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Some remarks on iterative methods for systems of 
linear equations 

Jarmila Šotová 

Ivana Horová 

Abstract: The aim of this paper is to study the periodicity in iterative methods for solving 
systems of linear equations. The problem of the periodicity in an iterative process for a 
nonlinear equation has been investigated for example in [6], [9] and many others. 

We briefly describe the behaviour of an iterative sequence from the point of view of con­
vergence and explore in detail the periodicity in this sequence. Necessary and sufficient 
conditions for occurrence of the periodicity will be given. The periodic sequences gen­
erated by an iterative process possess an interesting geometric property. This geometric 
representation will be also given. 
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Consider a system of linear equations of the form 

Ax = b, (1) 

where A is an n x n real matrix and b is a real column vector of order n. We shall 

assume that A is nonsingular, so that (1) has the unique solution 

x = A~l b. (2) 

We will be dealing with iterative methods to approximate x. Consider the system 

x = Tx + g (3) 

which is equivalent to the system (1) and T is an n x n real matrix, g is a real n 

vector, i.e., x = Tx+gix = (E — T)~lg, under assumption (E — T)"1 exists. 

Let x° be an initial approximation and let a sequence {xk} . k = 1,2, . . . , be 

generated by the formula 

xk+l =Txk+g; (4) 
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the matrix T is often called an iterative matrix. Let us summarize well-known 
results. The main convergence theorem reads as follows: 

Theorem. The iterative method (4) converges to the solution x = A l h of (1) 
for each x° if and only if p(T) < 1 (p(T) denotes a spectral radius ofT). 

The proof can be find in any basic book on numerical analysis. It is clear that 
the iterative sequence is divergent whenever p(T) > 1. 

Now, we focus our attention to the case p(T) = 1 and we will give a geometric 
representation of the corresponding iterative sequence. Consider the system (1) 
and let (4) be an associated iterative process. 

Definition. Let {&k}k:=0 be a sequence generated by (4) with an initial approxi­
mation x° i=- x. The vector x° is said to generate a cycle of order p, PEN, p ^ 2, 
if xp = x° provided that xk ^ x°, k = 1,2,... ,p — 1 ( i.e., p is the least number 
satisfying this relation). 

Theorem 1. Each initial approximation x° 7- x generates a cycle of order p if 
and only if 

Tp = E (5) 

where E is the n x n identity matrix. 

Proof. Let x° be an initial approximation. The application of the formula (4) gives 

xk = Tkx° + (T*-1 + . . . + T + E) g. 

The systems Ax = b, x = Tx + g are equivalent so that (T — E)x = -g and 
hence for k = p 

xp _ TPXO _ ( j p - i + . . m + T + E) (T - E) x, 

which gives 
XP = TPXO „ (Tp _ E j 2 ( 6) 

I. Let (5) hold. Then (6) implies xp = Tp x° => xp = x° and xk ± x° for 
1 ^ k <^p- 1. 

II. Let an arbitrary initial approximation generate a cycle of order p. From 
(6) it follows 

(Tp-E)(x°-x)=o. (7) 

Now the initial approximation x° can be chosen in such a way that x° = x + x, 
where x is an arbitrary vector. It means that 

(Tp-E)x = o 

for any vector x, i.e., the matrix Tp - E has to be a null matrix. D 

Diagonable matrices will play an important role in our further considerations. 
Now, we introduce the definition and some properties. 
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Definition. A square matrix A of order n is called diagonable, if there exist a 
nonsingular matrix U and a diagonal matrix J of order n such that 

A = UJU~l, 

J = diag(\\,..., An) and Xi are eigenvalues of A. 

Some other characterizations of such matrices are known. 

(8) 

Theorem 2([7]). Let A be a square matrix of order n. The following statements 
are equivalent: 

(i) A is diagonable. 
(ii) All Jordan blocks are matrices of order 1. 
(Hi) Rank of A — XE equals n-m for each eigenvalue X of A with multiplicity m. 
(iv) There exists a system of n linearly independent vectors each of which is an 

eigenvector of A. 

In terms of diagonable matrices the main theorem reads as follows: 

Theorem 3. The identity Tp — E holds if and only if T is diagonable and all 
eigenvalues Aj, i = 1, . . . , n, of T satisfy 

A? = l 

( p is the least natural number satisfying these conditions ) . 

Proof. Consider the Jordan canonical form of T: T = UJU~l. Then Tp = UJpU~l 

and Tp = E if and only if Jp = E and thus this identity can be only investigated. 
I. Let T be diagonable and Xp = 1, i = 1,... ,n, for a natural p. According 

to the theorem 2 Jordan blocks are matrices of order 1, i.e., 

0 
0 

A 2 

\ o o 

0 

\nj 
Hence 

Jp = diag(\p,\l...1\
p

n) = E 

for Xp = 1, t = 1,.. . ,n by our assumption. This implies Tp = UJpU~l 

II. Now let Tp = E and let the Jordan canonical matrix J 

E. 

