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ON UNIVERSAL FORMS IN FINITE FIELDS.
STEFAN SCHWARZ, Bratislava.
(Received January 17, 1949.)

In two recent papers!) I dealt with the representation of the ele-
ments of a finite field GF(p*) by the forms

e S N (1)
and o
a,x* + axt + ... + gk, a; e GF(pt), aay ... a4, 0. 2)
I proved that these forms are universal?)
«) for the form (1), if we suppose
—LE<p—1,
B). for the form (2), if we make the stronger supposition & | p — 1.
The proof of the first statement was based upon an induction; the
proof of the second on a method originally due to V. A. LEBESGUE and
generalised by several authors.
The purpose of this paper is to show
i) the form (2) is umversal even, if we suppose only (p" —Lk
<p—1,
ii) the proof of this fact (Whlch cannot be proved by means of the

LesEscuE method?)) can be given by anot too complicated induction in
an analogous way as that for the form (1).

We prove the following theorem.

Theorem. Suppose that (1) GF(p") is a finite field of characteristic p.
(#3) ay, ay, ..., a; are elements of the field GF(p"), a,a, ... a; &= 0. (#i1) § =

1) ,,On WARING’S problem in fmme ﬁelds“, Quart J. of Math (Oxford), 19
(1948), 123—128; ,,0n the equation ax:z:1 -+ a,x. N & ak:ck + b = 0 in finite
fields", ibidem 19 (1948), 160—163. )

%) Thatis: every be GF(p") can be represented by the form (1) or (2) respectx
vely with z,, , ..., 2k € GF(p").

8) See the fqotnote L el), p. 162.



= (p* — 1, k) < p — 1. Then the equation
~ b= a,xfF + ax)t + ... + apx*
has a solution with x,, x,, ..., z, € GF(p") for every b ¢ GF (p™).

To simplify the proof we divide it in five parts.

I. Trivial cases. The only substantial case is (p" —1, k) = k.
I treat first the cases (p* —1,k)=1and 1< = (p"—1,k) < k.

«) Let (p» — 1, k) = 1. Then it is well-known that if z, runs
through all elements of GF(p") the expression z,* and the expression a,x*
take all values of GF(p"). There exist therefore to every element
b e GF(p") such elements ‘

El :FO, £2= £3= XS £k=0y 51€GF(1’")
that the relation
b=a1§1’°+a2.0"+ e +ak-0k

holds. .

p) Let 1 <= (p*— 1,k) < k. Then there exist two integers
x, y with 2(p* — 1) + y . k = 6. Hence

o £ = ga(p"—1)+yk — (&v)*

for every & € GF(p*). Every 8-th power is at the same time a k-th power.
We have now (p* — 1, §) = 4. If we suppose the theorem proved in the

case (p" — 1, k) = k, then every b e GF(p") is representable by means
of the form

axs + ..+ adx‘,’? a,a, ... a5 + 0.
~ There exist therefore elements &, &,, ..., £5 € GF(p®) such that

b=a,§° + afd + ... + asts

Thus, we can writé

b= a1(£1v)k + aa(fzy)k + ...+ ad(foy)kb‘*‘ Q34 - 0% + ... 4 az . OF,
q.e.d. '
In what follows we can and shall suppose therefore allways k | p"—1.

2. Construction of a special field GF (p"). Let T, be the field of

all residue-classes modulo p. Without fear of misunderstanding we shall

" denote the elements of 7', by the integers 0,1, 2, ..., p — 1. The field

GF(p") is obtained from the field T, by adjunction of a root § of an ir-

reducible equation f(x) = 0 of degree n. Every element of the field
T,(j) = GF(p") is of the form

E=uy+ uyj + oo+ Uy, ug e T,
We can formally realize the field T',(j) = GF(p") in several ways accor-

ding to the choice of the irreducible polynomial f(z) the root j of which
we use in constructing the field 7',(j). But it is well-known that two such
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fields (defmed for the same n) are 1somorph1e with respect to 7',. There-
fore it is'sufficient to prove our theorem for a special field of thxs type.4)

Let us now take for the irreducible polynominal f(x) by means of.
whose root we realize the field GF(p") such an irreducible polynomial
of the field 7', of degree n which divides :

p—ﬂ__:l
z ¥ —1.
The existence of such a polynomial is assured by the following
Lemma:
Lemma: Let n, k be two integers such that
n>1, k|lpr—1, 1<k p—1.
Then there exist in T, an irreducible polynomial of degree n which divides

4) The explicit proof of this statement is as follows.

