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Inner Prodoct in l-Grotips 

Bohumil Sm,arda 

Abstract: We investigate a new conception of an inner product on lattice ordered groups. 
The inner product is motivated with a scalar product of vectors in vector spaces. Basic and 
characteristic properties of the inner product are described. 

Key Words: inner product, lattice ordered groups 

Mathematics Subject Classification: 06F15 

A scalar product of vectors has a basic part in the theory of vector spaces. Vector 
spaces together with lattice ordered groups (briefly 1-groups) form vector lattices 
(see [1]). Let us investigate in this paper so called an inner product on 1-groups 
that is motivated with the scalar product of vectors without using of the structure 
of vector lattices. 

1. Motivation. The formula (u,v)= | | u / 2 + v / 2 | | 2 - | | u / 2 - v / 2 | | 2 holds for the scalar 
product of vectors u,v from a real vector space. If we rewrite the right side of 
this formula for vector lattices (which are abelian 1-groups) similarly such that we 
substitute ||u||2 (i.e., the square of the lenght of the vector u) with |u| =uV—u (i.e., 
the absolute value of u) then we obtain | u / 2 + v / 2 | - | u / 2 - v / 2 | = [ (u/2+v/2) V 
V - ( u / 2 + v / 2 ) ] - [ ( u / 2 - v / 2 ) V - ( u / 2 - v / 2 ) ] - { [ ( u / 2 + v / 2 ) V ( - u / 2 - v / 2 ) ] + (v/2 
~u /2 )} A {[(u/2+v/2) V ( - u / 2 - v / 2 ) ] + ( u / 2 - v / 2 ) } = (vV -u) A (uV-v) . 

Now we can define an inner product of 1-groups. 

2. Definition. Let (G, +, V, A) be an 1-group and x,y G G. Then an inner product 
x.y of elements x,y is x.y = (x V —y) A (y V —x). 

We want to analyze the inner product without the assumption of commutatitivity 
of an 1-group G. 

3. Remarks. 1. We have x.x > 0, x.y = y.x and x.x = 0 & x = 0, for x, y G G. 
2. K. L. M. Swamy [4] and T. Kovaf [3] investigated so called autometrics in 

a commutative 1-group G. The standard autometric has the form p(x,y) = \x — y|, 
for x,y G G and it is in connection with the inner product such that p(x,y) = 
= (x-y).(x-y). 
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3. No unit element e exists in an Vgroup G with respect to inner product. 
Namely, if x = x.e = (x V —e) A (—x V e) = (x A —x) V ( —e A —x) V (x A e) V (—e A 
A e) then — |e| < x, for any x € G. That is a contradiction with the fact that the 
smallest element does not exists in G. 

4. Proposition. If G is an l~group and x,y,z £ G then it holds: 
a) x.y > x A y, \x\.\y\ = |x| A \y\, 
b) \x\ = x.x, — |x| = x.(—x),x.|x| = x. 
c) x+ .x"' = 0,0.x = x.0 = 0., 
d) —z + x.y + z = ( — z + x + z).( — z + y + z). 

Proof. a),b) follow directly from the definition 2. 
c) We have x + .x~ = (x+ V -x~) A (x~ V - x + ) = x~ V - x + = - ( x + A —x~~) = 

= 0, 0.x = (0 V - x ) A (0 V x) = x + A -x~ = 0 and x.0 = 0 similarly 
d) -z + x.y + z = -z+ [(x V -y) A ( - x V y)] + z = [(-z + x + z) V (~z - y + 

+ z)] A [(-z + y + z)V (-z -x + z)] = (-z + x + z).(-z + y + z). 

5. Lemma. Let G be an l-group and x,y 6 G. Then 
x + y = (x V y) + (x A y) <-> (-x + y)+ = (y - x ) + . 

Proof We have (x V y) + (x A y) = [2x V (y + x)] A [(x + y) V 2y] and thus x + y = 
= (xVy) + (xAy)<->0 = -x + {[(2xV(y + x)]A[(x + y)V2y]}-y = [ ( x - H ) V ( - x + 
+ y + x-y)]A[0V(-x + y)] = {[0V (~x + y)\ + (x-y)} A[0 V ( - x + H)] = [0V( -x + 
+ y)] + [0A(x-H ) ] = ( - x + y ) + + ( x - H ) ~ <^ ( - x + u)+ = - ( x - H ) ~ = ( H - x ) + . 

