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Multi Regional Sta te Space Systems — Controller 
Design and Stability 
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Thomas Möllers 
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Abstract: The paper is concerned with a construction method for control functions for 
systems given by an algebraic description of the type x = f(xfu). The resulting control 
functions guaranty stability under weak conditions on the system. An approximation of 
the system by affine linear subsystems combined to an overall system is suggested and a 
feedback which transforms each affine linear subsystem into a linear one is constructed. The 
method is illustrated by a simulation of a highly nonlinear coupled system of three tank. 
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1. Introduction 

It is a difficult task to design stable controllers for nonlinear systems. For this rea­
son, simple but effective fuzzy controllers were used quite successfully in a number of 
applications, see e.g. B U C K L E Y , HAYASHI (1993), K R U S E , G E B H A R D T , KLAWONN 

(1995). However, the analysis and especially the proof of stability for these fuzzy 
controllers turns out to be difficult. Work in this direction was done by T A N A K A , 
SUGENO (1992), C A O , R E E S , F E N G (1996/1997), DOMANSKI , B R D Y S , TATJEWSKI 

(1997), MOLLERS (1997). 

The approach in the present paper is different. The design of the related non­
linear controllers is as simple as that of fuzzy controllers and it applies to a vast 
number of complex system while at the same time the stability of the resulting 
control system can be guaranteed. The control function can be derived directly 
from the algebraic description 

x = f(x,u) (1) 

of the system's dynamic where / : E n x E m —> W1. We suggest an approximation 
of the system (1) by affine linear subsystems combined to an overall system. State­
ments concerning stability of systems consisting of linear subsystems are known 
C A O , R E E S , F E N G (1997). Therefore we construct, with methods from linear con­
trol theory, a feedback which transforms each affine linear subsystem into a linear 
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one. The stability behavior of the approximating system is proved and the rela­
tionship to the stability 

behavior of the original nonlinear system is pointed out. The obtained control 
function can be regarded as a Sugeno-Takagi type fuzzy controller. 

The outline of the paper is as follows: Section 2 gives the main results of the 
paper; first we define an approximating system, then a design procedure for local 
state space systems is presented. Section 2.3 considers the stability of controlled 
local state space systems and Section 2.4 shows the relation between the stability 
behavior of the local state space system and the original system. Section 2.5 con­
cludes with an adequate stability statement concerning smooth control functions. 
Section 3 gives an explicit example. In the Section 4 some concluding remarks are 
drawn. 

2. Theoretical Results 

We start with a short outline of the method. Assume that a system is given by 

x = f(x,u) (2) 

where / : IRn x Rrn —> Rn. We derive local, affine linear subsystems gv : En x 
x Rm —> Rn, v = 0 , . . . , jV, and combine these subsystems to obtain a global 
approximation g of / , such that \\g — / | | < e. Then feedback controllers for the 
subsystems are determined and combined to a smooth and global control function 
by means of blending methods as mentioned in Section 2.5. 

2.1. Multi regional state space systems 
Suppose we are given system (2) with x = x(t) G En and u = u(x(t)) G Rm , t G 
E [0, oo) with / (0 ,0 ) = 0. For this we consider some area U CRn which contains 0 
(without loss of generality). We assume that U is partitioned into TV + 1 subareas 
Uu,v = 0,... ,N, with 

jv 

U=[jUv and |U„nUJ=0,/j,i/ = 0 , . . . , N , * / ^ , 

where 0 G U0 and | • | denotes the usual Lebesgue-measure in lRn. For each subarea 
a linear approximation gv : Rn x Rm —> Rn of / is to be determined. We assume 
that for v = 0 , . . . , jV the approximation gv is of the form 

f(x,u) « gu(x,u) = Av(x -xv) + Bv(u-uv) + f(xv,uv) for x G Uv, 

whereas xv is some point of the interior of Uv, uv G IRm, Av G IRnxn , Bv G E n x m . 
Without loss of generality, we will assume x0 = 0 and u0 = 0 for the rest of the 
paper. 

