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A note on involutory automorphisms of C 
and the use of algebraically independent numbers 
for the construction of diagonable matrices 

Ladislav Skula 

Abstract. The involutory automorphisms of the complex field are investigated 
and classified into three families: Archimedian - "like real numbers", Archi-
median - "like a proper subfield of real numbers" and non-Archimedian. It is 
shown that these families have the same cardinality equal to expexpHo- By 
means of the involutory automorphisms and Lindemann's criterion on alge­
braically independent numbers a class of diagonable matrices is constructed. 

1. Introduction 
The involutory automorphisms of the complex field C play an important role in 
description of all involutions for matrices with complex entries ([Sk], Theorems 2.1 
and 2.2). The main objective of this article is to investigate such automorphisms. 
These automorphisms (except the identity) are of two kinds — Archimedian or 
non-Archimedian. An involutory automorphism is Archiw,edian if its fixed field is 
Archimedian, hence this field is embedded into the real field. This embedding can 
be isomorphism onto but it can also happen that it is not surjective. In this case 
the fixed field of the involutory automorphism contains gaps. All these three types 
have the same cardinality equal to expexpHo-

The last Section is devoted to application to the regular (diagonable) matri­
ces. By means of an involutory automorphism of the complex field a family of 
regular matrices is constructed.. In concrete cases this construction makes use of 
Theorem 5.1 garanteeing existence of an involutory automorphism of C extending 
a special mapping for complex numbers. Theorem 5.2 gives a rule for an involutory 
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automorphism of C stating how to operate on elements from a cyclotomic field. 
The construction uses the criterion of Lindemann (Theorem 5.4) on algebraically 
independent numbers. 

2. Notation and Fundamental Assertions 
Throughout the whole paper we designate by 

C the field of complex numbers, 
R the field of real numbers, 
Q the field of rational numbers, 
2c the identity mapping of C, 

a the complex conjugation, hence a(a) = a for a £ C, 
{xL : L £ 1} the set of any symbols where I is an index set (I can be empty) and 

it is supposed xLl ^ xL.2 for L\,L2 G I, L\ / L2, 
X = {XL : L € 1} the set of indeterminates, 

k[X] = k[XL]LEi the polynomial ring over the (commutative) field k with inde­
terminates X = {XL : Lei}, 

k(X) = k(XL)i€j the field of rational forms over the field k. 

We will use the common concepts and assertions of commutative algebra, par-
ticulary of the theory of field extensions and of (linearly) ordered fields ([Bb], [F], 
[N]). We will use the following known Theorems 2.1 - 2.4. 

Theorem 2.1 Let F be an isomorphism from a field k onto a field k' and let K, K' 
be algebraic closures of k, k', respectively. Then there exists an isomorphism F' 
from K onto K' such that the following diagram is commutative: 

k >-k' 

I ,. I 
In this article, the morphisms which are not denoted mean the inclusion map­

pings. 

Theorem 2.2 The transcendence degrees o / C / Q and R / Q are equal and they equal 

expMo-

An ordered field will be a linearly ordered field and a maximal ordered field will 
denote an ordered field K such that each algebraic extension of K which is ordered 
equals K. 

Theorem 2.3 Each ordered field possesses an algebraic exiensionfield which is a 
maximal ordered field. 

Theorem 2.4 (Euler-Lagrange). Let K be an ordered field. Then the following 
statements are equivalent: 

(a) The field K(i) is algebraically closed. 
(b) The field K is a maximal ordered field. 
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(c) Each positive element of K is a square root of an element from K and each 
polynomial of odd degree over K has at least one root in K. 

Definition 2 .1 . An automorphism / of the field C is called involutory if f2 = i c -
The fixed field of {/} will be denoted by F(f), therefore 

F(f) = {jeC: / ( 7 ) = 7}-

In the paper [Sk] Theorem 2.5 and 2.6 were proved (Proposition 3.1 and The­
orem 3.1). 