6. Proposition. I/ G is an l-group, x,y £ G and (x + H)~ = (u + x)~ t/ren \x-y\ = 
= |x| V \y\ — x.y holds. 

Proof. The proposition N,[2],p.H3 implies that |x| V \y\ - x.y = (x V -y) V ( - x V 
VH ) - [ (xV-H )A( -xVH ) ] - \(xV-y)-(-x\fy)\ = \(x V -y) + (x A -y)\ = \x-y\. 
Namely, ( - x - H)+ = (-y - x ) + and we have x - y = (x V -H) + (x A —y), see 
Lemma 5. 

7. Proposition. If G is an l-group andx,y € G £/ien |x.u| = |x|A|H| = |x|.|H| holds. 

Proof We have \x.y\ = [(x V -y) A ( - x V y)] V - [ (x V -H) A ( - x V y)] = [(x V -y) A 
A(-xVu ) ]V[ ( -xAH )V(xA-u ) ] = ( x A - x ) V ( x A H ) V ( - t / A - x ) V ( - u A 2 / ) V ( - x A 
Ay)V(xA-y) = ~\y\V-|x|V[xA(HV-H)]V[-xA(:yV-H)] - -(|x|A|u |)V(xA|=y|)V 
V(-xV|u | ) - -(|x|A|H |)V[(xV-x)A|H |] = -(|x|A|H |)V(|x|A|H |) - |x|A|H| - \x\.\y\, 
see 4.a. 

8. Corollary. If G is an l-group and x,y G G tfien -(x.y) = x.(-y) = (-x).y hold. 

Proof. First, (-x).y = (-x V - y ) A (x V u) = x.(-y) and further (-x.y) = (~x V 
V -H) A (x V H) = (x A - x ) V(yA - u ) V ( - x A y) V (x A -H) = - | x | V -\y\ V - [ (x V 
V -y) A (y V -x) ] = ~( |x | A |H| A x.y) = ~(x.y) hold. 

Recall, that elements x,y of an l-group G are orthogonal when |x| A \y\ = 0. Let 
us denote x5y. 
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9. Corollary. Let G be an l-group and x,y G G. Then it holds: 
L Elements x,y are orthogonal if and only if x.y = 0. 
2. If G is commutative then x.y = 0 <^ |x| + \y\ = |x + y\ = \x — y\. 

Proof. The part 1. follows immediately from the proposition 7. 
2.=>: Propositions 6. and 8. imply |x + y\ = \x — (~y)\ = |x| V | — y\ - x.(—y) = 

= |x| V \y\ + x.y = \x\ V \y\ and also |x — y\ = \x\ V \y\ — x.y = \x\ V \y\ = \x\ + \y\. 
<=: Similarly, we have |x| V \y\ — x.y = \x — y\ = \x + y\ = \x\ V \y\ + x.y and thus 

2(x.y) = 0 and x.y = 0, because G is a torsion free group. 

10. Proposition. Let G be an l-group and x,y G G. Then for the following propo­
sitions 

(i) x.y < 0, 
(ii) x Ay < 0 < x V y, 
(Hi) xAy<x + y<xVy, 
(iv) \x — y\ > \x + y\, 

it holds (i) ^ (ii) <£> (Hi) ^ (iv). If moreover, G is commutative then also (iv) => 
=̂> (i) holds. 

Proof, (i) <$ (ii) : We have 0 > x.y = (x V — y) A (—x V y) = (x A —x) V (x A y) V 
V (-y A - x ) V (~y Ay) = - | x | V -\y\ V (x A y) V - ( x Vy)<^xAy<0<xVy. 

(ii) <£> (Hi) : In an l-group G it holds xVH = x — (x A y) + y and further 
x V y = y V x = y — (x A y) + x ,x A y = y — (x V y) + x. These facts follow 
x v V > 0 > x A y <^ y - (x A y) + x > 0 > y - (x V y) + x & -(x A y) > -y - x > 
> —(x V u ) < = > x V g > x - f g > x A H . 