The linear approximation may be provided, e.g., in the classical way by means of 
some Taylor expansion, or alternatively, by means of some linear regression method 
applied to identification data. However, we assume that for each v = 0 , . . . , N there 
is a ev > 0 such that 

\\9,-f\\<eu mUv. (3) 
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Figure 1: Local state space system with feedback (7) 

The systems 
x = gu(x,u) (4) 

are called local state space systems, while the resulting overall system 

x = g(x,u) , (5) 

with 
g : Rn x Rm —-> Rm (x, u) \—•» gu(x, u) for x G Uu 

is called a multi regional state space system. Note, that there is 

\\g-f\\< max e„ (6) 
tv=0 , . . . ,/V 

by the supposition (3). Thus, the mapping g is an approximation of / . 
Moreover g has a simple structure and we will show that it is possible to derive 

a successful control function for such systems (5). If the approximation of / is 
good, i.e. max ly_0 Neu is small, then a successful control function of the multi 
regional state space system a is a successful control function of the original system 
/ (see 2.4). 

We start with the design process by constructing appropriate control functions 
for the local state space systems gu (4). 

2.2. Control of local state space systems 
We are trying to find a control function for each local state space system gu (4), 
such that the corresponding closed loop system has a stable equilibrium 0. Keep 
in mind all local state space systems should have the same equilibrium 0 (in global 
coordinates). We consider control functions of the form 

u(x) = Ku(x-xu)+uu, (7) 

Ku £ R m X n . For the resulting control loop see Figure 1. Control functions of 
this form are characterized by the parameter Ku E R n X m . Thus the quality of the 
control is only related to an appropriate choice of Ku. Conditions for this choice 
are derived in the sequel. 

Substituting the control function (7) in the local state space systems (4) we 
obtain for all v = 0 , . . . ,1V 

x = gu(x, Ku(x - xu) 4- uu) = 

= (Au + BuKu)(x ~ xu) + f(xu,uu) , xe Uu , i/ = 0 , . . . ,N . 
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x = (Av + Bv Kv) x 
x 

x = (Av + Bv Kv) x 

Figure 2: Resulting closed loop local state space system (9) with property (8) 

In general, systems of this kind do not have the equilibrium 0. In order to derive 
an appropriate control function we choose the feedback matrices Ku such that 

We get 

(Av+BvKv)xv = f(xv,uv), u = 0,...,N. 

x = gu(xђKu(x -xu) +uu) 

= Лt)x for x Є U„ 

(8) 

(9) 

where Au = (Au + BUKU). If the matrices Au are stable, the resulting control 
function is successful. The corresponding closed loop local state space system is 
shown in Figure 2. 

In the following we give sufficient conditions for the existence of a matrix Ku, 
such that condition (8) is fulfilled and the closed loop matrix Au is stable. The 
corresponding local control functions are used in Section 2.3 for the design of the 
global control function. 

For sake of simplicity we omit the index v for the remainder of this subsection. 
But keep in mind that the following construction procedure is done for all sub­

systems. 

Lemma 2.1. Let \x, A2 £ C with Re(Ai) < 0, i = 1, 2, and Xx + A2 £ R. and choose 
x £ Rn , u £ Rm and A £ R n x n , B £ l n x m . Let 

X := (x,f(x,u)) £ R n x 2 

Y := (f(x,u) - Ax,(\2 + \)f(x,u) - \2\xx - Af(x,u)) £ R n x 2 

Let the following assumptions be fulfilled: 

(i) There exists a matrix K £ R m x n , such that BKX = Y. 

(ii) Let e- £ Rm be the i-th unit vector and let b := Be{ £ Rn be non zero, such that 

the pair (A + BK, b) is controllable. 

(Hi) The vector k £ Rn is such that the spectrum of A + BK + bkT is \x,... , An 

with Re(Ai) < 0, z = 3 , . . . , n. 

