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Decompositions of commuting relations 

Tarnas Glavosits and Arpad Szdz 

ABSTRACT. After some preparations, we show that if R and S are full relations 
on the sets A and B, respectively, then R o S — So R if and only if there exist 
full relations Ri and S\ on An B, R2 on A \ B and S2 on B \ A such that 
R — R\ U R2, S = Si U S2 and Hi o Si - Sx o Rx. 

1. A few basic facts on relations 

A subset R of a product set X2 is called a relation on X. For any x € X and A C X, 
the sets R(x) = {y € X : (x, y) e R} and R[A] = Uae.4 ^ ( a ) a r e c a^ e <* t n e i m a S e s 

of x and A under H, respectively. If R is a relation on X, then the images R(.r), 
where x & X, uniquely determine R since we have R = \Jx€:X{x}xR(x). Therefore, 
the inverse R~~l of R can be denned such that R~1(x) = {y € X : x € R(y)} for all 
.r e X . Moreover, if R and S are relations on X , then the composition R o 5 of R 
and S can be defined such that ( R o ^ ( a ; ) = R[5(x)] for all x e X. The relations 
R and 5 are said to commute with each other if R o S — S o R. If R is a relation 
on X . then the sets IZR = R[X] and I?/? = H_1[X] are called the range and the 
domain of R, respectively. If in particular X — Vp and X = IZR, then we say tha t 
R is a full relation on X. In the sequel, whenever confusions seem unlikely, we shall 
simply write Ac and R(A) in place of X \ A and R[A), respectively. Note tha t the 
latter convention may only cause some serious troubles whenever A C X such tha t 
AeX. 

2. Images under commuting relations 

L e m m a 2 . 1 . If R and S are relations on X such that Ro S C S o R, then 

R(S(X))cR(X)nS(X). 
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Proof We evidently have R(S(X)) C R(X). Moreover, it is clear that 

R(S(X)) = (R o S)(X) c (S o R)(X) = S(R(X)) c S(X). 

• 

Lemma 2.2. If R and S are relations on X such that S a R C R o S, then 

R(S-1(X)C) C R(X) n S-\X)C. 

Proof We evidently have H(5-1(A')C) C R(X). Moreover, it is clear that 

H^oS"1 = (5 oH)-1 c (RoS)'1 =S~1oR-1, 

Therefore, by Lemma 2.1, we also have 

R-^S-^X)) CS~1(X), and thus R-1(S~1(X)) D S'^X)0 = 0. 

Hence, it follows that 

S~-(X) n R(S~1(X)C) = 0, and thus R(S~1(X)C) c S^^Xy. 

D 

Lemma 2.3. If R and S are full relations on A and B, respectively, such that 
R o S = S o R} then 

(1) R(A n B) = A n B, (2) R(A\B) = A\B; 

(3) S(A nB) = AnB, (4) S(B \A) = B\A. 

Proof. By letting X = A U B and using Lemmas 2.1 and 2.2, we can see that 

R(A nB)c R(B) = R(S(X)) c R(X) n S(X) = AnB 
and 

R(A \ B) c R(BC) = R(S-1(X)C) C R(X) n S'L(X)C = AnBc = A\B. 

Hence, since 

R(A nB)U R(A \ B) = R((A n B) U (A \ B)) = R(A) = A, 

it is clear that the assertions (1) and (2) are also true. 
Prom the assertions (1) and (2), by changing the roles of R and S, we can at 

once see that the assertions (3) and (4) are also true. • 
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3. Decompositions of commuting relations 

T h e o r e m 3 . 1 . If R and 5 are full relations on A and B, respectively, such that 
R o 5 = 5 o H, then there exist full relations R\ and S\ on An B, R2 on A\B and 
S2 on B\A such that 

H = HiUH2, 5 = 5iU52 and RioSx = S1oR1. 

Proof. Define X -=- A U B and 

Hi = Hnn4nj3)2, R.2 = Rn(A\B)2 ; 

5i = 5 n (A n j3)2, 52 = 5n (B \ A)2. 

Then, by the corresponding definitions and Lemma 2.3, it is clear that 

Ri(x) = (R n (A n B)2)(x) = R(x) n (A n B)2(x) = R(x) n (A n B) = H(x) 
for all x e A n B. Moreover, it is clear Hi(x) = 0 for all x £ (An B)c. And, quite 
similarly, we can also see tha t 

R2(x) = R(x) for all x G A \ B and H2(x) = 0 for all xe(A\B)c ; 

Si(x) = 5(x) for all l e A n B and 5 i (x) = 0 for all x e (An B)c ; 

52(x) = 5(x) for all x € B \ A and 52(x) = 0 for all x 6 (B \ A)c. 

Hence, it is clear tha t Hi, H2, S\ and 5 2 are full relations o n i f l B . A\B, An B 
and B \A, respectively. Moreover, it is clear that 

H(x) = Hi(x) U R2(x) = (Hi U H2)(x) 

for all x e X, and thus H = Hi U H2. And, quite similarly, 5 = 5 i U 52- On the 
other hand, it is clear that 

(R i o S2)(x) = Hi (52(x)) C Ri(B \ A) = 0 

for all x € X , and hence Ri o S2 — 0. Moreover, quite similarly, we can also see 
that H2 o 5i = H2 o 5 2 = 0 and 5L o H2 = 5 2 o Hi = 5 2 o H2 = 0. Therefore, 

Ho5 = ( H i U R 2 ) o ( 5 i U 5 2 ) = = Hio5iUHio52UH2o5iUH2o52 = Hio5i, 

(1) 

nd quite similarly S o R = S\ o R1. Therefore, Hi o 5 i = 5 i o Hi is also true. D 

T h e o r e m 3.2. Let R and S be full relations on A and B, respectively. Moreover, 
suppose that Hi, H2, 5 i and 52, are relations on An B, A\B, An B and B\A, 
respectively, such that the assertions of Theorem 3.1 hold. Then Ho 5 = 5 o H. 
Moreover, Hi, H2, 5 i and S2 are as in the proof of Theorem 3.1. 

Proof. From the proof of Theorem 3.1, it is clear that H o 5 = 5 o H. Moreover, 
if x e A n B, then x ^ A \ B. Therefore, by the inclusion H2 C (A \ B)2, we have 
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R2(x) C (A\B)2(x) = 0, and thus R2(x) = 0. Hence, by the equality R = R\ UH2 

and Lemma 2.3, it is clear that 

Ri.(x) = R1(x)uR2(x) = R(x) = R(x)n(AnB) = (Rn (An B)2)(x). 
Therefore, the equality Rx = Rn(AnB)2 is true. The equalities R2 = Rn(A\B)2, 

Si = S Pi (A Pi H)2 and 5 2 = S D (B \ A)2 can be proved quite similarly. D 

R e m a r k 3 .3 . Note that the relations Ru H2, Si and 5 2 , defined in the proof 
of Theorem 3.1, inherit several useful properties of the relations R and S. For 
instance, if R and S are preorders (equivalences), then Hi, H2, Si and S2 are also 
preorders (equivalences). To construct commuting preorders, we can note tha t if 
Hi and Si are preorders on A n B such tha t Hi C Si, and moreover H2 and S2 are 
preorders on A \ B and B\ A, respectively, then H = Hi U R2 and S — S\ U S2 

are preorders on A and H, respectively, such that H o S = S o H. ( Necessary and 
sufficient conditions for equivalences to be commuting can be found in [ 1 ].) 
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