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On the generalized nonlinear quasivariational 
inclusions 

Z. Liu, L. Debnath, S. M. Kang and J. S. Ume 

ABSTRACT. In this paper, we introduce and study a new class of generalized 
nonlinear quasivariational inclusions for multivalued mappings and construct 
some new iterative algorithms for finding the approximate solutions of this 
class of quasivariational inclusions. We establish the existence of solutions for 
this generalized nonlinear quasivariational inclusions involving both relaxed 
Lipschitz and strongly monotone and generalized pseudo-contractive mappings 
and obtain the convergence of iterative sequences generated by the algorithms. 

1. I n t r o d u c t i o n 

In 1996, Noor [7] and Huang [4] introduced and studied the generalized mul­
tivalued strongly nonlinear quasi-variational inequalities for compact valued map­
pings and the set-valued nonlinear generalized variational inclusions for closed and 
bounded valued mappings, respectively, they constructed a few algorithms for find­
ing the approximate solutions of their quasi-variational inequalities and variational 
inclusions and established the convergence of iterative sequences generated by these 
algorithms. Afterwards, Bai-Tang-Liu [2], Ding [3], Huang [5], Noor [8], Verma 
[11]-[14] and others have extended and generalized the resules due to Noor [7] and 
Huang [4] in various different aspects. In 2000, Ahmad-Ansari [1] considered the 
generalized nonlinear variational inclusions with nonclosed and nonbounded valued 
mappings, constructed an algorithm without using Hausdorff metric, proved the 
existence of solutions for the generalized nonlinear variational inclusions involving 
relaxed Lipschitz mappings and the convergence of iterative sequences generated 
by the algorithm. We point out that the multivalued mapping in [1, Theorem 4.1] 
is, in fact, a single-valued mapping. 

Inspired and motivated by recent research works [l]-[5], [7j-[16], in this paper, 
we introduced a new class of-generalized nonlinear quasivariational inclusions for 
multivalued mappings and construct some new iterative algorithms for finding the 
approximate solutions of the quasivariational inclusions. We establish the existence 
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of solutions for this generalized nonlinear quasivariational inclusions involviong both 
relaxed Lipsehitz and strongly monotone and generalized pseudo-contractive map­
pings and show the convergence of iterative sequences generated by the algorithms. 
Our results clarify, extend and unify the corresponding results in [l]-[5], [7]-[16] and 
others. 

2. P r e l i m i n a r i e s 

Let H be a Hilbert space endowed with a norm || • || and a inner product 
(•, •), respectively, 2H, CB(H) and CC(H) denote the families of all the nonempty 
subsets, all the nonempty closed bounded subsets and ail the nonempty closed 
convex subsets of H, respectively, and <p : H x H —> R U {+00} be such that for 
each fixed y G H, <p(-, y) : H —> E U {+00} is a proper convex lower semicontinuous 
function on H and g(H) n domd<p(-,y) ^ 0 for each y G H. Let i" denote the 
identity mapping on H. 

Given mappings A, B,C, D : H — 2H, g,a,b,c,d : H -> H, N : H x H x H -> 
H and / G H, we consider the following problem: 

Find u G H, x G Au, y G Bu, 2 G Ou, ii; G Z>u such that pu G domd<p(-,dw) 
and 

(GU - N(ax, by, cz) - f, v - gu) > ^(pu, cfay) - y>(v, dty), Vf G If, (2.1) 

which is called the generalized nonlinear quasivariational inclusion. 