Set K := K + eik
T. Then A + BK is stable and the equation (A + BK)x = f(x,u) 

is fulfilled. 
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Proof. For single-input systems one way to determine a feedback is Ackermann's 
formula (13). We can reduce the problem of this Lemma in the multi-input case to 
the single-input case in the following way, see SONTAG (1990) p. 136. 

Let b a non zero column of B. Choose K e E m x n such that (A + BK,b) is 
controllable. For randomly chosen K this is fulfilled with probability 1. Now apply 
Ackermann's formula to the system (A + BK, b) and compute a feedback vector k. 
The whole feedback matrix is given by 

K = K + eik
T, 

where e{ is the i-th unity vector with b = Be{. With Equation (8) we get 

(A + B(K + e{k
T))x = f(x, u). (10) 

Sufficient for (10) are the following two conditions: 

(A + BK)x = f(x,u) (11) 

Beik
Tx = 0 (12) 

Equation (11) is a condition for the choice of K. In Equation (12) K is implic­
itly contained via Ackermann's formula, to express this fact we write k(K). Now 
we want to answer the question, whether it is possible to find a K which solves 
Equations (11) and (12) simultaneously. Let 's have a closer look at Ackermann's 
formula. We denote the controllability matrix by TZ and the prescribed roots of the 
characteristic polynomial \ with X{. 

kT(K)x = -(0... 01)K(A + BK, b)X(A + BK)x = (13) 
n 

= - ( 0 . . . 01)7Z(A + BK, b) ]J(A + BK - XJ) x = 
i = l 
n - 2 

= - ( 0 . . . 01)7^(^ + BK, b) Y[ (A + BK - XJ)-
i = l 

(A + BK- \n_J)(A + BK- XJ) x 

This shows that for Equation (12) the following is sufficient 

0 = (A + BK- Xn_1I)(A + BK- XJ) x. (14) 

Since we are only interested in real solutions we assume An ,An_1 G M or An = 

= A n _ i € C . 

If K is a solution of (11), by expanding Equation (14) we get another linear 

equation for K 

BKf(x,u) = (Xn + Xn_1)f(x,u) - XnXn_lX - Af(x,u). (15) 

Putting Equations (11) and (15) together we get the matrix equation of assumption 
(i). Eq. (15) implies Eq. (12) and therefore together with (11) yields (10). rj 
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2.3. Stability of multi regional state space systems 
In the present paragraph we give sufficient conditions for the stability of a closed 
loop multi regional state space systems (9). For a composite system of differential 
equations of this type, we state the following result: 

Theorem 2.2. Let U C Rn with 

N 

U=\JU„ and | U „ n U J = 0,/i,*/ = 0 , . . . , A ^ ^ / x . (16) 
v=0 

Let 
x = Лvx forxЄUu (17) 

be given with Au G R n x m stable and normal for v = 0,. .. ,N. Moreover, we 
assume that the solution x(t) changes the subareas at most finitely many times. 
Then the system (17) is asymptotically stable. 

Proof. Let t0 = 0 be the time where x(t0) equals the starting point x0 G U. Let 
i(t) denote the index of the subarea that satisfies x(t) G Ui{t). Observe that by 
assumption, i is well-defined on [0, oo] with exception of finitely many points 0 < 
< t1 < ... < tN < co which are exactly the points where x changes the subarea. 
Then i is a piecewise constant function with the jumps t1)t2,.-.. We have the 
following representation for the starting point x 0 G Ui{to) in terms of eigenvectors 
o f Ai(t0)

 i n t h e r e S i o n Ui(toV 

n 

X0 = Xuaqaq,i(0) ' 
q=l 

Moreover, we have 

n 

x(t)=Y.aqaqAt)eXq'l(t)t ' te^t,). (18) 
q=\ 

Now we introduce the terminology $. ( e ) := (ali{t)l... ani{t)) for the matrix 

of eigenvectors and Ai{t) := diag(e A l - , '^)( t -^) 5 . , . )e*u,.(.)(*-**)) for the diagonal 

matrix of eigenfunctions of Ai{t) in Ui{t) = U{,tk)) where tk = m a x { ^ < t \ v G 

