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Computing all elements of given index in sextic fields
with a cubic subfield

Istvin Jdrds

Abstract. There are no general methods for calculating elements of given index

in sextic fields. This problem was investigated only in sextic fields having
quadratic subfields.

In the present paper we give an algorithm to compute all elements of given
index in sextic fields containing a cubic subfield. To illustrate the method we
give a detailed example in the last section.

1. Introduction

Let K be an algebraic number field of degree n with ring of integers Z . The index
of a primitive element a € Z is defined by

I{a) = (Zk : Z]a)).
It is a classical problem in algebraic number theory to determine all elements of
Z of given index. It is obvious that {1, a,a?,...,a" '} is an integral basis, if and

only if I(a) = 1. Such an integral basis is called power integral basis. If there exists
such an a € Zg, then Z g is called monogene.

Let {1,ws,...,ws} be an arbitrary integral basis in K. Then the discriminant
of the linear form l(z) = zow, + ... + Town can be written as
(1.1) D(l(z)) = (I(z2,...,24))* - Dk
where I(z,,..

.,Zn) is the index form corresponding to the integral basis {1,ws,
...,wn}, and Dk is the discriminant of the field K. This index form has the
property that for an arbitrary primitive element

a=1z)+ZTows + ...+ Tpwy € Zg
the equation
I(a) = |I(z2,...,zn)|
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holds. Consequently, the index of a primitive a € Z g can be determined by
N H15i<1‘5n Ia(i) — a(j)'
VIDk|

where a(?) (1 <i < n) denote the conjugates of . So the problem of determining
all elements of Z y of given index g is equivalent to solving the indez form equation

(1.2) I(a)

Izy,...,2,) = g (22,...,2n € Z).

For an arbitrary z € Z the indices of a+ 2 are the same. These numbers are called
equivalent. In 1976 K.Gyéry [10] proved in an effective form that an index form
equation has only finitely many solutions, that is up to equivalence there are only
finitely many elements of Z i of given index. For related results on power integral
bases and algorithms for solving index form equations see Gyéry [11] and Gaal [6).

In this paper we consider sextic fields. There are no general effective algorithms
for solving index form equations in sextic fields. The only case when algorithms
for determining all elements of given index were formerly described is the case of
sextic fields with a quadratic subfield, cf. 1.Gadl [4],(5] and 1.Gasl and M.Pohst
[8]. In this case the index form equation implies a relative Thue equation over the
quadratic subfield which makes the resolution easier.

Our purpose is to consider sextic fields having a cubic subfield. This case was
partially investigated by the author in [12] where an algorithm is given to compute
generators of power integral bases having "small” coordinates in an integral basis.
In this case the index form equation is much more complicated than in the pre-
viously considered sextic fields but using the ideas of I.Gaél and K.Gyéry [7] and
the method of Wildanger [13], [14] for the enumeration of the "small” values of the
exponents in unit equations, it can be solved within reasonable time. In this paper
we give a feasible algorithm for the complete resolution of index form equations in
such fields. Using standard arguments we reduce the index form equation to unit
equations in two variables. These unit equations are solved by using the reduction
method and enumeration method described by Gaal and Pohst [9]. This enumera-
tion method is based on K. Wildanger’s ideas, cf. [13], [14]. Below we consider in
detail the most difficult case when the sextic field is totally real and has the largest
possible Galois group Sy x Cs.

2. The unit equation

Let K be a totally real sextic field with a cubic subfield M and with Galois group
S4 x Cy. Denote by Zg the ring of integers of K, and by D its discriminant.
Similarly, let Z s be the ring of integers of M, and D)y its discriminant. Let g be
a primitive integral element of M, and let ¥ be a primitive integral element of K.
For simplicity we assume that any a € Z g can be represented in the form of

a = 2o + 210 + 220° + YO + Y109 + y20°0,

with z;,y; € Z. Note that otherwise in this representation a common denominator
d appears. In such cases the same arguments work but instead of g we have g - d'®
on the right side of (2.1).
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Let o) (i = 1,2,3) denote the conjugates of o. Similarly, we will use the
notation M) = Q(g(") , i = 1,2,3. Let 9ti1) 9(i2) denote the conjugates of ¥ over
M (4 = 1,2,3), respectively. Let K¢P) = Qu(P),i =1,2,3,p = 1,2. Then
the conjugates of a are

" = zo 4+ 210 + 29 (p)2 + yodiP) 4y pD Y0P 4 ya () 29tP)

for 1 <4< 3,1 <p <2 Here we note that since for p = 1,2 M) ¢ K () holds,
one can express an arbitrary a'i?) € Z gy in terms of powers of the ¥(")-s and
rational integers.