/Ли(Ai) 0 0 

0 Л 2 (A 2 ) 0 

V o 

\ 

•7n.(A.)1 
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where 
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A 
<1 

JnA\j) = 

ЛJ 
0 1 

0 

0 

A, 

V o o o 

0 0 \ 
o o 
o o 

1 XjJ 

]C*==i nj — n> nj ^ 1 for j = 1 , . . . , 5. T h e n 

(J£Mi) o o 

0 J n
p (A 2 ) o . . 

j p = 

0 \ 

0 

V o Ù 0 . . . J n
p ( A s ) / 

Put Jnj (Xj) = Nnj + Xj Enj, where Enj is the rij x rij identity matrix and Nnj 

^ • ( 0 ) , jf = 1, . . . ,5 . Then 

^ ( A ^ Ž Q A Г X , 

and all t e rms with i ^ n ; are null matr ices because Nn. — O for i ^ n^-. Applying 

this expression t o the p-th power of Jnj(\j) we obta in 

(?) AГ * 

JЏ*j) = 

0 

(ŠK 

0 \ 

o 

( V \ \P-nj+2 ( p \ v p - n T 3 
\tij-2J Áj \nj-3) Áj 

i / p \ x p - n j + l / p \ x p - n i + 2 
VVn.-J Aj \nj-2J Áj 

ß)AJ 0 

(ľ^Г1 (S)A?j 

According t o our assumption Tp ^ E which is equivalent to J? = E and t h u s 

J n

p ( A j ) = £ n j , j = l,2,...,s. 

Whenever rij > 1 for a block Jnj (Xj) it would imply 

Ap = 1 and Ap-* = A p _ 2 = • • • = ^ ^ = 0, 
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which leads to the contradiction. This concludes the proof, i.e., T is diagonable 
and Af = 1, i = 1,2, . . . , n. D 

We are now in a position to give necessary and sufficient conditions for existence 
of a cycle in an iterative method. The following theorem summarizes the preceding 
results. 

Theorem 4. Let {x*}'o° be a sequence generated by an iterative process x^1 = 
T xk+g, k = 0,1, The cycle of order p is generated by any initial approximation 
if and only if 

(i) T is diagonable 
(ii) for each eigenvalue Xj of T there exists a natural number pj such that 

Af = 1. 

The order of the cycle is defined as the least common multiple of all p,s. 

Remark. Here pj is the least exponent satisfying the given equality 

The existence of a cycle of the Jacobi iterative method is analysed in the following 
example. 

Example. Consider the system 

xi - x2 - x3 = - 4 , 

X\ + x2 + xs = 6, 

£i -x3 = - 1 . 

The true solution x = (1,3,2)T . The Jacobi iterative process takes the form 

xk+i =Txk+Qi 

where 

\ 1 0 0 

Let x° = (2,4,3)T . Simple calculation gives 

x = 

There is a hypothesis: Does any initial approximation generate a cycle of order 
6? Let us check up whether the assumption of the theorem 4 are satisfied. The 
characteristic equation of T takes the form 

A3 + 1 = 0, 

i.e., the eigenvalues of T are Ai = - 1 , A2,3 = e±l $. The Jordan canonical matrix 
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-1 í) 0 
0 e г * 0 

ü І» e-{ 

is a diagonal matrix. Further A'f = 1, A2 3 = 1. The least common multiple of 
p\ = 2 and p2,3 = 6 is p = 6. According to the theorem 4 there is a cycle of order 
6 for any initial approximation. Our hypothesis was correct. 

Remark. With respect to the fact that x = T x -f g is equivalent to the system 
Ax = b with A nonsingular, it is evident A = 1 cannot be an eigenvalue of T. 

Corollary 1. Let the iterative formula xh+1 = T xk -f g, k = 1,2,... , generate 
a cycle for any initial approximation x°. Then p(T) = 1. 

Remark. The fact p(T) = 1 does not mean that there exists the cycle in the given 
iterative process. This condition does not guarantee a diagonality of the Jordan 
canonical form. This fact is illustrated by the following counter example. 

Example* Consider the system 

x\ -f 2«r2 = 3, 

2x\ -f 3 x 2 = 5 

and let the equivalent system take the form 

x\ = 3xi -f 4x 2 - 6, 

x2 = — ix\ — 5x 2 -f 10. 

The eigenvalues of T are Ai)2 = — 1, which means p(T) = 1. But the Jordan 
canonical matrix 

- 1 0 ~ 

x 1 - 1 

is not a diagonal matrix. 