(Hi) ^ (iv) : The previous facts imply xAy < 0 < xVH. Therefore we have xAy < 
< (x + y ) + < xVH and xAy < (x + y)~ < xVH, i.e., -(xWy) < -(x + y)~ < -(xAy). 
Therefore we obtain |x + y\ = (x + H)+ - (x + y)~ < (x V y) — (x A y) = \x — y\, see 
[2] ,p.ll3,N. 

(iv) => (i) : If G is commutative then the propositions 6. and 8. imply |x - y\ = 
= \x\ V \y\ - x.y and \x + y\ = |x| V \y\ + x.y. If (iv) is true then -x.y > x.y, i.e., 
2(.r.y) < 0 and x.y < 0, because G is torsion free. 

11. Proposition. If G is an l-group and x,u € G then |x| A \y\ = (x Ay) V -(x.y) V 
V - ( x Vy) holds. 

Proof We have |x| A \y\ = (x V - x ) A (y V -y) = (x A y) V [(x A -y) V ( - x A y)] V 
V ( - x A -y) = (x A y) V -(x.y) V - ( x V y). 

12. Definition. A .-ideal I in an l-group G is a subgroup in G fulfilling the condi­
tion: x e l,g eG => g.x e I. 

13. Proposition. Let G be an l-group. Then I is a .-ideal in G if and only if I is 
a convex l-subgroup in G. 

Proof. =>: If x G I,g € G,0 < \g\ < |x| then \g\ = \g\ A |x| = \g\.\x\ G I (see 7.), 
because |x| = x.x G I. We have g = g.\g\ G I and together I is a convex subgroup 
in G. For x,y G I it holds 0 < |x A y\ < |x| A |y| = \x\.\y\ G I. This fact implies 
x A y G I and I is also an l-subgroup in G. 

<=: With respect to 7. it holds 0 < |g.x| = |^| A |x| < |x| and thus g.x G I. 
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14. Proposition. If G is a commutative l-group and x,y,z G G + . Then it holds: 
a) (x + y) A z < (x A z) + (y A z), 
b) (x + y) A z = (x A z) + (y A z) & (x + y - z) A x A y A z < 0, 
c) x Ay A z — 0 => (x + y).z = x.z + y.z, 
d) x A y — 0 => (kx).y = k(x.y) = x.(ky), for any integer number k. 

Proof, a) We have (x + y) A z < (x + y) A [(x A y A z) + z] = (x + y) A (x + z) A (y + 
+ z) A2z = (x Az) + (y Az). 

b) From the part a) of the proof it follows: (x + y) Az — (x Az) + (y Az) => (x + 
+ y) A z = (x + y) A [(x A y A z) + z] =-> (x + y — z) A 0 = (x + y - z) A (x A y A z). 
On the contrary 0 A (x + y — z) = 0 A (x + y — z) A(x Ay A z) = (x + y — z) A (x A 
A y A z) => (x + y) A z = (x + y) A [(x A y A z) + z] = (x A z) + (y A z). 

c) The previous part of the proof and 7. implies x.z + y.z = (x A z) + (y A z) = 
= (x + y) Az = (x + y).z. 

d) The proposition follows for k > 0 from b; for k=0 follows from 4.c and for 
k < 0 we have (kx).y = (—\k\x).y = -[( |k |x) .y] = -\k\(x.y) = k(x.y), see 8. 

15. Corollary. If G is an l-group then (\x\ + \y\).\z\ < \x\.\z\ + \y\.\z\ holds for 
x,y,z G G. 

Proof. Proof follows from 7. and 14.a. 

16. Theorem. 1. If G is an l-group then for x,y,z G G+ U G~ it holds: 
a) x.y — sgnx. sgny(\x\ A \y\), where sgnx = 1 for 0 / x G G+, sgnx = —1 for 

0 ^ x € G~ and sgnO = 0. 
b) x.(y.z) = (x.y).z, 
c) \(x + y).z\ < \x.z\ + \y.z\ + \x.z\. 
2. If G is a representable l-group then parts b and c hold for x,y,z € G. 
3. If G is a commutative l-group then \(x + y).z\ < \x.z\ + \y.z\ holds for x,y,z G 

eG. 