Special cases. (&) If a = b = c — d = C = D = I,f = Q and N(x,y,z) = 

-x + y + gz for all x, y,z e H, then problem (2.1) is equivalent to finding u G II, 

x G Aw, w G Bu such tha t #u G domd<p(-, u) and 

(x — y,v — gu) > p(gu,u) - <p(v,u), VveH, (2.2) 

which is known as the generalized quasivariational inclusion, introduced and studied 
by Ding [3], 

(h)Hb = c = d=B = C^D-=I,f = 0, N(x, y,z) = x and <p(x, y) = <p(x) 
for all x,y, z G H, then problem (2.1) is equivalent to finding u G II, x G Au such 
that gu G to, d<p and 

{(/i£ — ax, v - <?u) > <p(gu) — <p(v), V?; G II, (2.3) 

which is called the generalized nonlinear variational inclusion, introduced and stud­
ied by Ahmad-Ansari [1], 

(c) If K : H —* CC(H) is a mapping such that for each fixed y G H, <p(-,y) = 
1K(y)(') is the indicator function of K(y), that is, 

fo, if xeK(y), 
IK{V){X) 

I +00, otherwise, 

c=z d = C = / , / = 0 and N(x,y,z) = -x-y + gz for all x,y,z G II, then problem 
(2.1) is equivalent to finding u G II, x G Au, y G Bit, w G D u such tha t gu G If(i/j) 
and 

(ax + by, v - gu) > 0, \/veK(w), (2.4) 

which is called the generalized strongly nonlinear implicit quasivariational inequal­
ity, introduced and studied by Huang [5]. 
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( d ) I f a = 6 = c = d = C = D = L / = 0, N(x, y, z) = -N(x, y) + gz and 
<p(x,y) = Ij^^(x) for all x,y,z e H, then problem (2.1) is equivalent to finding 
u E H, x e Au, y e Bu such that gu € K(u) and 

(N(x,y),v - gu) >0, VveK(u), (2.5) 

which is called the generalized multivalued quasi-variational inequality, introduced 
and studied by Noor [8]. 

E x a m p l e 1. Reamrk 2.1 For appropriate and suitable choices of the mappings 
g, a, b, c, d, A, B, C, D, N, tp and the element f, a number of known classes of 
variational inequalities and quasivariational inequalities, studied previously by a few 
authors including Huang [4], Bai er al. [5], Noor [7], Siddiqi- Ansari [9], [10], Verma 
[11 J-[14], Yao [15] and Zhang [16], can be obtained as special cases of problem (2,1). 

Def in i t ion 2 . 1 . Let H be a Hibert space and G : H —> 2 H b e a maximal monotone 
mapping. For any fixed p > 0, the mapping J® : H —» H defined by 

Jf(x) = (I + PG)~l(x), VxeH, 

is said to be the resolvent operator of G. 

It is known that the resolvent operator J® is singlevalued and nonexpansive. 
Notice that the subdifferential dip of a proper, convex and lower semicontinuous 
function p : H —» K U {+00} is a maximal monotone multivalued mapping. It 
follows that the resolvent operator J®* of dp is given by 

Jd/(x) = (I + pdv)~l(x), Vz e H. 

Definit ion 2 .2 . A mapping g : H —» H is said to be strongly monotone and 
Lipschitz continuous if there exist constants a > 0, 0 > 0 such tha t 

(gx- gy,x-y) > a\\x ~~ y\\2 and \\gx - gy\\ < (3\\x ~ y\\, \/x,yeH, 

respectively. 

Def in i t ion 2 .3 . A mapping N : H x II x H —* H is said to be Lipschitz continuous 
with respect to the first argument if there exists a constant s > 0 such tha t 

\\N(x,u, v) - N(y,u,v)\\ < s\\x - y\\, Vx,y,u,v e H. 

In a similar way, we can define Lipschitz continuity of the mapping N(-,-,-) 
with respect to the second or third argument. 

De f init ion 2.4. A multivalued mapping B : H —» CB(H) is said to be strongly 
monotone with respect to the mapping b : H —» H and the second argument of 
N:HxHxH->Hif there exists a constant t > 0 such that 

(N(p,bx,q) - N(p,by,q),u - v) > t\\u - v\\2, Vu,v,p,q € H, x 6 Bu, y e Bv. 
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Def in i t ions 2 .5 . A multivalued mapping A : H —> CB(H) is said to relaxed 
Lipschitz with respect to the mapping a : H —> H and the first argument of N : 
H x H x H —> H if there exists a constant t > 0 such that 

(N(ax,p,q) — N(ay,p,q),u — v) < —t\\u — vj |2 , Vw, v,p,q £ H, x £ Au, y £ ^4f. 

