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Sequence transformations and linear recurrences of 
higher order 

Ferenc Mdtyds 

Abstract: Let fc>2 and d>\ be given integers and denote by {G n}* so a fc-order recursive 
sequence of integers, ln the paper some sequence transformations of {Gn + d /G„ }£°=0 are 
investigated. 

Key Words: linear recurrence, characteristic polynomial, dominant root, sequence transfor­
mation, quicker convergence 

Mathematics Subject Classification: AMS Classification Numbers: 11B39, 65B05 

1. Introduction 

Let k,Ao,A\,... , Afe_i be given integers with Ak-\ ?- 0 and k > 2. A linear 
recursive sequence { G ^ ^ Q of order k is defined by the recursion 

(1) G n + i = A0Gn + A\Gn-\ + • • • + Ak-\Gn-k+i (n>k- 1), 

where the initial terms G o , G i , . . . ,Gk-\ are fixed integral numbers with |Go| + 
|Gi| + - - - + | G * - i | / 0. In the special case k = 2, G0 = 0, G\ = 1 andAg + 4A i > 0 
the terms of the sequence (1) will be denoted by Un, if A0 = A\ = 1 also holds, 
then we get the well-known Fibonacci numbers F n . 

The polynomial 

(2) p(x) = xk - Aoxk~l - A\xk~2 Ak-2x - Ak-.\ 

is said to be the characteristic polynomial of the sequence {Gn}n i : 0 , the roots of 
the equation p(x) = 0 are denoted by e^ 's (1 < i < k). In the sequel we suppose 
that the root a\ is simple and of the largest absolute value, that is | a i | > |cY2| > 
. . . > |afc| > 0 and the multiplicity of a\ is 1. According to the literature, a\ is the 
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dominant root (see, e. g. [7]). Denote by mi the multiplicity of the distinct a; 's 
z 

U < 2 < /, _2 mi ~ ^)- Then the Binet-formula for the term Gn is as follows 

(3) Gn = aa^-hp 2 (n)a 2
1 -f-p3(n)ar

3
l -F • • • +pz(n)a | \ 

where the degree of the polynomial p t (2 < i < I) is less than m* (see, e. g. [7]). 
The constant a and the polynomials pi belong to the ring Q(c*i, a 2 , . . . , ai)[x] and 
we suppose that the initial terms are chosen such that a ^ 0 in (3). 

Let {X^^^LQ be a convergent sequence of real numbers with lim xn = x. 
n—>oo 

Consider a sequence transformation T of {xn}^L0 into the sequence {Tn}£l0 , which 
converges to the same limit x. We say that {Pnj^o converges quicker than {xn}^L0 

if 

lim !±Z±=o, 
n—>oo Xn — X 

while if this limit is equal to 1, then the two sequences are said to be asymptotically 
equal. 

In this paper we deal with the shifter ( 5 ( s ) ) ~ , the multiplier (Af(m))- and the 
Aitken (A) transformations of {xn}^L0, which are defined as follows 

(4) A(Xn) = - *n-XXn+X-xl_ ^ > J}> 

Xn—i ZXn -}- «Tn+l 

(5) 5 ( s ) (x n ) = xn+s (I < s fixed integer), 

(6) M{m)(xn) = x m n (1 < m fixed integer). 

Naturally, we suppose that division by zero never occurs in (4). 

2. Preliminaries and Results 

At first G. M. Phillips [6] proved that if r n = - ^ then A(rn) = r2 n . This result 

was generalized by J. H. McCabe and G. M. Phillips [4] for rn - ^ ± i , while by 

M. J. Jamieson [2] for r n = -j^- (d > 1 integer). J. B. Muskat [5] proved -

among others - that A(rn) = r2 n if r n = - g ^ , from which the quicker convergence 

obviously follows. Z. Zhang [8], [9] and F. Maty as [3] proved similar results for a 

generalized class of the linear recurrences of order 2. R. B. Taher and M. Rachidi [7] 