QOur purpose is to determine all solutions of the equation

@21 I(a) = g (@€ Zx)
for a fixed g € Z. For

1<4,j<3,1<p,q<2,(5p) #(j,9)
consider the linear forms

19299 (51 25, 90,01, 92) =
= (¢ = 6z + (()? - (¢"))z +
+ (0\!») _ 19(1@))’!0 + (g(t),g(ip) — gU)ng))yl + ((o')209lP) — (011)29059) )y,

Using (1.2) and this notation, (2.1) can be written as

(2.2) T117 (21,22, v0, 1, v2) = £9V/1Dk],

where the product extends to the tuples (ip,jq) where (i,p) < (j,q) in the lexico-
graphical order. When we reduce an index form equation to unit equations, we use
the above defined linear forms. In this case we assume a cubic subfield, so we can
have several types of unit equations depending on the choice of the linear forms.
For {i,j,k} = {1,2,3} and 1 < p,q,7 < 2 Siegel’s-identity gets the form

(2.3) 1Pda) 4 jGakr) 4 (krip)

in the variables (z1,z2, Yo, ¥1,Y2)-

Since the Galois group of the cubic subfield M is not cyclic (this is satisfied
in our case, otherwise the Galois group of K has at most 24 elements), there is
an automorphism of the Galois group of M interchanging o) and o) (i # j). In
view of the arguments of the Proof of Theorem 1 of [12], this can be extended to
an automorphism of the Galois group of K, interchanging 9(#) and 9U9. This
isomorphism leaves L(P:9) = Q(9UP) 4 9li9) §(iP)9(i0)) fixed, hence it is a proper
subfield of K (iP) K(G9) which is also a proper subfield of the normal closure of K of
degree #(S4 x Cy) = 48. Hence the degree of L(*?79) cannot exceed 12, so its unit
rank is < 11. (Note that in the totally real case under consideration this maximum
is reached.) This idea was first used by Gaél and Gyéry [7].

Let a = 2o + ;0 + T20° + YoV + y109 + y20°9 be a solution of (2.1), and

slinida) — *ﬂhp) - aliv
Wp) — 9Ga)
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It is easy to see that there is an integer d € Z such that arbitrary a € Zy can be
represented in the form of
zo + 210 4 2907 4 239° + 209 + 25098
- d

where z; € Z for i = 0,...,5. (If I(¥) = 1 then d = 1). Hence d6"*779) will be an
integer in L(PJ9),
Using this notations (2.2) can be written as
+gd'

(pje) . —J97
(2.4) [T ds iR
where the product is taken for the same tuples (ip, jg) as (2.2). Again using the
arguments of the Proof of Theorem 1 of [12] it is easy to see that there cxists an
automorphism of the Galois group of K mapping 9(?) to 97 and simultaneously
YD 09U if 1 < k1 < 3k # 1,1 <7 s < 2. (For this observe that k or I is equal
to i or j and recall that the Galois group of M is not cyclic.) This automorphism
maps §(779) to §(knle) . Thys equation (2.4) is a norm equation in L9950 there
exist an integer v(*/9) of norm —iﬁ%‘; and a unit 7?79 € L(PJ9) guch that

dolivia) — 7](ll>v10).y(zwa'

Note that the following computations must be performed for a complete set of non-
associate integral elements v of L(?J9) of norm 5,3(‘;—‘;, which can be determined
e.g. by KASH [2]. Let

i 7(w,jq)(lq(im - 9U9)

ﬁ(’}’v](l»’”’)
AGip kY (9Tim) — 9lkn)y"