Remark. Let T be the Gauss-Seidel iterative matrix. It is clear this matrix is 
singular (all entries of the first column are zeros). Then there is the eigenvalue 
A = 0 and any cycle cannot occur for an arbitrary initial approximation. But, for 
example, for a matrix of order 2 a cycle of order 2 can appear but with the initial 
approximation T x° instead of x°. 

Now we will draw our attention to a geometric representation of cycles. In order 
to describe the behaviour of the periodic sequence let us extend our considera­
tions to the vector space V^ of complex n vectors. As usual a vector x G V^can 
be expressed by means of the natural basis *8n. This basis is formed by vectors 
e\ = (1 ,0, . . . , 0 ) T , . . . , e n = (0 , . . . , 0,1) T and then 



Some remarks on iterative methods for systems of linear equations 81 

x = x\ ei H h :c ne n , 

where Xi € C, i = 1 , . . . , n , are coordinates of a: with respect to <Bo — {ei, • • •, e n } . 
It is evident that in our preceding considerations these representations of real vec­
tors , Xi € R, i = 1 , . . . , n, have been used. A scalar product of vectors x , y £ V^ 
is defined as usual by 

n 

(z ,y) =Y^xiVi - 2 / * z . y* =yT 

І = I 

and the corresponding norm 

11*11= \/(*5a0-
Let us assume the existence of a cycle of order p for the iterative method xk+1 = 
Txk-\-g. Thus T is diagonable and according to the theorem 2 there exists a system 
of n linearly independent vectors each of which is an eigenvector of T. This system 
forms the so-called a canonical basis in V^ and is denoted by 93v. If T = U JU~l 

then the columns of U represent the <BV basis. Let *BV = {v\,... ,vn} and x<sv 

denote the vector expressed with respect to the *BV basis. 

Remark. For the sake of simplicity we omit the index So denoting a vector ex­
pressed with respect to the <B0 basis. 

Let us recall an important result from linear algebra ([2]): If the matrix A defines 
a linear map (p with respect to the 03^ basis, then an arbitrary matrix C similar to 
A, C = Q AQ~l, defines the same linear map in the 03c basis. The matrix Q is 
called a transition matrix between the 03^ basis and the 93c basis. 

Let us come back to our problem. If T = U JU~l then U is the transition matrix 
between the ©o basis and the 03v basis. This means 

x = Ux<&v. (9) 

The system (3) can be rewritten in the form 

x - x = T(x - x) (10) 

and then the corresponding iterative process takes the form 

x* + 1 -x = T(xk-x). (11) 

With respect to (9) the iterative process (11) can be written as 

^ ( a ^ 1 - 2 * J = TU(**V ~ x*v) (12) 

and hence 

„*+i X<£v = J{x%v ~ŽQ3V) 

or 

a4„ - ž » » = J (xъv ~ ž æ J - (13) 
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Lemma. Let an iterative process xk+l = T xk + g, k = 0 , 1 , . . . , be given and 
the assumptions of the theorem 4 are satisfied. Let x° £ V^ generate a cycle of 
order p. Then all iterates {x^v — -E<B J > 0 ̂  k ^ p, have a constant norm equal to 

\\x*v ~x^v ||. 

Proof. The straightforward calculation gives 

II*&„ - £»„ II2 = 0 4 . - x^vy(jkyjk(x%v - £<BJ = 

= (x%v - X* JMiagf lAi l* , . . . , |A n | f c }(^ v - * * J = 

= | | x ^ v - X < B | |2 , k = 0. l , . . . , p . 

for |Aj| = 1, i = 1 , . . . ,n. D 

Now we are able to describe the geometric properties of vectors xk, k = 0 , . . . ,p. 
With respect to (9) the identity 

|| x^v - x<&v || = II x%v - 2 » J | , k = 0,...,p 

means that 

\\U~l(xk-x)\\ = \\U~1(x°-x)\\. 

Now lef us investigate the set of vectors x 6 V^ satisfying 

H W - ^ x - S J I ^ a , a = | | W - 1 ( ^ ° - x ) | | . (14) 

Putting 1Y"1 = V, V* — V and taking the definition of the vector norm into 
account we obtain from (14) 

(x-x)* V*V(x-x)=a2. (15) 

The matrix W is a positive definite matrix and the left side of (15) is a positive 
definite quadratic form. The sequence {xk — x}p

k=0 is generated by a real initial 
approximation x° and all vectors {xk — x}^=0 are real vectors. Then it is sufficient 
to investigate (15) only for real vectors x — x. Hence 

(x - x)T W(x -x) = a2, a2 = (x° - x)T W(x° - x). (16) 

With respect to the fact IV is the positive definite matrix the equality (16) can be 
considered as the equation of the n-dimensional ellipsoid with the center at x. 

The above considerations and results can be summarized in the theorem 
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Theorem 5. Let the iterative process xk+l — Txk -f g} k = 0 , 1 , . . . satisfy the 
assumption of the theorem 4- Then all iterates {xk}^__0 belonging to the cycle of 
order p lie on the ellipsoid surface (16). 