Let us suppose that our theorem holds for the field 7' (7) generated by the
root § of the irreducible equation ¢ T, f(=)=0. That is, let. us suppose that every
form alxlk + a,:c," + oo+ akxkk, @1y Ggy 0vy O € Tp(j),is -universal in T', (7).

Let be Tp(f") the field generated by a root j* of an other irreducible poly-
nomial f*(z) e Tp of degree n. We have to show that every form

ax*x‘xk + a,"‘xlk + ...+ ak*xkk, (A)
a* a%, ., *eT p(j‘),is universal in Tp(i*). ‘We prove that the equation
b* = al'zlk + a,*:v,k + .o+ ak*xkk (B)

has for every b* e Tp(j*) at least one solution with z;, 5, ..., 2} € Tp(j*).

It is well-known that the numbers 7, j* depend one on another rationally. That
is, two relations of the form § = @(j*), 1* = y(f) hold, where @(z) and 1p(z) are poly-
nomials in z (with coefficients in T' ) of degree at most n — 1.

The transformation
’ i) - ©
is a one to one mapping of the field Tp(i*) into the field Tp_(i). The mapping (C)
carries the form (A) into the form alxl" + .o+ aka.;kk, U1y Gy +evy Oy € Tp(y'). The
number b* ¢ Tp(i"‘)A is carried into the number b ¢ Tp(?).
Consider now the equation in Tp(j) ‘
b= alml + a,z, + o akxkk

According to the supposition this equation has at least one solution. There exist
therefore numbers §;, 5,, vy §peT (7) such that the relation

b= ‘1151 + an§| e+ akfk i . (D)
holds.

The inverse mapping § — qp(y*) carries (D) into the true relatxon

R X R
thh &, 5. y vees Sb eT (7‘) The ‘equation (B) hasin T, (7“‘) a solutlon, q.e.d.

4* ' o ‘ 4




the polynomial
' L - 3)

The proof of this Lemma for n > 1 is given 1. ¢.1) p. 124—125. (The
- case n = 1 is trivially true.)

The irreducible polynomial f(x) divides (3). Thus, j satisfies the
equation 7'(””_1)“‘ = 1. The element j is a k-th power in GF(p"),5) thatis,
there exist a number &; € GF(p") such that j = £ holds.

This choice of the number § will very simplify our later investiga-
tions.

3. Futher notations. Let us denote by & the multiplicative group
of the field GF(p"), by $ the sub-group of k-th powers. The decomposi-
tion of & modulo $ has the forms®)

G =d,D + &H + ... + S )
[d; e GF(p™), one of the d; is equal to 1 (unity element)].
In what follows I call the numbers ug, uy, ..., %, € T, the coordina-

tes of the element

d=uy+ (VI PR Y L
and the number of coordinates different from zero the length of the ele-
ment d. The length [ is an integer, 1 < I < n. The following remark is of
great 1mportance If a co-set d,;$ contains an element d of the length ,
then there exist in d;$) an element of the same length ! having the first
coordinate u, different from zero. For, if the number
UofP + Uppafot o+ Uyt (u, £ 0,021)

belongs to d;$, so does the number

jP[wyP + ... + u,,_lj"“fl] =Up 4 Upty] + ooo + Up—yf P
(since j—, being a k-th power, belongs to $).