Def in i t ions 2.6. A multivalued mapping C : H —> CB(H) is said to generalized 
pseudo-contractive with respect to the mapping c : H —> II and the ttwrd argument 
of N : H x B x II ~-> H if there exists a constant £ > 0 such tha t 

(N(p,q,cx) - N(p,q,cy),u - v) < t\\u - v||2, \/u,v,p,q £ H, x £ Cu, y £ Cu. 

Def in i t ion 2.7 . A multivalued mapping A : H —> CB(H) is said to be H-Lipschitz 
continuous if there exists a constant £ > 0 such tha t 

B(Ac.Ay) < t | | a r - y | | , Vx,yeH, 

where H(-, •) is the Hausdorff metric on CB(H). 

3 . M a i n R e s u l t s 

L e m m a 3 .1 . Let p and t be positive parameters. Then the following conditions 
are equivalent: 

(i) the generalized nonlinear quasivariational inclusion (2.1) has a solution 
u £ II, x £ Au, y £ Bu, z £ Cu and w £ Du with gu £ domd<p(-, dw); 

(ii) there exist u £ H, x £ Au, y £ Bu, z £ Cu and w £ Du satisfying 

gu - J^(-.^)((1 _ p)gu + p / V ^ , 6y,cz) + pf), (3.1) 

where Jp denotes the resolvent operator of d(p(-,dw); 

(iii) i/ie multivalued mapping F : H —> 2 H defined by 

Fq = Uxey49iyeBc/,zecq!^eDq[(l - t)<7 + t(g - 3<7 

i + J** .*">( (1 - p)gq + pN(ax,by,cz) + pf))}, Vg £ H, 

has a fixed point u £ H. 

(3-2) 

Proof Note that (3.1) holds if and only if 

(1 - p)gu + pN(ax, by, cz) + pf £ gu + pdip(gu, dw), 

which is equivalent to 

N(ax, by, cz) + f — gu £ d<p(gu, dw). 

The relation holds if and only if 

(N(ax,by,cz) + f — gu, v — gu) < (p(v,dw) — (p(gu,dw), \/v £ H. 

On the other hand, F has a fixed point u £ H if and only if there exist x £ Au, 
y £ B(u), z £ Cu and w £ Du such tha t 

u = (1 - t)u + t(u - gu + J f ^ ' r f u ; ) ( ( l - p)gu + pN(ax, by, cz) + pf)), 
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which is equivalent to (3.1). This completes the proof . • 

E x a m p l e 2 . Remark 3.1 Lemma 3.1 extends Lemma 3.3 in [2], Theorem 3.1 in 
[3], Lemma 2.1 in [4], Lemma 3.4 in [5], Lemma 3.1 in [7]-[11] and [16], Lemma 
3.2 in [12] and [13], and Lemmas 2.1 and 2.2 in [14]. 

Based on Lemma 3.1 and Nadler's result, we suggest the following algorithms 
for the generalized nonlinear quasivariational inclusion (2.1). 

Algor i thm 3 .1 . Let g,a,b,c,d,: H -> H, A, B,C,D : H ->CB(H), N :HxHx 

H —> H and f €„ H. Given n0 e H, XQ £ Auo, y0 e BUQ, ZQ € C n 0 and u>0 e DUQ, 

compute un+i by the iterative scheme 

un+i - (I - t)un + t(un - gun 

+ Jj*»<-'*°»)((1 - p)gun + pN(axn,bynczn) + pf))), 
(3.3) 

(3.4) 

xn € Aun, ||a;„ - Xn+i || < (1 + (n + l)~l)H(Aun, Aun+i), 

yn e Bun, \\yn ~ yn+i\\ <(l + (n+ l)~l)H(Bun,Bun+1), 

zn e Cun, \\zn - zn+i\\ < (1 + (n + l)~l)H(Cun,Cun+i), 

wne Dun, \\wn-wn+i\\ < (1 + (n + l)~1)H(Dun, Dun+1) 

for all n > 0, where t and p are positive parameters with t < 1. 