Remarh. If a systém Ax — o is given, then the ellipsoid (16) is a centrál ellipsoid. 
Detailed geometrie considerations from the point of view of the analytic geometry 

are given in [10]. 

In conclusion we will give an example illustrating eyeles generated by a relaxation 
method. Consider a systém 

Xi + x2 = 1, 

qx\ + x2 = 1. 

The relaxation method for this systém can be described by the matrix Tu and the 
vector bu: 

(1 — UJ) —UJ 
UJ 

/i \ 2 , /i v > 0w — I CJ - qoJ2 

-quj(l-uj) qujÁ 4- (1 - u) l 

where o; is a reál parameter. The necessary condition for the convergence of the 
iterative process 

xk+l=Tux
k+g» (17) 

is given by the requirement LÚ € (0, 2). 
For UJ — 1 the relaxation method coincides with the Gauss-Seidel iterative 

method. 

It can be proved ([10]) that there is a cycle of order p > 3 generated by relaxation 
method if and only if 

i) u = 2 , 
H) 9 6 ( 0 , 1 ) , 
iii) the eigenvalues of Tu are X\^ = e±lifi , <P ~ 27T5, 0 < s < ~. 

Let these assumptions are satisfied and let us compute the equation of the ellipse. 
For UJ = 2 the matrix Tw takés the form 

T«=(t ^ - l ) ' (18) 

The eigenvalues of Tu are given by the relations 

Aif2 = -l + 2q±2y/q(q-l). 

With respect to the fact that q G (0,1) the eigenvalues Ai^ are complex conjugate 
numbers, Le., 

Ai,2 = -l + 2q± 2iy/q(l-q) (19) 
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and |Ai>2| = 1. The eigenvectors of Tw are the columns of the nonsingular matrix 
U in the decomposition 

Tw =UJU~l. 

It can be easy shown that the vectors 

u = . rrr—T , v = ~q - i\/q(\ ~ q) j ' l -q + i>/5(í ~ 5) 

are the eigenvectors corresponding the eigenvalues Ai = — 1 + 2q + 2iy/q(l — q) and 

A2 = — 1 + 2q — 2iy/q(\ - q) respectively Hence the matrix 

( l l 

u = 

and 

q-iy/q(l-q) -q + iҳ/q{l - q) 

q + iy/qЂ -q) - ť 
l = 

Wя(i-q) 1 - + Wq(i-q) i 

UU-i = V, V* = V T then W = V V takes the form 

(2q 2q 
W = 

\2q 2 

Now the equation of the ellipse is given by 

(x - x)TW(x ~x) = (x° - x)TW(x° - x). 

In our case the true solution x = (0,1) T and then 

2 
(X ~ X)T W(X — X) = Y ^ Wij(Xi — Xi)(Xj — Xj) = 

i,j=l 

= 2qx\ + 2x2 + \qx\x2 - 4x2 - Aqx\ ~ 2. 

Thus the equation of the ellipse is of the form 

2qx\ + 2x\ + \qxxx2 - 4x2 - 4qxx - 2 = 2q(x°1)
2 + 2(x°2)

2 + 4qx\xl - 4x°2 - 4qx°x - 2 

and hence 
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x 2 + _l + 2xiX2 __^l_2xi_ ( _ ? ) 2 + ____ 
q q q 

Zi'X>) 

a x 2 2x\. (20) 

Remark. The eigenvalues of T_, given by the relation (18) can be also expressed in 
the form 

Ai,2 = cos<D ± i sin <p. 

The comparision with (19) yields 

q= -{l + cosíp). (21) 

It is clear that the cycle of order p exists if and only if \p = 2-nl/p, 0 < / < p/2 . 
Now, the relation (21) enables us to find a system generating the cycle of the given 
order p > 2 by a suitable choice p, /. 

Let UJ = 2 and XQ = (0,0)T , then 

- for q — 0.5(1 4- cos 27ry\) = 0T7257 there exists the cycle of order 11, 

- for q = 0.5(1 + COS2TT|§) = 0.578217 there exists the cycle of order 40. 

These cycles are illustrated in Fig.L 

т-% 
••r ч-t-

0=11 

•••i *....« 

fb: 

•--H 

*-+-+•-r 

0=40} 

-f"|-|-t 
Чf-f-4-i-t 

_____Я<_ • + • * 

^ t ш 

FiG.L The cycles of orders 11, 40. 

For various choice of an initial approximation a set of concentric ellipses is ob­
tained (see Fig.2, where q = 0.5(1 + cos27r-j) = 0.17257 and initial approximation 
are (0,0), (3,3), (4.5,4.5), (6.5,6.5)). 
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F I G . 2 . The set of concentric ellipses for various initial 
approximations. 
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