Using this and (2.3) we have

nlirda)

krj
+ 5(kmq.ip) T’< 730

2. (ip.jg.kr)
(25) g nlip.kr) plkrip) —

Since the n-s are conjugated to cach other, and they lie in a totally real field of
degree 12, the number of unknown exponents in this unit equation is 11.(Here note
again that in this paper we deal with the most difficult case i.e. when the degree
of L{P79)) is exactly 12 and it is also a totally real field, so it has 11 fundamental
units. Generaly there are less then 11 fundamental units, because the degree of
LUPJa)) is at most 12)

Denote by {e1,...,£11} a set of fundamental units of L(*#J9). Let {i,j,k} =
{1,2,3} and 1 < p,q,7 < 2. Then there are rational integers a1, ...,a;; such that

Plipda) = j:(E(limq))m ..... (5(1‘11’-7‘7))“",
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Introducing

“ R glipa)
yiPae ™ Fw.kr) (h=1,...,11),
Eh
P 11 j &h
plipdekn) — H (V,(,'p'”'h’)
h=1

and
E(ip,jq,kf) = ﬂ(ip-ja,kr)u(ip.iavkr)‘

by (2.5) we have
a . a
glipaakr) (,,{waavkr)) oo (,,ﬁ'l’“"v'")) -

+ Blkrdain) (u§'°"“"'”’)“ o (V§ller.jq.ip>)"“ —

or simply
glpgakr) o g(krijaip) —
and this unit equation can be solved using Baker’s method, reduction procedures
and Wildanger’s enumeration method. This procedure was first described by Gaal
and Pohst [9].
After solving this equation in the variables a;,...,a;; one has to consider the
system of linear equations

. . ) . a . a
(2.6) 1799 (21,33, 30,41, ¥2) = £(IP) —9UD) (PO (ng‘”)) “.. . 4,(651’1’40)) "

for all possible indices, and solving this it is easy to calculate z1, 22, yo,¥1, ¥2-

3. Baker's method
Taking logarithms for each possible indices we have

(ip,jg,kr)

(PITR)| 4t log ] | = log|utiPiekn)|

a Iog|u
One can consider the above equations (for each possible indices) as a system of
linear equations in ai,...,a;;. The matrix of this system of linear equations has
linearly independent columns, cf. [7]. Hence one can select eleven tuples (ip, jg, kr)
of indices such that the coefficient matrix M of the left hand side will have rank
11. Let (iop, jog, kor) be the index for which |log|u(i9:¥")|| attains its maximum.
Then by multiplication by the inverse of M one can express the variables a,, . . .,a11,
and we conclude

A= < l (iop,jog,kor)
(B lanl < log|u |

where ¢, denotes the row norm of M~!, that is, the maximum sum of the ab-
solute values of the elements in the rows of M~!. Note that M should be cho-
sen such that ¢; becomes as small as possible. Now if |yliorjod:kom)| < 1 then
log |plioPdodkor)| < —A/cy, and if |ulioPdoa%oT)| > 1 then the same holds for
pliopkotjor) — 1 /y,(iop.jod:ker)  Hence we conclude that

(3.1) l”(t’oﬂ,joq»kn')I < exp(—i)
(5]
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for a certain index. Set ¢, = |BlioPJogkor)| Then using the inequality |logz| <
2|z — 1| holding for |z — 1| < 0.795, we have

lloglﬂ(kur,mq,zop)l ta log'”}kur‘mwcp)| o 4an log,ul‘f”'“""”)[‘ -
- ’loglﬁ(kur.ioq»mp)u(kor,nq.iuv)” <
< 2'1 - IB(kor,jnq.io)‘I(kDijDll-'op),J <
< 2|l _ ﬂ(kufyioqvtol))”(koﬁjﬂqvioﬂ)[ -
- 2]6(Iva]Ukaur)u(iﬂp'jﬂ‘l-kﬂr)I <
< 20, exp(~Afei),
provided that the right hand side is < 0,795, but in the opposite case we get a
much better estimate for A. In our example the terms in the above linear form

in logarithms were linearly independent over Q, so we can apply the estimates of
Baker and Wiistholz [1] to derive a lower estimate

