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Fermat and Wilson Quotients for p-Adic Integers 
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Abstract: Using the p-adic limit, the notions of Fermat and Wilson quotients for composite 
moduli are transferred to those for p-adic integers. Some theorems on these quotients are 
presented which in particular are analogous to results of Eisenstein, Lerch, Friedmann and 
Tamarkine. 
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1. Introduction 

Let p be a prime and a an integer not divisible by p. As it is well-known the Fermat 

quotient of p with base a is the integer 

a p - i _ j 
q{a,p) = . 

V 

The first generál statements on this quotient are due to Eisenstein ([E], 1850): 
(El) If p is odd, then 

P - I 

2g(2,p) = ^ ( ~ 1 ) n " 1 ~ ( m o d ^ 
n = l 

(= - V - (mod p)). 

(E2) If u,v are integers and p\ uv, then 

q{uv,p) = q(u,p) + q(v,p) (mod p) 

(the "logarithmic property"). 

(E3) // u,v G Z and p\u, then 

v 
q(u + pv,p) = q(u,p) (mod p). 

u 
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As a corollary of (E3) we have for integers a,b,p\ ab: 

a = b (mod p2) -==> q(a,p) = q(b,p) (mod p) . 

Thus by (E2) we can consider the function q( ,p) as a homomorphism from the mul­
tiplicative group ((Z/p2Z)*, •) into the additive group (Z/pZ, +) of the respective 
residue class rings. 

According to Euler's well-known theorem generalizing Fermat's little theorem 
we can define for relatively prime integers m > 2 and a the Euler quotient (or the 
(generalized) Fermat quotient for composite moduli) of m with base a by 

0 * ( m ) _ i 

P , ^ = ~™ — — • 
m 

For this quotient similar laws are satisfied as (El) - (E3). In [ADS1] the Fermat 
quotient for composite moduli m is investigated in more detail. Some formulas 
presented there for the case m ~ pn directly invite to use a limit process and to 
transfer this notion to the p-adic case. This is established in Section 3 in greater 
detail by means of the projective limit. In Section 4 Lerch's expression of the Fermat 
quotient is transferred to the p-adic case and in Section 6 the Friedmann-Tamarkine 
congruence is presented for the Fermat quotient for p-adic integers. 

Similarly, the notion of the Wilson quotient is transferred to the p-adic case by 
means of the p-adic limit in Section 5. Here a theorem (Theorem 5.7) is derived 
presenting this "p-adic" Wilson quotient by means of the p-adic limit of expressions 
containing certain Bernoulli numbers. 

The reader is referred for the basic facts on p-adic numbers to the book [BS] and 
for the theory of projective systems to the book [K], 

2. Notations and Fundamental Assertions 
Throughout this paper we will use the following notations: 

p a prime, 
n a positive integer, 
Z the ring of (rational) integers, 

Z(n) the additive group of the ring of residue classes mod p n , thus Z(n) = 
( Z / P - Z . + ) , 

Z(n)* the multiplicative group of the invertible elements of the ring of residue 
classes mod p n , thus Z(n)* = ((Z/p nZ)*, •), 

<pn the canonical (ring) homomorphism from the ring ( Z / p n + 1 Z , + , •) onto the 
ring ( Z / p n Z , + , ) ; this homomorphism will be also considered as (group) 
homomorphism from the group Z(n + 1) onto the group Z(n) or from the 
group Z(n + 1)* onto the group Z(n)*, 

(Zp , + , •) the ring of p-adic integers with p-adic topology, 
Z p the additive group of the ring (Zp , + , •), 
Z* the multiplicative group of the invertible elements of the ring (Zp , + , •), 
ipn the canonical (ring) homomorphism from the ring ( Z p , + , ) onto the ring 

(Z /p n Z, +, •), also considered as the group homomorphism from the group 
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Z p onto the group Z(n) or from the group Z* onto the group Z(n)*, thus for 
a = X X o a-P* e Z P (a* € Z, 0 < â  < p) we have tpn(a) = Yl7=o a i p

i + p n Z , 
v(a) the p-adic exponent of a p-adic integer a, 

lim a*, the p-adic limit for p-adic integers ak, similarly all topological notions (con-
k—>OD 

tinuity, convergence, infinite series, e t c ) concern the p-adic topology, 
q(a,pn) the Fermat quotient of (composite moduli) p n (the Euler quotient of p n ) 

with base a (a e Z,p\a) (see, e.g. [ADS1]), thus q(a,pn) = ^ ^ Z l l ^ l . 