G N 0 } . Then (18) can be rewritten as 

x(t) = ^i(t)'Ai(t)'%l

t)'
xo i ' t e [ t 0 , * i ) . (19) 

At the point t = tx, the piecewise linear approximation of the control function 

has a jump (and so does i), whereas for t G (^,^ 2) t n e control system is linear 

again. Therefore, in this situation we express x(t) in terms of the eigenvector basis 
ai.i(t)>--- >an,i(0' * e (*i>*2)» a n d obtain 

x(t) = ($i{t)Ai{t)$~l

t)) • ( * i ( t 0 ) A i ( t o ) * ^ 0 ) ) . x 0 , t G [tx,t2) . 
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In general, we have (with the notation i(tv-) := lim t -+e i(t) for the left-sided 
limit of i at some breakpoint tv) 

x(t) = (^jA^i.,;,) I I ^ ^ - ) ^ - ) * ^ - ) ) ^ . * 6 {tk,tM) , 
iv = l 

thus 

ll*(*)lla < l|A.(t)||2 m I I A ^ . j l l a J | |x0 | |2 * € ( t f c , t t + 1 ) , (20) 

since $i(t) IS unitary for t > 0. We observe 

v * ' / i = l 

Here, we assume 0 < ReAx < ReA2 < . . . < ReAn Thus with M := max^_0 ReA2 M, 
we can estimate 

ll*(0ll2 < eM{t~tk) I I e^t*-"*—»>||a:oll2 = eM^^\\x0\\2 , t € ( ^ , ^ + 1 ) , 
/ L i = l 

which holds for any i and k, thus l i m ^ ^ x(t) = 0, and we are done. rj 
Assume wre are given a control function that is defined piecewise on each subarea 

Uv by means of the construction method of Section 2.2. As a result of Theorem 2.2 
we get, that if the closed loop matrices Av are normal then this control function is 
a successful control function for the multi regional state space system g (see (5)). 

From now on we assume that such a control function can be found and denote 
this specific control function by 

Hx) = &v(x - xv) + uu for xueuu . 

2.4. Stabi l i ty of approx imat ing systems 
As we have shown above it is possible to approximate a given system / (2) by a 
local state space system (5) and to find an appropriate control function u such that 
the local state space system (5) is stable. In this section we are going to show that 
the control function u is an appropriate control function for the original system (2), 
too. First we state the following Lemma. It gives an estimation for the difference of 
the solutions of two systems, if we assume that the systems do not vary too much. 

Lemma 2.3. Let 

* = / ( * ) , (21) 

* - 9(x) (22) 

be two closed loop systems with /,G : Rn —y Rn and let f fulfill the Lipschitz 
condition \\f(x) - f(y)\\ < L\\x - y\\ for all x,y £ U C Rn , where L > 0. Let 
further be 

\\f-9\\<e. 
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Then for the solutions x and x of (21) and (22) the following statement holds 

| | x( í ,x 0 ) - x ( ť , x 0 ) | | < є 
e L t - l 

(23) 

where x0 denotes the initial value of (21) and (22). 

Proof. Let us have a closer look at the distance between the two solutions 

| |x(*,x 0) - x ( * , x 0 ) | | -= || / X(T,X0) - f ( r , x 0 ) d r | | < 
.10 

< / \\X(T,X0) - f ( r , x 0 ) | | d r = 
Jo 

= / \\f(x(T,x0))-g(x(T,x0))\\dT < 
Jo 

< f | | / ( x ( r ) x 0 ) ) - / ( x ( r , x 0 ) ) | | + 
Jo 

+ \\f(x(T,x0)) - g(x{T,x0))\\dT < 

< / L \\x{t,x0) -x(t,x0)\\dT + et 
Jo 

This is a Bellman-Gronwall inequality, see CALLIER, D E S O E R (1991) p. 475. 
From there it follows 

j |x(t,x 0 ) -x(t,x0)\\ <et + 

= et + cL 

= st + eLeLt 

ftTeL^-TUr = 
jo 

/ Te~LrdT: 
Jo 

єt + єLe Lt ( 1 +„~Lt 1 / -ŕe~ L 2 ( e - « - 1) = 

D 
From inequality (23) we can derive a sufficient condition to decide whether the 

control function u for the multi regional state space system g (5) is successful for 
the original system / (2). 