Proof la: We have x.y — (x V -y) A (—x V y) — x A y — \x\ A \y\ for x,y G 
G G+,x.y = (x V —y) A (—x V y) = — y A -x = |x| A \y\ for x,y G G~ and 
x.y = (xV -y)A(-xWy) = -x\/y = -(xA-y) = - ( | x | A\y\) for x G G+,H G G~. 

lb: We have x.(y.z) = x.[sgny.sgnz)(\y\ A\z\)] = [sgnx.(sgny.sgnz)].[\x\A(\y\A 
A|z|)] = [(sgnx.sgn?y).sgnz].[(|x|A|y|)A|2:|] = [(sgnx.sgny).(\x\A\y\)].z = (x.y).z. 

lc: Propositions 7.,14.a and [2] ,p.H2,I imply \(x + y).z\ = \x + y\ A \z\ < (\x\ + 
+ \V\ + \x\) A \z\ < (\x\ A \z\) + (\y\ A \z\) + (\x\ A \z\) = \x.z\ + \y.z\ + \x.z\. 

2. Let us recall that a representable group G is 1-isomorphic with an 1-subgroup 
of a direct product of linearly ordered groups Gi(i G I). Then for every i G I it 
holds \x.y\i = \(x.y)i\ = \xi.yi\ = \x{\.\yi\ = \x\i.\y\{ = (|x|.|2/|)i, see 7. The parts b 
and c we can prove similarly as in the part 1. 

3. A commutative l-group is a representable l-group and \x + y\ < \x\ + \y\ holds. 
These facts imply \(x + y).z\ = \x + y\.\z\ = \x + y\ A \z\ < (\x\ + \y\) A \z\ < \x\ A 
A \z\ + \y\ A \z\ = \x\.\z\ + \y\.\z\ = \x.z\ + \y.z\, see 7. and 14.a. 

17. Remark. The inequality 16.c does not hold without absolute values. For exam­
ple, for x > 0, x 7-= 0, y = z = -x it is 0 = (x + y).z and x.z + y.z + x.z = x.(-x) + 
+ (-x).(-x) +x.(-x) = -x. 
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18. Corollary. If G is an l~group and x,z,u,v " G then it holds: 
xSy => x.uSy.v, xSy.v. 

Proof. We have xSy => |x.u|A|y.v| = (|x| /\\u\) A(|y|/\\v\) = \u\ A(|x| A|y|) A|v| = 0-
Therefore x.uSy.v holds and the second formula follows similarly. 

19. Proposition. If G is an l-group and x,y € G then it holds: 
a) x + . y + = ( x A y ) + , x ~ . y ~ = ( - x A - y ) + , x + . y ~ = ( - x V y ) ~ , 

x~.y+ = (x V - y ) ~ , 
b; (x„y)+ = (x + .y+)V(x~.y~) = (x + . y + ) + (x~.y~), 

(x.y)~ = (x+ .y~) A (x~.y+) = (x+ .y~) + (x~.y+) , 
cj x.y = x + . y + + x~.y~ + x+ .y~ + x~.y + . 

Proof, a) Theorem 18.1 implies x + . y + = x + Ay+ = (xAy) + ,x~.y~ = |x~| A|y~| = 
= - ( x A0) A - ( y A O ) = ( - x A - y ) + ,x + .y~ = - [ x + A (~y~)) = -[(xVO) A ( - y V 
V0)] = - [ ( x A - y ) V0] = ( ~ x V y ) ~ , x ~ . y + = - [ - ( x A 0) A (y V 0)] = - [ ( - x A y ) V 
V0] = (x V - y ) ~ . 

b) First it holds (x.y)+ = [(x V - y ) A ( - x V y)] V 0 = [(x V - y ) V 0] A [ ( -x V 
V y) V 0] = [(x V 0) V ( -y V 0)] A [ ( -x V 0) V (y V 0)] = (x+ V - y ~ ) A ( -x~ V y+) = 
= (x+ A - x ~ ) V (x+ A y + ) V ( -y~ A - x ~ ) V (-y~ A y + ) = 0 V (x+ A y + ) V (~x~ A 
A - y ~ ) = 0 V (x A y) V ( - x A - y ) = (x A y ) + V ( - x A - y ) + = x + . y + V x~.y~ and 
also (x.y)~ = [(x V —y) A ( - x V y)] A 0 = (x V - y ) ~ A ( - x Vy)~ = x~~.y+ Ax + . y~ . 