I]le[j(koh]oq.iur)l + ay loglkoreeion)| 4y g, log]ul(;cur,joq,in,,;” S
> exp(—Co log A),

with a large constant Cp. This inequality compared with (3.1) implies an upper
bound Ay for A. In our example we got Ay = 10'%4,

4. LLL reduction of Baker's bound
For a fixed index (ip, jq, kr) consider the lattice L spanned by the columns of the
13 by 12 matrix

1 0 0

0 1 0

0 0 e 1
Clog|B*niain)|  Clog[v*riTP)| ... Clog pkriain)|

where the constant C' will be specified later. Denote by b; the first vector of the
LLL reduced basis of L. Now Lemma 1 of Gadl and Pohst [9] cf. also Gadl [6]

yields the following:
Lemma 1. If A = max|ap| < Ap and
[by] > V13211724,
then for all solutions of the inequality
o470+ a1 g™ -+ s lgluft ™59 < 2 exp(-4/c)

we have
A < c1(log C + log(2¢3) — log Ay).
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Note that one has to perform this reduction for all possible tuples of indices.
After getting Baker’s bound we can use this very efficient lemma to reduce A. One
should apply the lemma in 4-5 steps, taking the previous bound (initially Baker’s
bound) as Ag. To ensure the condition of the lemma a suitable choice of the constant
C' is described in Section 7.

The lemma is very efficient in the first and second steps, when the new bound
is about the logarithm of the previous one, but after 4-5 steps the new bound will
not improve the previous one. In our example the final reduced bound was 164.
The first step was hard to perform, because we had to use 1500 digits of accuracy.

5. Wildanger’s method for the enumeration of the solutions of the
unit equation
In this section we use the construction of Gadl and Pohst [9] which is in fact a
variant of Wildanger’s method [14]. Note that in [9] the relative extension is of
degree n > 3 so in our case we have to use a modified version of Lemma 2 of [9].
For all possible tuples I = (ip, jq, kr) set
&h = 5“‘"”"‘”, AU = plirdakr)

and o
yD = PR for p=1,..,11
Let I* = {I1,...,1;} be a nonempty set of indices with the following properties:
1: if (ip, jq, kr) € I* then either (kr,ip,jq) € I* or (kr,jq,ip) € I*
2: if (ip, jg, kr) € I* then either (jg, kr,ip) € I* or (jg,ip, kr) € I*
3: the vectors

log [v}"|

en = : forh=1,...,11

log |l/,(,l’)|
are linearly independent.
Set
log | 8] log ¢()]
9= : b= E
log| 81" log €]

Using this notation we have
b=g+aie; +-- +ane,.

Let A, be the reduced bound obtained in the previous section, and let

log'u}{)”).

(5.1) log So = r’x?’J_((|log|cxI” + A,

]05‘V§”H+"'+Ar

From this it is easy to see that

1
(5.2) T < [ < S forall I € I*
0
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The following lemma will help us to replace Sp by a smaller constant in (5.2). Note
that it is a variant of Lemma 2 of Gaal and Pohst [9], cf. also Gaal [6]:

Lemma 2. Let 1 < s < S be given constants and assume that

! <1ED|< S forallTeI”

Wl

Then either

@ |-

<D <sforall Tl
or there is an I € I* with

1
) 1< ——
e —1f < e

Proof. Note that the proof of Lemma 2 in [9] based on the multiplicative and
additive relations between the 8(/)-s for which I € I*. In our construction I* is

defined so that the £/)-s for which I € I* have the same properties. a
Summarizing, the constant S can be replaced by the smaller constant s if for
each tg (1 <ty < t) we enumerate directly the set Hy, of those exponents a1, ..., a1,
for which 1 1
3 <lEM| < Sforall I €I* and |¢U) —1| < P

Such exponent vectors are contained in an ellipsoid. To enumerate the points of
this ellipsoid we use the algorithm of Fincke and Pohst [3]. This is the critical step
of the algorithm, for details see [6] and [9].