A lgor i thm 3.2 . Let g, a, b,c,d:H ~> H, A,B,C,D : H -> CB(H), N : HxHx 
H —> H and f <E H. Given u0 6 H, xQ £ AUQ, y0 e BUQ, z$ € Cn 0 and w0 € DUQ, 
compute un+i by the iterative scheme 

gun+i - jW>d^((l - p)gUn + pN(axn,byn,czn) + pf) (3.5) 

for all n > 0, where {a;„}n>o, {yn}n>o, {^„}„>o and {u;„}n>o satisfy (3.4) and 

p > 0 is a parameter. 

E x a m p l e 3 . Remark 3.2 Algorithms 3.1 and 3.2 include the algorithms in [l]-[5], 
]7]-[16j as special cases. 

T h e o r e m 3 .1 . Lettp : HxH —> RU{-foo} be such that for each fixed y £ H, <p(-,y) 
is a proper convex lower semicontinuous function on H, g(H)ndomd(-,y) ^ 0 and 
there exists a constant p > 0 satifying 

\\j9<fM(z) - J?l'»Hz)\\ < p\\x - y\\, \/x,y,ze H,p>0. (3.6) 

Let f £ H and g,a,b,c,d,: H —> H be Lipschitz continuous with constants l,a,j3, 
7,S, respectively, andg be strongly monotone with constant h. Let N : HxHxH —> 
H be Lipschitz continuous with constants £ ,n ,£ with respect to the first, second 
and third arguments, respectively. Assume that A,B,C,D : H —> CB(H) are H-
Lipschitz continuous with constants p,q,r,s, respectively, A is relaxed Lipschitz with 
constant a with respect to a and the first argument of N, B is strongly monotone 
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with constant v with respect to b and the second argument of N, and C is generalized 
pseudo-contractive with constant m with respect to c and the third argument of N. 
Let 

k = 2 \ / l - 2/i + Í2 + fiós, i = 1 + 2a + i2o?p2, 

j = ^/l~^2v+ r]2p2q2 + A / T + 2m + C272r2 - yj\ - 2/i + l2 > 0. 

Suppose that there exists p £ (0,1] such that 

holds and at least one of the following conditions 

(3.7) 

k + pj < 1 (3.8) 

i > f , |1 + <J - ( 1 - k)j\ > v / ( 2 / c - / c 2 ) ( i - 7 2 ) , 

I 1 + g - ( l ____! 
r ^ i 0.9) 

V(l + a - (f - fe)j)2 Ҷ2T- fc2)(i - J 2 ) 
• ~ Ѓ 

2fc - fc2 

. = ,*, 1+ « r > ( i - t W , p > 2 ( 1 + g . ( 1 _ а д ; (злo) 

г < / , L-(*-*»- '-- | 

? V ( ( l - fc)j - <т - l ) 2 + (2fc - fc2)(j2 - ż) 
І 2 - ť 

is fulfilled. Then the generalized nonlinear quasivariational inclusion (2.1) has a 
solution u € H, x € .4u, y e Bu, 2 e C U , W e Du and the sequences { n n } n > 0 , 
{^n}n>o> {yn}n>0; {zn}n>o, {^n}n>o defined in Algorithm 3.1 converge strongly 
to u,x,y,z, w, respectively. 
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Proof P u t En - (1 - p)gun + pN(axn,byn,czn) + pf and E =_ (1 - p) + 
pN(ax,by,cz) + pf. Since JpV^',v' is nonexpansive, by (3.3), (3.4) and the as­
sumptions of Theorem 3.1 we deduce that 

| | t t n + l - U n j | 

< (1 - t)\\un - u n _i | | + t\\un - un_i - (gun - _»-„_])|| 

+ t\\J^'d^(En) - jW>dWn)(En-l)\\ 

+ t\\jW^)(En-.l) - j^^^HEn-in 

< (1 - ť + ty/l -2h + l2)\\un - u n _i | | + tp\\dwn - du>„-i|| 

+ t | | _? n -E„_i | | 

< (1 -t + t\/l-2h + l2 + tp5s(l +n~1))| |w„ - u n _ i | | ( 3 1 2 ) 