Theorem 2.5 Let f be an involutory automorphism of the field C, f / ic- Then 
(a) f(i) = -i, 
(b) for each J G C there exist unique numbers a, (5 G F(f) such that 

S = a + iP, 

(c) for these S, a, (3 we have 

f(S) = a - i(3. 

Theorem 2.6 For an involutory automorphism f of the field C, f / ic, the field 
F(f) is an ordered field with the positive cone P = {g2 : g € F(f)}. Hence, F(f) 
is a maximal ordered field. 

For further purpose we will need the lemma. 

Lemma 2.1 Let K,L be subfields of C , g an isomorphism of K onto L and 7r = 
o~/K,g — O-/L automorphisms of K,L, respectively. Suppose i G K C\ L, g(i) = i 
and \fk £ K for each k G K D R , k > 0. 

Ifg°TT = gog, then K = L and g = %K (the identity mapping of K). 

Proof. Let U = K n R , V = L n R . For r G U we have g(r) = a + ib, where 
a, b G R, therefore a — ib= (gog)(r) = (gon)(r) = g(r) = a + ib, which gives 6 = 0 
and g(r) G R . 

Denote by / the restriction of g on U, hence / is an isomorphism from U to 
V. For the same reason we get that the restriction of g"1 on V is an isomorphism 
from V to U, consequently / is surjective. 

Let u G U, u > 0. Then y/u G V", f(-sfu) G V and f(u) = f(^u)2, thus 
f(u) > 0, which follows that / preserves ordering. Therefore U = V and / is the 
identity mapping of U. 

For k = a + ib G K, a, b G R we have a,b G U (since a(k) = k G K), hence 
g(k) = g(a) + ig(b) = f(a) + if(b) = a + ib = k. 

The lemma is proved. 

3. Isomorphisms from C into C 

Construction 3 .1 . Let A = {aL : L G / } be a transcendence base of the extension 
C / Q and let B = {bL : L G / } be an algebraically independent subset of C (over 
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Q) . Then there exist isomorphisms cp, ip from the field Q(A ) , Q ( B ) , respectively, 
onto the field Q(Xt)t£l such that 

ip(x) = V;(^) = x for each x G Q, 

<p(at) = ip(bt) = Xt for each i ' I. 

According to Theorem 2.1 there exists an isomorphism / from C into C such 

that the following diagram is commutative. 

Q(A) - C 

Q(Xt)t£ 

Q ( B ) C 

The field / ( C ) is an algebraic closure of Q ( B ) . Obviously, 

Proposition 3.1 The above constructed isomorphism f is an automorphism ofC if 

and only if B is a transcendence base of C/Q. 

Proposition 3.2 Each isomorphism f from C into C can be constructed by means 
of Construction 3.1. 

Proof. Let / be an isomorphism from C into C and let A = {at : i G I} be 
a transcendence base of C / Q . The set B = {f(at) : I G I} is an algebraically 
independent subset of C (over Q ) . If ip, ip are isomorphisms from Q ( A ) , Q ( B ) , 
respectively, onto Q(Xt)tGT described in Construction 3.1, then for a G Q(A) we 
have ip~1<p(a) = f(a) and we are done. 

Definition 3 . 1 . We will call an isomorphism / from the field C into C a 
x-isomorphism if A = a(X) G / ( C ) for each A G / ( C ) . Hence / is a x-isomorphism 
if and only if / ( C ) = / ( C ) = a / ( C ) . 

Proposition 3 .3 Suppose that f is an isomorphism from C into C constructed by 
means of Construction 3.1. Then the following statements are equivalent: 

(a) f is a x-isomorphism. 
(b) If i G I and b, <£ B, then the set B U {bt} is algebraically dependent (over 

Q). 
(c) For each i € I, bt is an algebraic element over Q(B). 

Proof. It is easy to see that (b) and (c) are equivalent. Since / ( C ) is an algebraic 
closure of Q ( B ) , statement (c) follows from (a). 

