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On divisibility of one special type of numbers 

Jaroslav Seibert 

Pavel Trojovský 

Abstract: We will deal with numbers given by the relation A'3n = Y'i=o ( n ) ^ n 2 *» where k 
is any nonnegative integer and n is any positive integer greater than 1, with fc3o — fc3i = 0. 
The special type of these numbers for k — 1 was investigated before in [1]. In this paper 
some results about divisibility of numbers fc0n are found. In addition certain properties of 
their divisibility are used for finding primes of the type fc3n for k f_ 13 and n !_ 4500. 
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1. Introduction 

In [1] the numbers 3n were studied. They are created from the polynomials Jn(x) 
in the following way: 

dn = Jn ( l ) = 2 n ~ n - 1 , 

where n is any positive integer. 
We can recall that these polynomials are defined by the relation 

n - 2 / v 

Jn(x) = _T (n)xn~l , n __ 2 , J0(x) = Jx(x) = 0 , 
i-o \ l ' 

therefore 
Jo(x) = 0 , Jn(x) = (l + x)n -1-nx , ne N . 

In this paper we will deal with the numbers 

_(k + l)n-nk-l 
On - p , (I) 
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where k is any positive integer and n is any nonnegative integer. It is evident that 
the numbers *3n are identical to 3n from [1] and all the numbers *3n are integers 
as 

* 3 n = J „ ( f c ) / f c 2 = W n ) f c n ~ 2 - i - ( 2) 
i=o \1' 

Because fc3o = *3i = 0 and k^2 = 1 for any k we will mostly assume n > 2 in the 
following text. 

Further, for instance, we get the following recurrences for the numbers k$n from 
the recurrences for the polynomials Jn(x) in [1]: 

* 3 n + i - ( f c + l ) f c 3n = n , *3o = 0 , 

*3n+2 ~ (k + 2) * 3 n + l + (k + 1) *3n = 1 , *3o = *3l = 0 , 

З n + 1 = * è * 3 * + ( П 2 1 ) . ł З o = 0 , 

Є J2 *3n-i k3i = Ңn + 1) *3„ - 4 *3n+i +(k- 2)(n + 1)+ 
i = 0 

^í-rì-ад-DЃ-rì+^-;3) 2 У 4 2 

2. The main results 

The main results established in this paper concern divisibility of the numbers *3n-
They are expressed in the following theorems. 

Theorem 1. Let k, n = 2 he any positive integers. 

*3n = 0 (mod 2) <=>(k = 0 (mod 2) A n = 0,1 (mod 4)) V 

(k = 1 (mod 2) A n = 1 (mod 2)) , 

*3n = 1 (mod 2) ^=>(k = 0 (mod 2) A n = 2,3 (mod 4)) V 

(k = 1 (mod 2) A n = 0 (mod 2)) , 

Theorem 2. Let k, n ^ 2 be any positive integers. 

*3n = 0 (mod 3) <=>(k = 0 (mod 3) A n = 0,1 (mod 3)) V 

(k = 1 (mod 3) A n = 0,1 (mod 6)) V 

(k = 2 (mod 3) A n = 1 (mod 3)) , 

*3n = 1 (mod 3) <=>(k = 0 (mod 3) A n = 2 (mod 3)) V 

(k = 1 (mod 3) A n = 2,3 (mod 6)) V 

(k = 2 (mod 3) A n = 2 (mod 3)) , 

*3n = 2 (mod 3) <=>(k = 1 (mod 3) A n = 4,5 (mod 6)) V 

(k = 2 (mod 3) A n = 0 (mod 3)) , 
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3. Some lemmas and preliminary results 

At first we give some results showing the relation of numbers k2n to other math­
ematical expressions. For the most part they are elemantary consequences of the 
binomial theorem. 

Lemma 1. Let k, n > 2 be any positive integers. Then 

*3n = ( 2 ) (mod k) . 

Proof. The proved congruence follows from the relation (2) because we can write 

i=0 V 7 t=0 v J V i " 7 

Lemma 2. Let k be any positive integer and p be any prime. Then 

k3p = kp-2 (mod p) . 

Proof. The identity 

% = E(l) f c p - 2 - i = fcp-2 + E(i) f c p- 2- i 

i=o ^ / t = l v 7 

and the well-known fact that p | (?) for i = 1,2,... ,p — 1 imply the assertion. D 

Corollary of Lemma 2. Let k be any positive integer, p be any prime and k, p be 
relatively prime. Then 

P \ k % - 1 . 

Proof. Using Fermat's Little Theorem we obtain 

kk3p-l = kp-1 -1 = 0 (modp). D 

Before we will give other divisibility properties of the numbers k%n we prove two 
lemmas on binomial coefficients. 

Lemma 3. Let a > 1 be any positive integer and b, m be any nonnegative integers, 
c = b (mod a), where 0 = c = a - 1. Then 

(i) 
fam + b\ fb\ 

(mod a) 2 

iff a is odd or a, m are even. 
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CM .) <-•' 
iff a is odd or a, [~] are even. 

Proof. 