+ * ( 1 - P)\\gUn - _ U n _ l - (Un - W n _ i ) | | 

+ í | | ( l - p)(un - u n _ i ) + p(N(axn,byn,czn) 

- N(axn..i,byn,czn))\\ + tp\\N(axn~i,byn,czn) 

- N(axn-i,byn-i,czn) - (un - t t n - i ) | | 

+ íp | | iV(a_; n _i,6y n _i,c_ n ) - iV(a_:n_i, by n _i ,c_ n _i) 

+ u n - u n _ i | | 

< ( l - ( l ~ 0 „ ) í ) | | u n - u n _ i | | , 

where 

9n = (2 - p)\Jl-2h + l2 + pós(l + n~l) 

+ y/~\-~~p)2 - 2/7(1 - p)cr + p2^a2p2(l + n - 1 ) 2 

+ p\f\ -2v + rj2p2q2(l + n " 1 ) 2 + tpy/l + 2m + < 2
7

2 r 2 ( l + n " 1 ) 2 

-> 0 = k + v/(l ~ P)2 - 2/o(l - p)a + p2i2a2p2 + pj, 

as n —» oo. Prom (3.8), we get that 

0 < 1 <-> v/(l ~ /?)2 - 2p(l - p)c + p2i2a2p2 <l-k-pj 

«* (* ~ j'V ~ 2p(l + a - (1 - fc)j) < -(2fc - l.2). 

Since at least one of (3.9), (3.10) and (3.11) is satisfied, by (3.13) we conclude easily 
that 9 < 1. P u t L = | ( 1 + 0). Then there exists a positive integer M such t h a t 
6n < L < 1 for all n > M. It follows from (3.12) that 

| | t t „ + 1 - tinll < (1 - (1 - L ) t ) | | u n - u n - i | | , Vn > M, (3.14) 

which implies that {u n } n >o is a Cauchy sequence. (3.4) and (3.14) yield t h a t 
{^n}n>o> {Vn}n>Q, {^n}n>o and {u>„}n>o are Cauchy sequences. Consequently 
there exist u,x,y,z,w € H satisfying u n —> u, xn —> x, yn —* y, zn —* z, wn —. w 
as n —- oo. Clearly, 

rf(iTiu) < | | _ r - x n | | + H ( _ 4 u n , - 4 u ) < | | a : - x „ | | + p | | u n - u | | - » 0 , 
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as n -» oo. That is, x e Au. Similarly, we have y € Bu, z _ Cu and w € Du. By 

virtue of (3.6) and the nonexpansivity of I,, ' , we know that 

| | J ^ - ^ " > ( J _ n ) - J ^ ( ^ ) ( £ ; ) | | 

< | | I ^ M t 0 n ) ( £ n ) - J^'dw)(En)\\ + \\J^^(En) - .7^ ( - ' d w ^(E ) | | 

< /i||d_»n - _w|| + (1 - p)\\gun - gu\\ 

+ p\\N(axn,byn,czn) - N(axn^i,byn,czn)\\ 

+ p\\N(axn-\,byn,czn) - N(axn_l,byn-i,czn)\\ 

+ p\\N(axn-i,byn->i,czn) - N(axn-i,byn-i,czn-i)\\ 

< /u<5||wn - w|| + (1 - p)l\\un - u|| + p(£a||_-n - _-|| 

+ f?/3||yn-y|| + C7ll«n-«ll). 

which implies tha t 

lim^ jW'>dWn)(En) = J^'dw)(E). (3.15) 

It follows from (3.3) and (3.15) that 

_ = (1 - *)u + t (_ - gu + J ^ ( ' . ^ ) ( ( i _ p)_ou + pAT(a_, by, c_) + pf)). 