6. Sieving

As one can see in the last section, the enumeration method gives a very large
number of exponent vectors (ai,...,a11). To reduce this we insert a modular test
to eliminate as much vectors as possible.

7. Numerical example

Using our algorithm we computed all power integral basis in a totally real sextic field
having a cubic subfield with Galois group Sy x Ca. The method was implemented
in Maple and was executed on a 333MHz Pentium PC. The defining polynomials,
integral basis and fundamental units were computed by the KANT package [2].
Here we summarize our computational experiences.

Consider the totally real sextic field K = (1) where the minimal polynomial
of ¥ is

28 — 172 + 252° + 3% — 6z + 1.
The field has a cubic subfield M = Q(g) where the minimal polynomial of g is
2% -4z 1,

and has Galois group Sy x Cs. The p has index 1in M and {1, g, 0,9, 90, ¥0%} is an
integral basis in K. The field L(11.21) = Q(9(11) 4 9(21) 9(11)y(21)) is generated by
992D Tn this case both 9111 4 9(21) and 9(11)y(21) generate a field of degree 12,
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hence they generate the same field. The element 9¥(11)9(21) has a simpler defining
polynomial, namely
22 +42"! - 5020~ 572°+ 30225+ 34827 — 43325 — 45025 4 2782* +1812° — 80z% — 8z +1

Baker’s method gave the initial bound Aq = 10'%¢ for A which was reduced to
164, using Lemma 1, by the following steps:

Step Previous bound Reduced bound C

1 Ap =10 Ay = 2982 All
I Ay = 2982 A =199 A
Il Ay =199 Az = 167 AP
v Az = 167 Ay =164 A%

The first step took about 8.3 hours, and we had to use 1500 digits of accuracy. The
following steps took only a few minutes, and it was sufficient to use 150 digits of
accuracy.

The final reduced bound was 164 and it gave Sp = 10'%7% for the final enumer-
ation (cf. (5.1)).

For the final enumeration we used the set of 18 ellipsoids defined by

I" = {(2p, 1q,3r),(3p, 1¢,2r), (1p, 3¢, 27) | (p,q,) € T’}
where (p,q,7) runs through the set
I'={(1,2,1),(1,1,2),(2,2,2),(1,2,2),(2,1,2),(2,2,1)}.

In the table 1 we summarize the final enumeration using Wildanger’s method.
cf. Lemma 2. We display S,s the approximate number of exponent vectors
(a1,...,a11) enumerated in the 18 ellipsoids, the number of the exponent vectors
surviving the modular tests and in the last column we display the CPU time. The
last line represents the enumeration of the single ellipsoid containing the exponent
vectors with coordinates < 3 in absolute value (cf. [9]).

From the surviving exponent vectors we calculated the coordinates in the basis
{1, 0, 0% 9,90,90} of the corresponding elements of K by (2.6) and tested if they
really generate power integral basis. We got the following solutions:

(122,90, 11, %2) = (0,0,1,0,0),(1,0,7,0, -2).

We note that if a generates power integral basis, then for arbitrary z € Z the
element +a + z generates also power integral basis.
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Step S s Enumerated Survived CPU Time
I 107870 10100 0 0 1.5h
I 10100 1050 0 0 0.3h
111 10%¢ 1020 1 0 0.1h
v 1020 108 30 0 0.1h
\% 10'5 10'2 1300 0 0.1h
A%t 1012 10! 14200 0 0.2h
VIl 10'° 10° 22700 0 0.2h
VIl 10° 108 78300 0 0.6h
X 108 107 246000 0 1.6h
X 107 10° 650000 0 3.7h
XI 10° 5. 10° 366000 0 1.7h
X11 5-10° 10° 1033000 2 4.8h
X111 0% 510! 328000 2 2.7h
X1v 5.10* 10* 1971000 12 6.5h
XV 100 5-10° 711000 16 2.7h
XV1 5-10° 10° 1688000 38 5.9h
XVII 10° 5-10? 500000 42 1.5h
XVilL  5-10% 10? 902000 76 3.3h
XIX 10? 10! 278000 149 1.8h
XX 10! 3 1800 128 0.03h
XXI 3 0 3 3 0.01h

TABLE 1
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