Suppose that (c) is true. Clearly, /? G / ( C ) for each p G Q ( B ) . Let A G 
/ ( C ) . Since A is an algebraic element over Q ( B ) , there exist positive integers 
n, m, polynomials gi(Xi,..., Xn) G Q [ x i , . . . , Xn] for 0 < i < m (X\, ...,Xn are 
indeterminates) and elements (3i,..., /3n G B such that 

^ ^ ( / 3 1 , . . . , , / 5 n ) A i = 0 and gm(Pi,. • • ,A») ^ °-
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Setting ~n = gi((5i,...,(3n) for 0 < i < m we get ^ G / ( C ) , 7TO / 0 and 
YllLoli^i — 0- The result follows by noting that / ( C ) is an algebraic closure of 
Q ( B ) . 

Notation. We denote by K, C, A the systems of all ^-isomorphisms which are 
not surjective, all isomorphisms from C into C which are not x-isomorphisms, all 
automorphisms of C , respectively. If B G {K,C, A}, let B+ = {g G B : g(i) = i} 
and B~ = {g G B : g(i) = - i } . 

Theorem 3.1 The sets K, K+, K~, C, C+, C~, A, A+, A~~ have the same cardi­
nality equal to expexpl^o-

Proof. I. Pu t F(g) = g o o for each # G # + , where .5 G {K, C,A}. It is easy to see 
tha t F is a bijection from B+ onto B~. 

II. Let / l , C be transcendence bases of the extensions C / Q , R / Q , respectively. 
By Theorem 2.2 A = {aL : i G 1} and there exists B — {b(. :G / } C C such that 
card / = exp^o- We can suppose either (a) B is a transcendence base of C / Q 
or (b) B / C. If / is the isomorphism from C into C constructed in the way of 
Construction 3.1, then / ~ K in case (b) and / G A in case (a) (by Propositions 
3.1 and 3.3). Using the permutations of the set / we get 

card K = card A = expexp No-

III. Choose two different elements c, d from C and put a = c + zd, (3 = a = 
c — i(i. Let -P(X, Y") be a polynomial in the indeterminates X, Y order Q. Using 
the substitution X = x + iy, Y = x — iy for other indeterminates .T, J/ we get 
F(X,Y) = ip(x,y) + iip(x,y), where <p(x,y),ip(x,y) G Q[sc,y]. 

Assume F ( a , /?) = 0. Then ip(c, d) + zi/>(c, d) = 0, which follows that (p(x, y) = 
ijj(x,y) = 0, therefore F ( X , Y) = 0 and the numbers a, (3 are algebraically inde­
pendent over Q. 

There exists a transcendence base E of C / Q containing the elements a, (3. Pu t 
D = E — {(3} = {5t : L ~ I}. Let us construct the isomorphism / from C into C 
by means of Construction 3.1 using the set D instead of B. By Proposition 3.3 
/ is not a ^-isomorphism, hence / G C. Again considering the cardinality of all 
permutations of the set 7" we get 

card C = expexp Ho-

The theorem is proved. 

4. Involutory Automorphisms of C 

Definition 4 .1 . An involutory automorphism / of C is called Archimedian if / ^ ic 
and the ordered field F(f) is Archimedian, which is equivalent with the following 
condition: 

there exists an embedding of the ordered field F(f) into the real field R 
([F], Chap. VIII. Theorem 1). In the opposite case and in case / -£ z c , / is 

called non-Archimedian. 

Notation . If ip is a ^-isomorphism from C into C , we denote by ~((p) the complex 
conjugation from </?(C) onto </?(C). The x-isomorphism ip will be considered as a 
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map from C onto <p(C) and the symbol <p~l will denote the inverse map of <p from 
<p(C) onto C. 

The following theorem gives a characterization of all Archimedian involutory 
automorphisms of C. 

Theorem 4.1 The system of all Archimedian involutory automorphisms f of C 
is equal to the system of all f of the form f = <p~l o a(<p) o <p, where <p is a H-
isomorphism from C into C such that <p(i) = i (hence <p £ /C+ U A+). 

The isomorphism <p'~ /C+ U^4+ is uniquely defined by f = <p~l oa(<p)op. The 
embedding from F(f) into R is given by restriction p of p on F(f). 