4. The arrangement of the co-sets of §5. Now we choose the
arrangement of the co-sets of §) in (4) in a special way.

First take the co-set @,$). Then take the co-set cy(a,$), where c4 is
chosen as follows. Among all numbers ¢, satisfying the condition

(2. 9)C G —aH

we take those with the smallest length I,. From them we choose the

8) The multiplicative group of the field GF(p") is cyclic. See van der

~ Waerden, Moderne 'Algebra I. Teil, 2. Auflage, p. 123. Therefore every element

satisfying the equation 2@ "—DI¥ — | ig g k-th power.

* the index k.

§) The group & being cyclic, the subgroup of the k-th powers has under &
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element . ;
g = Cga + C1a) + ... + Cr—1)8)" 1

such that ¢y, == 0 and, moreover, c,, has the least possible positive value
> 1. According to the remark at the end of section 3 such an element
allways exists.

Then take the coset cy(@;$)), where cg is chosen again as follows
Among all numbers ¢, satisfying the condition
¢3(a39) C G — 0,9 — c3(@,H)

we take those with the smallest length I;. From them we choose the
element

63 = Coz + C1gf + +ov + Cpmypgf™
such that cg; &= 0 and ¢y, has again the least possible positive value > 1.
We repeat this process just k& times.
The last element
Cx = Cox + C1if + +- A Co—y ™
will be chosen as follows. We find first all numbers ¢ of the least possible
length having the property :
(@) C O —a,H — ¢3(a,9H) — ... — Gy (@1 H).
Then among them we choose an element whose first coordinate c has
the least possible positive value > 1.7)
The rearrangement of the decompos1t10n 4) has the final form

G = “133 + 02(“25)) + ¢3(a,9) +..o+ (0 9)-

5. The main part of the proof. To show now that every element
€GF(p) is representable by the form (2) it is sufficient to prove that
each of the elements

@1Cqy AgCqy A3Cqy -y Gy (€4 = 1)
can be written in the form (2). '

This will be proved, if we show that every a0y 1LiLk) can be
already written in the form .

a;c; = 0, 5F 4 abF 4 ... + a¢f¢

‘with &, &, ..., & e GF(p).

The proof follows by induction. - .

The statement is true for ¢+ = 1, since a,¢, = @ =a,. 1" Now sup-
posmg our statement true for all e with 1 St<iwe prove it" for a.c;.

Let be

e =6y + €1 + . St cn—l:ﬂn-l

7) Such a number c; allways exists gince there are exactly k co-sets in the de-

B composmon (4).

—
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Let its length be I,. We form the co-set (¢;—1) . a: 9. Let us consider the
number

—1=(cos—1) + €1sf + .-+ + Cn—rf" .
ey=1,c;— 1 has a length less than c;- f ¢t =1, ¢;—1 has the
. length I, but its first coordinate is less than that of the number ¢;. Inboth
cases — with respect to the definition of the number ¢; — the co- set
(¢; — 1) a;$ does not belong to the set .

B —a,H —cy(@H)— ... — i3, H).
It holds therefore

(cc—1)a;HC 01(“153) + €3(2,9) + -t ci—l(ad—1$3)
That means: there exists an index ¢t < 1 — 1 and a number £, such that
(es—1)a; = ey . &

By the inductive supposition ¢, . @, can be written in the form

ey = a,&,* + a4 ... + a8 k.

Therefore . ) .
cia; — a; == (a8 + ... + a5 %) . &, :
cia; = ay(E180)* + ag(&oba)t + ... + aiy(E— 160 + ay . 1F,

which completes the proof.

O univerzdlnych formach v kone&nych telesiach.

(Obsah predoslého &lénku.)

Obsahom predloZenej price je d6kaz tejto vety:

Nech GF(p*) je konelné teleso charakteristiky p. Nech a,, a,, ..., a;
st elementy telesa GF(p"), a; . a, ... a; = 0. Nech & je celé &islo > 1,
b= —1,K P— 1. Potom kazde ¢islo b telesa GF(p*) d4 sa pisaﬁ
v tvare

’ b= az* + agz® + ... + agxk,
kde z,, 2, ..., z; st vhodne yolené prvky z telesa GF(p").
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