c*-i>2/n~~1 

such that c02 =4= 0 and, moreover, c02 has the least possible positive value 
2> 1. According to the remark at the end of section 3 such an element 
allways exists. 

Then take the coset c3{az$)), where c3 is chosen again as follows. 
Among all numbers c3 satisfying the condition 

c3K&) C © — ax$) — c2{a2£) 
we take those with the smallest length Z3. From them we choose the 
element 

C 3 . = C03 + C13? + ••• + Cn—l>3?n~ 
such that c03 4= 0 and c03 hasagain the least possible positive value _t 1. 

We repeat this process just k times. 
The last element 

ck = C0k + ClkJ + • • • + On-l*]"-1 

will be chosen as follows. We find first all numbers ck of the least possible 
length having the property 

ck{ak$>) C® — a±$) — c2{a2$)) — . . . — ^ ( a ^ f i ) . 

Then among them we choose an element whose first coordinate cok has 
the least possible positive value _; l.7) 

The rearrangement of the decomposition (4) has the final form 

® = ai$> + c2{a2&) + cz{az£) + . . . + cfc(afc.£). 
5. The main part of the proof. To show now that every element 

€GF{pn) is representable by the form (2) it is sufficient to prove that 
each of the elements 

axcv a2c2t azcZi . . . , akck {cx = 1) 

can be written in the form (2). 
This will be proved, if we show that every afr (1 <£ i <! k) can be 

already written in the form , 

a*c, = axf -* + a2f 2* + . . . + a<£<* 

with £-., * , , , . . , | , e GF{jfi). 
The proof follows by induction. 
The statement is true for i = 1, since axcx z= ax*= ax. 1*. Now sup­

posing our statement true for all atct with 1 <11 < i we prove i f for a ^ . 
Let be 

ci =>o< + c i J + • • • + Cn--., J*1-1. 
7) Such a number c-. allways exists since there are exactly k co-sets in the de­

composition (4). 
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Let its length be l{. We form the co-set (c{ — 1) . ať.ft. Let us considerthe 
number 

Ci — 1 = (coi — 1) + cuj + ... + C n - ! , ^ - ! . 
If coi = 1 , Ci — 1 has a length less than cť. If coi + 1, cť — 1 has the 
length I i but its first coordinate is less than that of the number c{. In both 
cases — with respect to the definition of the number c{ —• the co-set 
(ct — 1) tti$) does not belong to the set 

© — ax$y — c2(a2$>) — .. . — Ci-^a^S)). 

I t holds therefore 

(Ci — 1) ať.S) C CiKi)) + c2(a2$>) + ... + c^a^S)). 

That means: there exists an index t <^ i — 1 and a number f 0 such that 
( c ť — l ) a i = c i a ť . | 0

f c . 
By the inductive supposition ct. at can be written in the form 

ctat = aj1
k + a2£

k + . . . + <*<_-£,_-*. 
Therefore 

cťať — a, = (ojf!* + ... + a M f , - ! * ) . £0*> 
CA = <h(f ifo)* + *i(fof2)* + • - + aM(f<-iW* + <*, • 1*, 

which completes the proof. 

O univerzálnych formách v konečných telesiach. 

(Obsah predošlého článku.) 

Obsahom predloženej práce je dókaz tejto vety: 
Nech GF(pn) je konečné těleso charakteristiky p. Nech al9 a2, ...,ak 

sú elementy tělesa GF(pn), ax. a2... ak + 0. Nech k je celé číslo _ ; 1, 
d = (3^ — 1, k) <: y — 1. Potom každé číslo b tělesa GF(pn) dá sa písaf 
v tvare 

b = a ^ * + a2z2
fc + ... + akxk

k, 
kde xx> x2, ...,xk sú vhodné volené prvky z tělesa GF(pn). 
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