(p surjective if and only if <p is surjective, i.e., <p £ A+. 

Proof. I. Let <p £ K+ U A+, f = <p~l o a(<p) o <p. Clearly, / is an involutory 
automorphism of C and since f(i) = —i, we have f ^ %c. 

The field F(f) satisfies the equalities: 

F(f) = {u £ C : / (w)} = (a; £ C : a(<p)(p(u)) = 

= <p(u)} = {u; £ C : <p(u) £ R } . 

Clearly, the restriction <p of <p on F(f) is an embedding from F(f) into R and 
<p is surjective if and only if <p is surjective. 

II. Let / be an Archimedian involutory automorphism of C and let ip be an 
embedding of the ordered field F(f) into R . 

Suppose <jj £ C. By Theorem 2.5 there exist unique numbers a, (5 £ F(f) such 
that uj = a + i(3 and f(u) = a — i(3. Pu t 

<p(u) = ip(a) + iip((3). 
Obviously, <p is an isomorphism from C into C such tha t <p(i) = i. If A £ <p(C), 

then there exists 8 £ C such that t/?(<5) = A. Let a, (3 £ F ( / ) , S = a + i(3. Setting 
£' = a — i(3, we get c/p(»5') = tp(a) — iip(0) = A, therefore <p is a x-isomorphism. It 
is easy to see tha t / = p~l o cr(cp) o c/?. 

III. Let cp,̂ » £ /C+U^4+ and let <p~1oa(p)op = 'ip~loa(ip)oip. Let K = <p(C), 
L = ip(C), TV = a(p) : K ^ K, Q = <r(ip) : L ^ L, g = ip o p~l : K -+ L. Then 
according to Lemma 2.1 <p = ip. 

The theorem is proved. 

Remark. In Theorem 4.1 we can replace the requirement <p(i) = i by <p(i) = —i. 
The mapping p -^ a(<p) op is namely a bijection from the set of all x-isomorphisms 
<p of C into C with <p(i) = i onto the set of all xr-isom.orph.isms ip of C into C with 
ip(i) = -i. 
Notation . Denote by A\,A2 the systems of all Archimedian involutory automor­
phisms / of C such tha t the fields F(f) and R are isomorphic, the field F(f) is 
isomorphically embedded into R but not onto (i.e., the ordered field F(f) contains 
gaps), respectively. 

Using Theorems 3.1 and 4.1 we get 

Corollary 4.1 card A\ = card .4.2 = expexp KQ. 

Construction 4.1. Let A = {a,. : i £ 1} be a transcendente base of the extension 
C / Q and let the set J be linearly ordered: I = (I,<). Let us order the polynomial 
ring Q[X] = Q[XL]t£l as follows: 
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The monomials in Q[X] are ordered lexicographically; i.e., for monomials 

n n 

a = Y[X% and / ? - J | x J 
i=i i-i 

(n is a positive integer, k\,...kn, h\,...,hn are non-negative integers and L\ < 
L2 < • • • < in are elements from I) we have a < /? if a = (3 or km < hm, where m 
is the smallest positive integer a < n with A;M ^ /iM. 

Let / , g G Q [ x ] , / = aiOi + - • •Jt-avav, g = b\a\-\ \-bvav, where v is aposit ive 
integer, a\ < 02 < • • • < ctv are monomials in Q[X] and a\,... , a v , 6 i , . . . , bv G Q. 
Set / < g if / = g or aw < bw, where w is the largest integer u < v with au 7̂  bu. 

Then < is a linear ordering on Q[X] and (Q[X], <) is a linearly ordered ring. 
The linear ordering < can be extended uniquely on Q(X) such that ( Q ( X ) , < ) is 
an ordered field. The natural isomorphism (XL —* aL) makes from Q(A) an ordered 
field (Q(A), <) which is not Archimedian since for each positive integer n and each 
t G I we have n < aL. 