(i) The following obvious identity on binomial coefficients 

fam F b\ (am 

2 I V 2 , + a Ò m + (?) 
implies the assertion, 

(ii) as c = b (mod a) means b = aq F c, where o is a nonnegative integer, the 
assertion results from the case (i). D 

Theorem 3. Let a > 1,1 be any positive integers, b, m be any nonnegative integers, 
c = b (mod a), where 0 ^ c ^ a - 1. T/ien 

vJara-f & —• I ^ I (mod a) 

zjff a w O<iJ or 

Proof. With the use of (2), this becomes 

°iiam+b=a
amj:2 ( a m + y m + ^ - T ^ - ^ + ( a m + y 

The congruence 

a/3am+6 = [ 2 ) ( m 0 d a ) 

is true and the assertion is valid with respect to Lemma 3. D 

Corollary 1 of Theorem 3. Let a > I, I be any positive integers and b be any 
nonnegative integer. Then 

alZa(m+d) = Ql3am = 0 (mod a) 

iff a is odd or a, b are even. 

Proof. The assertion is a direct consequence of Theorem 3 where we put b = ad. D 

We can also formulate another special case of Theorem 3 when a is a prime. 

Corollary 2 of Theorem 3. Let I, m be any positive integers, b be any nonnegative 
integer and p be any odd prime. Then 

P | P 3pm+b 

iff 
b = 0 (mod p) or 6 = 1 (mod p) . 
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Theorem 4. Let a > 1 . n > 2 be any integers, I be any nonnegative integer. Then 

(i) 
a\°l+a-l3n $ o | n - l 

(ii) 

a | °'+13n iff a | x3„ • 

Proof. 

(i) As 
„ ( + 0 - u _ a n ( . + r ) n - n a ( . + l ) + n - l 

d n _ (al + a- 1)-

and (a(/ + 1) — l)2 = 1 (mod a) the assertion is valid, 

(ii) We can write 

o l + 1 (al + 2)" - n(al + 1) - 1 

(a/ + l ) 2 

Tï)î ( a S (")«П"ł"1«П-ł-< - anř + 2" - n - l) , (al + 

where (al + l ) 2 = 1 (mod a). Therefore the assertion holds. D 

4. The proof of Theorems 1 and 2 

Proof of Theorem 1. Let us consider these four cases. 
If k = 0 (mod 2) and n = 0,1 (mod 4) then Theorem 3, the part (ii), implies 
* 3 n = Q (mod 2). 
If k = 1 (mod 2) and n = 1 (mod 2) then Theorem 4 implies k$n = 0 (mod 2). 
If k = 0 (mod 2) and n = 2,3 (mod 4) then Theorem 3, the part (ii), implies 
kZn = 1 (mod 2). 
If k = 1 (mod 2) and n = 0 (mod 2) then Theorem 4 implies k2n = 1 (mod 2). 

Because the previous cases include all possibilities for the values of the numbers 
k and n the inverse implications are true. D 

Proof of Theorem 2. All cases can be proved in a similar way. If k = 0 (mod 3) 
then the assertion is a conclusion of Theorem 3. If k = 1 (mod 3) then 

3 , + 1 (3/ + 2)" - (3. + l)n - 1 
0 n (3/ + l ) 2 

l ^ (S"f QЗ--.Г-2- 3nl + 2 n - n ~ 1 
(3/ + 

As (3/ + 1)2 = 1 (mod 3) we obtain 3 * + 1 3 n = 1 3 n (mod 3) and the assertion follows 
from Theorem 5 of [1]. 

If k = 2 (mod 3) then the basic idea of the proof is the same as in the previous 
case. It leads to the congruence 3 / + 2 3 n = n - 1 (mod 3) from which the remaining 
cases are obtained. D 
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4, Remark on primality of kZn numbers 

The following theorem is the basis for our computer testing of the primality of the 
numbers k3n. 

Theorem 5. Let fc. n _• 2 be any positive integers. 

2 г)n <=>(kE E 0 (mod 2) Л n = 0,1 (mod 4)) V 

(fcs E 1 (mod 2) Л n = 1 (mod 2)) , 

3 
k2n <=>(k~ E 0 (mod 3) Л n = 0,1 (mod 3)) V 

(fcs E 1 (mod 3] Л n = 0,1 (mod6))V 

(fcs E 2 (mod 3) Л n = 1 (mod 3)) , 

5 •ón *=>(ks E 0 (mod 5) Л n = 0,1 (mod 5)) V 
(fcs E 1 (mod 5 Л n = 0,1,7,18 (mod20)) 

(fcs E 2 (mod 5) Л n = 0,1,3,14 (mod 20)) 

(fcs E 3 (mod 5) Л n = 0,1 (nюd 10)) 

(fcs E 4 (mod 5) Л n = 1 (mod 5)) . 

Proof. The proof is similar to the proof of Theorem 1 and Theorem 2. • 

The computer testing of the primality of the numbers k$n became more effective 
using Theorem 8. For example, if fc = 7 the conditions of the divisibility by the 
numbers 2, 3 and 5 lead to the fact that every prime in the form 7 3 n must be in 
the form 60a + r, where q is nonnegative integer and r = 2, 4, 8, 10, 16, 22, 26, 28, 
32, 38, 44, 46, 50, 52, 56, 58. 

Table 1. The list of indices of the primes *3n for fc = 1,2,..., 13 and n < 4500: 

k n 
1 4 10 14 16 26 50 56 70 116 2072 

2 3 6 11 30 167 626 1842 

3 14 458 3794 

4 3 38 47 llfc 130 3075 

5 18 528 3102 4254 

6 26 
7 4 10 278 452 
8 3 95 359 
9 2498 3302 

10 3 
11 6 
13 4 16 256 374 
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