Theorem 2.4. Consider the closed loop original system 

x = /(x) 

with /(0) = 0 and the multi regional state space system 

x = g(x) 

(24) 

(25) 
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where both control loops are closed by the feedback u and let the local state space 
systems of (25) be stable. Moreover, let | | / - g | | < e and let M = max^L0 ReAx be 
as in the proof of Theorem 2.2. Let S0 > 0 be such that the ball BSo(0) is contained 
in the domain of attraction (HAUN (1967) p. 108) of the system x = A0 x and let 

S ( t ) = e ^ ^ + eMt\\x0\\. 

(i) If S is monotone increasing, then \\x0\\ = 6(0) < S0 is sufficient for the asymp­
totic stability of the equilibrium 0 of the original system (24)-

(ii) Otherwise 

is sufficient for the asymptotic stability of the equilibrium 0 of the original system 
(24). 

Proof. From Lemma 2.3 we have 

| | | x ( t , X 0 ) | | - | |X(*,X0) | | | < ||X(*,X0) - x ( t , X 0 ) | | < £ 
L 

First case: | |x( t ,x0) | | - | |x(£,x0)| | < 0. Then the stability of (24) follows from 
the asymptotic stability of (25). 

Second case: | |x( t ,x0) | | - | |x( i ,x 0) | | > 0. Then 

ll*(Mo)ll < \\x(t,x0) - x(t,x0)\\ + | |x( t ,x 0) | | < 

< £ ^ ~ + e M t | | x 0 | | = (26) 

= S(t) 

If the function S is increasing, then the best value of the estimation (26) is at 
6(0). If 6(0) < 60, then the initial value x0 = 6(0) is in the domain of attraction 
and the stability follows. 

Otherwise 6 has a relative minimum at 

1 , ( ~e 
tw„ = T-r r In 

rnгn M-L \M\\x0\\) ' 

If S(tmin) < 60, then we have 

ll«(*,a?o)ll < 6o 

that means the solution of the original system (24) has reached the domain of 
attraction of 0 and the asymptotic stability follows. rj 
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2.5. Smooth control functions 
In the previous sections of this chapter we have described a construction method for 
a special class of control functions (see Sec. 2.1 and Sec. 2.2) of nonlinear systems 
and we have given sufficient conditions for the success of those functions (see Sec. 2.3 
and Sec. 2.4). Though the construction method is very simple and the conditions 
for the stability of the control functions are weak, there might be one disadvantage 
of the obtained control: in general the control function is not continuous. To elude 
that problem we consider the following Lemma, which is closely related to Lemma 
2.3 and Theorem 2.4. Note, that in Lemma 2.5 different control functions but the 
same system description are considered, while the above mentioned statements are 
concerned with different systems but the same control. 

Lemma 2.5. Let there be given a system 

x = f(x,u) 

where / : En x E m —> E n , and let f fulfill the Lipschitz condition \\f(x, •) - f(y, • 
•)|| < L\\x - 2/|| for all x,y G U C E n x E m . Let be u : E n —• E m a successful 
state space controller and let be u : En —> E m a continuous mapping such that 

\\u-u\\ <e . 

Define the closed loop systems 

x = f(x) = /(£,t2(x)), (27) 

x = / ( £ ) = f(x,u(x)). (28) 

Then the following statements hold: 

1. f fulfills a Lipschitz condition, i.e. \\f(x) — f(y)\\ < L'\\x — y\\ for all x,y G U C 
C E n . 