According to Theorem 2.3 there exists an algebraic extensionfield F of Q(A) 
which is a maximal ordered field. We can suppose that F is a subfield of C . Clearly, 
F is non-Archimedian. By the Euler-Lagrange theorem (Theorem 2.4) the field F(i) 
is algebraically closed. The situation is demonstrated on the diagram: 

Q > Q(A) >• F F( t ) > C. 

If a G C—F(i), then a is transcendental over F( i ) , therefore a is transcendental 
over Q(A), which is a contradiction. It follows that ¥(i) = C. 

Pu t f(u) — a — i{3 for u G C , u = a + «'/?, a, j3 G F . Therefore / is a non-
Archimedian involutory automorphism of C and the fixed field F(f) of {/} equals 
F . 

Theorem 4.2 The cardinality of the system of all non-Archimedian involutory au­
tomorphisms of C is equal to exp exp HQ . 

Proof. Consider the automorphism / from Construction 4.1. This automorphism 
depends on the linear ordering < of / . If this ordering is changed, we get a different 
non-Archimedian involutory automorphism from / . According to Theorem 2.2 
card / = exp KQ and the result follows. 

5. Application of algebraically independent numbers to a construc­
tion of diagonable matrices 

For an application to matrix algebra we rise the following problem: 

Problem Assume that M, N are subsets of C and f is a bisection from M onto N. 
When can f be extended to an involutory automorphism of C? 

We will give only some partial answers to this question, a complete solution is 
open. The following necessary conditions are obvious. 
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Proposition 5.1 Let M,N be subsets of C and let f be an isomorphism from C 
into C such that f(M) = N. 

(a) If a £ M, then a is an algebraic number if and only if f(a) is an algebraic 
number. In this case a and f(a) possess the same minimal polynomial. 

(b) A subset T C M is algebraically independent if and only if f(T) is alge­
braically independent. 

Lemma 5.1 Suppose that U, V, W are mutually disjoin sets of real numbers and x 
is a bisection from U onto V. If the set U U V U W is algebraically independent, 
then the set 

{a + ix(a) : a e U} U {a - ix(a) : a eU}uW 

is algebraically independent. 

Proof. Assume that there exist positive integers n, m, different elements ai,... ,an G 
U, 7 1 , . . . , 7 m G W and a polynomial F = F(XX,..., Xn, Yx,..., Yn, Zx,..., Zm) 
over Q such that 

F((fi,. . . , ipn, ?/>l, . . . , ̂ n , 71 > • • • , 7m) = 0, 

where <pj = aj + ix(aj) a n c l V;j = aj ~ lX.(aj) f ° r 1 < j < n. Substituting for 
Xj = Uj + iVj, Yj =Uj — iVj (1 < j < n) in F we get a polynomial G = 
- G(t l i , ...,Un,Vu...,Vn,Zi,... ,'zm) over Q(»). 

Since the set UUVUW is algebraically independent and G(ai,..., an,x(ai), • • • 
• • •, x ( a n ) , 7i i • • •, 7m) — 0, we have G = 0, therefore G(tji,..., Un, V~i,... ,Vn, 
Z\,..., Zm) = 0 for all complex numbers U\,... ,Un,V\,... ,Vn, Z\,..., Zm. Conse­
quently, F = 0 and we are done. 

Theorem 5.1 Let A, B, C be mutually disjoint subsets ofC such that the set AUBUC 
is algebraically independent, and let there exist a Injection x from A onto B. Then 
there exists an involutory automorphism h of C such that 

a e A = > h(a) = x(a)i 

7 G C = > /i(7) = 7. 

Proof. Since the transcendence degree of R / Q equals exp^o (Theorem 2.2), there 
exist mutually disjoint subsets U, V, W, Z of R such that card A = card B = 
card U = card V, card W = card C, card Z = exp K0 and the set U U F U W U Z 

is algebraically independent. Let <p : U —> V, ijj : A -+ U, UJ : C —> W be bijections. 
According to Lemma 5.1 the set 