Further, it holds x + . y + + x~.y~ = (x A y) V 0 + ( - x A - y ) V 0 = [(x A y) + 
+ ( - x A -y) ] V (~x A - y ) V (x A y) V 0 = [0 A (y - x) A (x - y)] V [ ( -x V x) A 
A (x V - y ) A ( - x V y) A (y V -y)] V 0 = |x| A \y\ A (x.y)+ = (x.y)+ , see 7.and also 
x+ .y~ + x ~ . y + = ( - x V y ) A 0 + (x V - y ) A 0 = [ ( -x V y) + (x V -y)] A [ ( -x V y) A 
A ( x V - y ) ] A 0 = [0V(y + x) V ( - x - y ) ] A ( x . y ) ~ = (x.y)~. 

c) Finally, it holds x.y = (x.y)+ + (x.y)~ = x + . y + + x~.y~ + x+ .y~ + x~.y + . 

20. Corollary. Le£ (7 be an l-group and x,y ' G. Then x + . y + , x~ .y~ are orthogo­
nal elements and also x + . y~ ,x~ .y + are orthogonal elements. 

Proof. Proof follows from 18. 

21. Proposition. If G is an l-group and x,y,z € G + U G~ then it holds: 
a) x > 0 => x.(y V z) = x.y V x.z, x.(y A z) = x.y A x.z, 

x < 0 => x.(y A z) = x.y V x.z,x.(y V z) = x.y A x.z, 
& / ) ~ > 0 , y A z = 0=> x.(y + z) = x.y + x.z, 

~ > 0 , y V z = 0=> 2\(y + z) = x.y + x.z, 
x < 0 , y A z = 0=> x.(y + z) = x.y + x.z, 
x < 0,y V z = 0 => x.(y + z) = x.y + x.z. 

Proof. Let us discuss all cases with using of 16.1 and [2],p.l02,c: 
a) First,if x > 0 then it holds: 
(i) for y, z > 0 it is x.(y V z) = x A (y V z) = (x A y) V (x A z) = x.y V x.z, xXv A 

A z) = x A (y A z) = (x A y) A (x A z) = x.y A x.z, 
(ii) for y > 0, z < 0 it is x.(y V z) = x A (y V z) = x A y = (x A y) V — (x A —z) = 

= x.y V x.z,x.(y A z) = - ( x A - z ) = (x A y) A - ( x A - z ) = x.y A x.2, 
(hi) fory < 0, z > 0 it is x.(yVz) = xAz = - ( x A - y ) V(xAz) = X*y\Jx.z,X-(y A 

A z) = —(x A —y) = —(x A —y) A (x A z) = x.y A x.z, 
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(iv) for y < 0,2 < 0 it is x.(y V z) = -~[x A -(yW z)] = -x V (y V z) = ( - x V 
Vy) V ( - x V2) = - ( x A - y ) V - ( x A - 2 ) = x.y Vx.2,x.(n A 2) = ~[x A - ( y A 2)] = 
= - x V (y A 2) = ( - x V 1/) A (~x V 2) = —(x A —i/) A —(x A - 2 ) = x.y A x.z. 

If x < 0 then x.(y A 2) = - [ ( - x ) . ( y A 2)] = - [ ( - x ) . y A (-x).2J = x.y V x.z and 
x.(y V 2) = -[(-x).(y V 2)] = - [ ( - x ) . y V (-x).z] = x.y A x.z hold, see 8. 

b) If x > 0, y A 2 = 0 then x.y A x.z — x Ay A z ~ Q holds and thus we have 
x.(y F 2) = x.(y V 2) = x.y V x.2 = x.y F x.2. 