{ G 1 °° Qfl- > and they stated 

- without exact proof - that the sequence I A I - ^ ± L ) \ converges quicker than 

f G 1 °° ~ 
{ - ^ ± i > . But, for a correct proof they would have needed stronger conditions 
I Un )n=o 

in their Proposition 3.1 in [7] (see the right conditions in (7), (8) and the counter­
example after the proof of Theorem 2). 
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The aim of this paper is to investigate the acceleration of the convergence of the 
f G 1 °° 

sequences obtained from < ^d > (d > 1 fixed integer) by the transformations 
g(s) ̂  y\/f (™) a n c i A . In the following theorems we always suppose that for the distinct 
roots of (2) 

(7) | a i | > \a2\ > | a 3 | > | a 4 | > • • •> |a2 | > 0 

or 

(8) if | a 1 | > | a 2 | = |a 3 | = --- = | a t | > K + 1 | > . . . > | a / | > 0 (3 < t < /), 

then among the polynomials p2) p-$, . . . , pt in (3) the polynomial of maximal 
degree uniquely exists. 

Now we formulate our theorems. 
Theorem 1. The sequence {5^s^(Gn+(i/Gn)}n

<^ :0 does not converge quicker to the 
same limit af than the sequence {Gn-hd/G^^-o and the two sequences are not 
asymptotically equal. 

Theorem 2. The Aitken sequence transformation of {Gn+d/Gn}^^ converges 
quicker to the same limit af than {Gn+d/Gn}^^-

Remark. The relations (7) and (8) show that only the existence of the dominant 
root a\ likely is not a sufficient condition for Theorem 2. 

Theorem 3. Let 1 < m i < m2 be fixed integers. The sequence 

{M<"^(G n + d /on)}~ = 0 

converges quicker to the same limit af than 

{M^iGn+d/Gn}^. 

3. Proofs 

Firstly we mention two lemmas. 

Lemma 1. Let a\ be the dominant root of (2). Then 

r Gn+d d 
lim — — = a f . 

n >-oc (jrn 

Proof. According to (3), 

a < + d ( l + i X > ( n + rf)(t)"+d) Gn+d 
Gn 

^ ( l + i É p i ( n ) ( t ) n ) 
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which implies that lim ( % - - ) = a? (since U - < 1 for 2 < i < /). 
n—yoo \ Gn J IV |ai I - - ) 

We mention that Gn / 0 if n > no, thus - shifted the indices - we can suppose 
that Gn ?- 0 for all n > 0. 
Lemma 2. Let {xn}n

<L0 be a sequence of real numbers and lim xn = x. If 
n—»oo 

lim !̂!4"_~'C' = p "- 1, then { ^ ( x n ) } ^ ! converges quicker to x than {xn}n
<i:0. 

n — • oo n 

PrOOf This is a result from [1], see Theorem 32, p. 37. 

Proof of Theorem 1. By (5) {S^(Gn+d/Gn)}^0 = {Gn+d+s/Gn+s}^=0, which 
- by Lemma 1 - tends to af as n —. oo. Using (3), one can get that 

i(s) .__ Gn + d+s/Gn+s ~~ a \ _ Gn+d+s ~ Gn+s®\ Gn Cís> : = 
Gn+d/Gn ~ a\ Gn+d ~ Gna1 Gn+S 

_ {pг(n + d + S ) a n + d + s - Pi(n + S ) Q Г S Q ? ) _ 
t=2 Ľ n 

_ (pг(n + d ) Q " + d - P t ( n ) Q " Q f ) G П Ч 

ѓ=2 

p 2 (n + d + _ ) - P 2 ( n + S ) ( ^ ) d + É ( ^ ) " + S (p г (n + d + s ) ( ^ ) d - p г ( „ + s ) ( ą i ) 

d ř 

t=3 

a n + d + s G n 

p2(n + d ) - p 2 ( n ) ( ^ ) d + ' : ( ž . ) n ( p ^ + d)(ž.)< Í-p í(n)(^) 

Q " + d G n + S ' 

If I = 2, then lim Cis) = 1 • a? • -}- = ( W , which ^ 0 and / 1 since | Q I | > 
n .OO 1 \ a - / 

| a 2 | > 0 . 
If / > 3 and the condition (7) holds, then lim Cn = 1 • a? • -_7 = f „* ) , which 

V ' ' n—.oo " Q i \ a - / ' 
differs from 0 and 1. 
If / > 3, the condition (8) holds and the polynomial pj is of the largest degree 
among p 2 , p 3 , • • • ,Pt (3 < t < /), then Jun^Cn

s) = ^ J a8
2 • -^ = (fj-J , which 

7̂  0 and ^ 1. This terminates the proof. 