N = {£ + tp(£) : £ G CI} U {£ - *v?(fl : ( G C/} U IV U Z 

is algebraically independent and clearly card N = expKo- There exists a subset 
D C C - AU BUC such that M = A U B U C U D i s a transcendence base of 
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C / Q and there exists an injective mapping g from M into N with the following 
property: 

a G A = > a(a) = V>(a) + iipifj(a), 

beB => g(P) = o-gX~1(P), 
7 G C ==> 0(7) = w(7), 

5 G D ==> a(£) G Z. 

Using Construction 3.1 (M = A, o(M) = 73) we get a ^-isomorphism / from 
C into C (by Proposition 3.3) with f(u) = g(u) for each (i e M. Put h = 
= f~~l o <j(f) o / . Then h is an involutory automorphism of C. For a G A we 
have /i(a) = f~1(ip(a) - i(pip(a)) and / x ( a ) = ax(a ) = o^X"" 1*^) = ~g(a) = 
•0(a) — i(pijj(a), hence h(a) = x ( a ) - F ° r 7 £ C we get h(j) = (f~1o~(f))g(y) = 
f~~1u(y) = f~~1g(y) = 7. The proof is complete. 

For the further theorem we will need two lemmas. 

Lemma 5.2 Let n > 2 be an integer, £ = cos ^-by + i s i n^ r -x fa primitive 2nth 
root of unity) and let f be an involutory automorphism of C, f =̂ ic- Then 

/(0 = f=r]. 
Proof. We will use induction on n. If n — 2, then £ = i and by Theorem 2.5 
(a) / (£ ) = — i = £. Suppose that n > 3 and for n — 1 the statement is true. By 
noting that fdf = / ( £ 2 ) = £~2 we have / (£) = i ^ 1 - Suppose / ( f ) = - * - 1 -
According to Theorem 2.5 (b), (c), £ = a+ifi, where a, /? G F ( / ) and / (£) = a - i / 3 . 
Consequently, 

- l = ^/(O = ^2 + /32>0 ; 

which is a contradiction. 

Lemma 5.3 Let p be an odd prime, n a positive integer, £ = cos ~£ + is in ^ fa 

primitive pnth root of unity) and let f be an involutory automorphism o / C , / 7= «c-

m e n / ( £ ) = f = r 1 -

Proof. Since £p™ = 1, there exists an integer 2;, 1 < x < / - 1, p { x such that 
/ ( £ ) = f*. Then £ = f2(£) = £*", therefore x2 = 1 (mod p n ) and z = 1 or 
x=pn - 1. 

Suppose / (£) = £. Then £ G P(/) and £ < 0 or 0 < f < 1 or 1 < £, which is a 
contradiction to £p™ = 1. The result follows. 

Definition 5 .1 . We call an algebraic number a abelian if the extension K/Q is 
abelian, where K is the splitting field of the minimal polynomial of a. (Remind 
tha t an extension K/Q is called abelian if K/Q is a Galois extension and the Galois 
group of K/Q is abelian.) 

Theorem 5.2 For any involutory automorphism f of G, / ?= ic and any abelian 
algebraic number a we have f(a) = a. 
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Proof Let K be a subfield of C which is the splitting field of the minimal polynomial 
of a. Since the extension K/Q is abelian, there exists according to the Kronecker-
Weber Theorem ([W], Chapter 14) an integer m > 3 such that the m t h cyclotomic 
field Q ( 0 (£ = cos 2E + i sin f j ) contains K. 

Let m = pai ... p1k be the canonical decomposition of m. We can suppose that 
in case m being even, m is divisible by 4. For each 1 < j < k set 

m .„ 27T . . 2TT 
m , = — , 7]j = £ 3 = cos -^ r + t sin - ^ - . 

- ^ Pj
J p/ 

Since £ m = 1, there exists an integer x, 1 < x < m — 1 such tha t / (£ ) = .f". Then 
for each 1 < j < k we have according to Lemmas 5.2 and 5.3 

Cm>=r]J
1=f(vj)=em> 

and therefore xmj = ~mj (mod m). It follows tha t x = — 1 (mod p - J ) for each 
1 < j < &, hence x = — 1 (mod m) and thus x — m — 1. The result follows 
immediately by noting that 

<* = ] V (^m)=ia^^'y ( ^ e Q)-

Remark. Using the Kronecker-Weber Theorem we can easily show that a complex 
number is abelian algebraic number if and only if it is contained in a cyclotomic 
field. 