K x > 0,u Vz = 0 then x.y V x.z = - ( x A - y ) V -~(x A -z) = - x V y V 2 = 0 and 
thus we have x.(y -h z) = x.(y A 2) = x.y A x.z = x.y F x.z. 

If x < 0 , y A 2 = 0 then x.y Vx..2 = -(—x Ay) V - ( —~ A 2) = x V - y V - 2 = xV 
V-(yA2) = xVO = 0 and thus we have x.(|/-fx) = x.(y\J z) = x.y Ax.z = x.y-fx.z. 

I f x < 0 , y V 2 = 0 then x.y Ax.z = - x A - y A - 2 = - x A -(1/V2) = - x A 0 = 0 
and thus we have x.(y F 2) = x.(y A 2) = x.y V x.z = x.y F x.2. 

22. Theorem. If G is an l-group and x,y,z ~ G then x.(y.z) = (x.y).z holds. 

Proof. Propositions 16, 19, 20 and 21 imply 
x.(y.z) = x + . (y .2) + F x~.(y.z)~ F x+ .(y.2)~ F x~.(y.2)+ = x + . ( y + . 2 + F 
F y~*z~) F x~.(y+ .2~ 4- y~.z+) F x + . (y + . 2~ F y~.£+) F x"".(y+ .2+ F y~.z~) = 
= x + . ( g + . 2 + ) F x + . ( y ~ . 2 ~ ) F x ~ . ( y + . 2 ~ ) F x - . ( y - . 2 + ) F x + . ( y + . 2 ~ ) F x + . ( y ~ . 2 + ) 4 -
+ i '" .( i /+ .2+) + a;"".(l/~.z~) = ( x + . y + ) . 2 + F ( x + . H - ) . 2 " F ( ~ ~ . y + ) . 2 ~ F ( x ~ . y - ) . 2 + 

F F (x + .y + ) .2~ F (x + .y~) .2 + F (x~.y + ) .2 + F (a;".2/~).-"4- = ( x + . y + ) . 2 + F 
F ( x ~ . y ~ ) . 2 + F ( x + . y + ) . 2 ~ 4 - ( x ~ . y ~ ) . 2 - F ( " + . y ~ ) . 2 + F ( x ~ . y + ) . 2 + F ( x + . y ~ ) . 2 ~ F 
F(x~ .y + ) .2~ = (x+ .y+ F x ~ . y ~ ) . 2 + F ( x + . y + Fx~.y~).z~~ 4-(x+ .y~ + x " . y + ) . z + + 
F (#+ .y~ 4-x~. | /+ ) .z" = (x .y) + .2 + F (x.y)+ .2~ F (x.y)~.2+ F (x.y)~.2" = (x.y).z. 

Let us remark that Proposition 7 implies |x| < |y| <=> |x.y| = |x|. Now, we shall 
investigate a similar relation introduced in the following definition. 

23. Definition. Let G be an l-group and x,y £ G. Then let us define a relation [ 
on G such that x[y & x.y = x. 

24. Proposition. If (G, <) is a commutative l-group then [ is an antisymmetric 
and transitive relation on G with following properties: 

a) The restriction [/G+ Of the relation [ on G + is the lattice order on G + . 
b) xnon || 0,y < 0, x[y => x — 0, fOr x,y £ G, 
c) 0[x, fOr x £ G, 
d) [ is reflexive exactly on G + . 

Proof. First, we shall prove that [ is antisymmetric and transitive: 
x[y,y[x ~> x — x.y — y.x = y and x[y,y[z => x = x.y,y = y.2 => x = x.y = 

= x.(y.z) — (x.y).z = x.z => x[z, for x,y,z G G. 
Further, we have: 
a) x[y <£> x = x.y = x A y <£> x < y, for x, y ~ G + , 
b) if x > 0, y < 0 then x[y <-> 0 < x = x.y = - ( x A - y ) = - x V y < 0 < ^ - > x = 0 

and if x < 0, y < 0 then x[y <̂> 0 > x = x.y = - x A - y = - ( x V y) > 0 <$ x — 0 
hold (see Theorem 16), 

c) 0 = 0.x & Q[x, for x € G, 
d) x[x <$• x = x.x = |x| <=> x > 0, for x G G. 
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