Proof of Theorem 2. By Theorem 1 - in the case 5 = 1 - the limit 

r Gn+d+i/Gn+i — ax 

n—+oo Gn+d/Gn - af 

exists and differs from 1. Apply Lemma 2 for {X^J^LQ = {Gn+d/G^^o a n ( ^ ^he 
desired result immediately follows. 

Connected to the Remark we show that if (8) holds and the polynomial pj of 

maximal degree does not exist uniquely, then the limit lim n+d+1
 ln

n+l~d
OLl m a y 

n .OO ^n+d/^n — Otl 
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not exist, and so Lemma 2 can not be applied. Consider - as a counter-example -
the third order linear recursive sequence 

G;+1 = 2G; + G;_ 1 -2G;_ 2 (n>2), 

where Gj$ = 1, G* = — 2 and G*. = 4. The characteristic polynomial is p*{x) = 
x3 - 2x2 - x + 2, the roots of P*(x) = 0 are a* = 2, a*, = 1 and a*. = - 1 . The 
actual form of (3) is as follows 

G n = 2 n - 2 - l n + 2 ( - l ) n ( n > 0 ) . 

Let e. g. d = 1, then 

G n+d+l / G n+l - -* _ I V " 
Gn+d/Gn~2d I ( 2 ^ 2 - 4 ) / 2 ^ 1 - 2 . 1 :f „ __ O f , 1 . ^ 

I 2-41/(2n-4)-2 > "4> ^ n = 2f + 1 —+ CO. 

This implies that Lemma 2 can not be applied for the sequence {Gn+1/Gn}n
<L0. 

One can verify with e. g. the MAPLE program-package that, unfortunately, the 
sequence 

{A(G*n+1/G*n)}%L0 

does not converge to 2, although naturally lim (G* • i/G*) = 2. This shows that 
n—»oo 

the existence of the dominant root is not always a sufficient condition for the quicker 
convergence. 

Proof of Theorem 3. Let in (6) xn = Gn+<//Gn. Then 

{ M ( m ) ( G n + d / G n ) } £ L 0 = {Gmn+d/Gmn}^^' 

By Lemma 1, the sequences {G m i n + ( _/G m i n }£L 0 and {G m 2 n + d /G m 2 n }£L 0 tend to 
af as n tends to infinity. Using (3), we get that 

ji/f(mi, mz) ^m2n+d!/Lrm 2 n QL\ (jrrri2n_j_cj[ L\1Cjrrn2n v r m i n 

O^min+d/^rnin ~~' &i ^ m i n + d ~ ^ i ^ m i n Crm2n 

£ (pi(m2n + d ) a ^ n + d - pi(m2n)ani2naf) aa"11" + £ ^ ( r m ^ a ™ 1 " 
t=2 V ' t=2 

É ( f t í m m + d )a" l l " + d - P i ( m i n ) Q r i n a í ) aa™ + £ Pi(m2n)a™*n 

(=2 V ' t=2 

On É ( š j ) " 1 " íft(m2n + á) ( * ) ' -Pi(m2n) ( & ) (mг-mi, 
«2 \ i=2 

c*i/ ' lft.Л
miП 

г=2 
E føГ г ft(™m + d) (* ) -ft(mm) (fj)' 
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lÍMrnin)^ 1 + 
i=2 

1 / \m2Tl 

i + iEf tMfe 
i=2 v y 

Discuss the same cases as we have done in the proof of Theorem 1, then using 
the inequality If1! < 1 (2 < i < /) , one can obtain that 

Urn M7
( m i 'm 2 ) - 0 , 

n —> oo 

that is the statement of the theorem has been proved. 

Concluding remarks 1. It can be seen that our theorems are valid if the sequence 
{G^n^o consists of real or complex element. 

2. Numerical examples show that in general A(Gn+d/Gn) 7- M^(Gn+d/Gn). 
But it would be worth investigating whether the sequences 

{A{Gn+d/Gn)}^=0 and {M^(Gn+d/Gn)}^=0 

are asymptotically equal or not. Similar questions arise with the secant- the 
Newton- and the Halley transformations of the sequence {Gn+ti/Gn}n

<i : 0 , which 
may be the subject of further investigations. 
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