^From the above equation and Lemma 3,1 we obtain tha t u _ H, x G ^4u, y G Bu, 
z € Cu and w <E D M are a solution of the generalized nonlinear quasivariational 
inclusion (2.1). This completes the proof.• 

E x a m p l e 4. Remark 3.3 Theorem 3.1 is an improvement and generalization of 
Theorem 4.1 in [1], [7] and [8], Theorem 3.1 in ]4], ]10] and [16], Theorems 4.1 
and 4-2 in [5], and Theorem 2.1 in [12]. 

T h e o r e m 3.2. Let tp, f,g,a,b,c,d and N be as in Theorem 3.1. Let A,B,C, 
D : H —» CB(H) be H-Lipschitz continuous with constants p,q,r,s, respectively, A 
be relaxed Lipschitz with constant a with respect to a and the first argument of N, 
and C be generalized pseudo-contractive with constant m with respect to c and the 
third argument of N. Let 

k - uбs + ҳ/l - 2 / i + l2, i = 1 + 2(<7 - m) + (aÇp + тCr) 2 , 
(3.16) 

j = nßq ~ V I - 2/i + Г2 > 0. 
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Assume that there exists p e (0,1] such that k 4 pj < l holds and at least one of 
the following conditions 

i > j 2 , (i + <r - m - (i - k)j)2 >(i~ j2)(l - (l ~ k)2), 
l i _j_ ,j _ m _ ^ _ &)j j 

r ^ J 2 I (3-17) 

i _ p 

< « , ' , l + , - m > ( l - * W , p > ^ ^ ^ ( 3 . 1 8 ) 

< < J'2, ((« - *)j - 1 - tr + m)2 > (1 - (1 - A;)2)(j2 - i), 
I (I — fe)j — 1 - a 4- m t 

r j 2 - r ~ 1 (3.19) 

^ v ^ r ^ j T T i o-+m)2 + (g - g - i)(j2 - o 
is satisfied. Then the generalized nonlinear quasivariational inclusion (2.1) has a 
solution u € H, x € Au, t/ € J3u, 2 € Cu, u> G Du and í/ie sequences {un}n>o, 
{xn}n>o, {yn}n>o, {^n}n>0t {wn}n>o defined in Algorithm 3.2 converges strongly 
to u, x, y, z, w, respectively. 

Proof. Since g is strongly monotone and Lipschitz continuous, it follows that 

IK+i - unii < rHgun+i - gun\\. (3.20) 
As in the proof of Theorem 3.1, by (3.5), (3.20) and the assurnptions of Theorem 
3.2 we infer that 

||«n+l — Un|| 

< rlll\\dwn - dWn~.l\\ + í _ 1 ( l ~ P)\\9Un ™ 9Un-i - (un ~ U n - l ) | | 

+ /"1||(1 - p)(un - wn-i) + p(N(axn,hyn,czn) ~ N(axn-i,byntczn) 

4- N(axn-i,byn-i,czn) - N(axn-i,byn-uczn-i)\\ 

+ r1p\\N(axrl^i)byn,czn) - N(axn-i,byn-i,czn)\\ 

< 9n\\un -Un- . l | | , 

where 

9n - l^lfiósil + n'1) 4 (1 - p)y/'l-2h + l2 

+ V(l - P)2 - 2(f^ p)p(a - m) 4- p2(c*CP + C7^)2(l 4- rr^ 

+ pC/?g(l+n-1)] ' 

_* 9 = r *(fc 4- x/(l - p)2 ~ 2(1 - p)p(a- m) 4- p2(aip + j(r)2 4- pj) 

as n —+ 00. The remaining portion of the proof can be derived as in Theorem 3.1 

and is therefore omitted. This completes the proof.D 
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E x a m p l e 5. Remark 3.4 Theorem 3.2 extends, improves and unifies Theorems 
4.1-4.3 in [2], Theorem 3.1 in [9j, [11J and [13]f and Theorem 3.6 in [15]. 

E x a m p l e 6. Acknowledgement The work of the second author was partially sup­
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