Now we will consider the matrices with complex entries and we will use this the­
ory for regular matrices ([Se], Chapter 11, Section 5 for matrices with real entries). 
Recall tha t a square matrix A of order n is called regular or diagonable if there exists 
a non-singular matrix U of order n such that U~lAU = D = diag { A i , . . . , A n } . 
Then A i , . . . , An are eigenvalues of A. It is well-known that a square matrix is reg­
ular if and only if its Jordan normal form is a diagonal matrix (Jordan blocks are 
square matrices of order 1). 

Another characterization is formulated by means of the concept of regular 
eigenvalue. If A is a square matr ix of order n and A is an eigenvalue of A with 
multiplicity m, then A is called a regular eigenvalue of A if rank of A — \In equals 
n — m. The matrix A is regular if and only if each its eigenvalue is regular. 

The symmetric matrices (with real entries) are regular and the Hermitian ma­
trices as well. Also the families of idempotent matrices and circulant matrices be­
long to the diagonable matrices ([Se], Chapter 12, Section 2; [D], Theorem 3.2.2). 
Also the square matrices with simple eigenvalues are regular. In the paper [Sk] 
another class of the regular matrices was described. Recall the basic notions: 

Definition 5.2 . Let / be an involutory automorphism of C and let A = [ay] be a 
matrix of size m x n. Pu t 

Af = [b, 'kl\l<k<n,l<£<mi 

where bki = f(a>tk) (I < k < n, 1 < £ < m). 
A matrix M is called f -Hermitian if Mf = M. Obviously, the / -Hermit ian 

matrices are square matrices. A non-singular matrix U is said to be f-unitary if 
U~l = Uf. 

It was stated in ([Sk], Theorem 3.5): 



A note on involutory automorphisms of C . . . 

Theorem 5.3 Let f be an involutory automorphism ofC, f ^ ic> A square matrix 
H of order n is f -Hermitian if and only if there exists an f-unitary matrix U of 
order n such that 

H = UfDU, 

inhere D is a diagonal, f -Hermitian matrix of order n. Therefore, the f-HeT-mitian 

matrices are regular. 

Using Theorems 5.1 and 5.2 we are able to construct some / -Hermit ian matri­
ces as follows. It is not difficult to determine some abelian algebraic numbers, e.g., 
\ / 2 , i\/?>, £ = e - ^ , etc. The application of Theorem 5.1 requests some criteria on 
algebraically independent numbers. One of the most beautiful criterion is due to 
Lindemann ([Sh], Chapter 2, §7): 

Theorem 5.4 (Lindemann) If£\,...,£k (k a positive integer) are algebraic numbers 
linearly independent over Q, then the numbers 

are algebraically independent. 

The reader is referred to ([Sh], Chapter 3 or [Bu]) for other criteria on alge­
braically independent numbers. 

Example. The numbers \ /7 , \/b, i\/2, i\/?> are linearly independent over Q and the 
numbers e^, \/2, yl are abelian algebraic numbers. Then according to Theorems 
5.1, 5.2 and 5.4 there exists an involutory automorphism / of C, f /-- ic such that 
the matrix 

• em> e ^ e^i 

M= e~~^ \/2 V7 

is / -Hermitian and hence by Theorem 5.3 M is diagonable. Using MATLAB system 
we get 

"5 .5288 0.6235 + 0.7818i 0.1559 +0.9878* "" 
0.6235 - 0.7818i 1.1892 2.6458 
14.0940 2.6458 0.3194 + 0.9476i 

with simple eigenvalues Ai 
1.0756 -1 .6356 i . 

7.4734 + 2.2135Ž, A2 -1.5116 + 0.3697Í, A3 
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