2. There is an e' > 0 such that for each initial value xQ of 
(27) and (28) there is 

,eL>t - 1 
\\x(t,xQ) -x(t,xQ)\\ < e'—JJ~~. 

3. Assume that the equilibrium 0 of the system (27) is exponentially stable, i.e. 
ll*(*»^o)ll - eM '^~ t o ) | | .r0 | | and that the ball B6Q(0) is contained in the domain 
of attraction of the system x = AQx. Let be u\B& ^ = ttlL^^o) and define 

6(t)=e'^— +eA"||s0 | | . 

(i) If S is monotone increasing, then \\xQ\\ =: 5(0) < 5Q is sufficient for the 
asymptotic stability of the original system (28). 

(ii) Otherwise 

M'-L' \M'\\xQ 
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Figure 3: System of three conical tanks 

is sufficient for the asymptotic stability of the original system (28). 

A proof can be obtained by applying the corresponding statements from the 
previous sections. 

The problem of finding a smooth control is reduced to the problem of determining 
a continuous approximation of a non continuous function. Various techniques can 
be applied here. One possible technique is blending of various local control functions 
as it can be found in Mollers, van Laak (1998). This method has been used in the 

following example. 

3. Numerical Experiments 

Let us consider a system of 3 conical tanks according to Figure 3. They are joined 
together by pipes with diameter dpipe. Tank 3 has an outlet of diameter dpipe . 
Every tank has an input which can be controlled. 

The states of the system are the heights of the filling x 1 , x 2 , x 3 . The control 
variables are the inputs of the tanks u 1 , u 2 , u 3 , they are used to control the heights 
xx, x2, x3 in order to converge to given set heights Hx, H2, H3. The system equation 

x = f(x,u) 

is explicitly given by 

/ i ( z , u ) = - (-sgnOcj -x2)F^2g\xl - x2\ + uA 

f2(
x^u) = F IT i (sgn(xx -x2)F^J2g\xl - x2\ -

- sgn(x2 - x3) F yj2g\x2 - x3\ + u2 J 

h(x,u) = F fsgn(x2 -x3)F sj2g\x2-x3\ - F y/2gx3 + u3) 

where F = n(dpipe/2)2 is the surface of the pipes and Fx(xx), F2(x2), F3(x3) is 
the surface of the water depending on the height in each tank, g is the gravitation 
constant. In this example the surfaces depend on the shape of the cones. We have 
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Figure 4: Fuzzy state space controller 
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Figure 5: Linear controller 

F i ( x i ) = 7r(x,tan/3)2 

for i = 1,2,3, For the plant constants we choose dpipe = 0.1 m and j3 = 30°. 
Suppose the tanks have a maximal heights of 2 m. 

We construct a global controller which guarantees stability with the above men­
tioned procedure. We use 18 linearization points hx,h2,h3 whereas for either hx 

and h3 the heights are 0.5 m, 1 m, 1.5 m and for h2 they are 0.75 m, and 1.25 m. 
In each linearization point we determine the corresponding affine linear system and 
the local linear feedback law which makes the subsystems linear. 

For every local system the feedback law is chosen, such that its eigenvalues are 
\x = -0.05, A2 = -0.08, A3 = - 0 . 1 . 

In Figure 4 a simulation of the system is shown, where the set heights are Hx : 
:= 1.5 m, H2 := 1.25 m and H3 := 0.7 m. Figure 5 shows the simulation of 
the system controlled by a linear feedback controller, which was design for the 
linearization point (1.5 m, 1.25 m, 0.5 m). It turns out that the system behavior 
is much faster and more accurate, if the constructed multi regional state space 
controller is used. 
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4. Concluding Remarks 

We have shown that it is possible to find a appropriate control function for each 
system that can be described by (2) if the following conditions hold: 

(a) the function / fulfills a Lipschitz condition on the considered area; (b) the 
multi regional system (9) can be controlled by a control function u. Both conditions 
are very weak in applications hence we assume that in many applications successful 
control functions can be found by means of the method described above. 
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