Since for each p-adic integer a not divisible by p we have 

У P П - Ҷ P - І ) 1 (mod p n ) , 

the p-adic number q(a,pn) = 3*—*Jl -- i s p- adic integer. In this way the former 

function q( ,pn) is extended to all p-adic integers not divisible by p. 

Proposition 2.1. (a) The function q( ,pn) is a uniformly continuous mapping from 
Z* into Zp. 

If we assume that a,/3 e Z*. then we have: 

(b) q(a,pn) = q(p,pn) (mod pn) 

provided that a = (3 (mod p n + 1 ) , 

(c) a(a/3,pn) = q(a,pn) + q(/3,pn) (mod pn). 

Proof. For a,/3 6 Z* there exists 7 e Zp such that a ^ " 1 ^ " 1 ) - ppn~l(p-1) = 
(a — /5)7, hence 

v(q(a,pn) - q(/3,Pn)) > v(a ~/3) - n. 

This proves part (a). Part (b) is obvious and part (c) follows from (b) and the 
logarithmic property for the Fermat quotient of p n . • 

N o t a t i o n . Let A = a + p n + 1 Z G Z(n + 1)*, a € Z, p f a . Put qn(A) = q(a,pn) + 
p n Z e Z(n). Using Proposition 2.1 (b), (c) we get that qn is a group homomorphism 
from the group Z(n + 1)* into the group Z(n). 

Proposition 2.2. (a) Let p be an odd prime or p = 2 and n = 1. Then qn is 
surjective and for A G Z(n + 1)* we have qn(A) = 0 if and only if Ap~l = 1. 

(b) Letp = 2 and n > 2. Then qn(Z(n + 1)*) = 2Z(n) and for A e Z(n + 1)* 
we have qn(A) = 0 if and only if A = ±1. 

(The symbols 0 and 1 denote the zero element and the unity in the rings of 
residue classes mod p n and mod p n + 1 , respectively.) 

Proof. In case (a) we have, by property (E3), q(l + p,pn) = - 1 (mod p), hence 
p \ q(l + p,pn). Using the logarithmic property of the Fermat quotient of p n and 
the existence of a primitive root mod p n we get that qn is surjective and qn(A) = 0 
for an element A e Z(n + 1)* if and only if ALP-1 = 1. 

For n > 2 we have g(5,2n) = 2k for an odd integer k. Let a € Z, 2 \ a. Then 
there exists an integer x such that 0 < x < 2 n ~ 1 - 1 and a = ±5X (mod 2 n + 1 ) , 
which implies <?(a,2n) = xq(5,2n) (mod 2n) = 2kx, and we are done. • 
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Proposition 2.3. With exception of the case p = 2 and n = 1 we have 

q(a,pn+1)=q(a,pn)(modpn) 

for each a E Z * . 

Proof. Since 2|<1(a,2n) for each odd a and n > 2, we get the proposition from 
Proposition 4.1 of ([ADS1]) for a G Z (p\ a). Using Proposition 2.1 (b) we obtain 
the general case. D 

Immediately from this proposition we get: 

Proposition 2.4. Ifp is odd or p = 2 and n > 2, then the following diagram is 

qn 
commutative: 

Z(n + 1)* Z(n) 

Z(n + 2)* Qn+l »Z(n + l ) 

3. Fermat Quotient for p-Adic integers 
Let J be the set of all positive integers in the case where p is odd and the set of 
all integers > 2 in the cause p = 2. For m,n e X, m > n denote by y>™ the (group) 
homomorphism ip™ = <pn o </?n+i o ••• o <^m. Then {J, Z(n),v?™} is a projective 
system whose projective limit is given by the family of (group) homomorphisms 
{ipn : Z p -> Z(n) |n G X}. According to Proposition 2.4 the following diagram is 
commutative for each n £ X: 

Z(n) 

<r°n 

qn+i ° Фn+2 

Z(n + 1) 

Using the properties of the projective limit we can state: 

Theorem 3.1. There exists a unique continuous homomorphism q from the group 
Z* into the group Z p such that the following diagram is commutative for each n £ X: 

Z(n + 1)« 

Фn+l 

qn Z(n) 

Фn 

z; 
Definition 3.1 The mapping q in Theorem 3.1 will be called the Fermat quotient 
for the p-adic integers, or simply p-adic Fermat quotient. 

Using the definition of q and Proposition 2.2 we can derive the following theorem: 
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Theorem 3.2. (a) For p ^ 2 the mapping q is surjective and for a G Z* we have 
q(a) = 0 if and only if ap~l = 1. 

(b) If p = 2, then q(Z*,) = 2Z2 and for a G Z*. iDe /iat;e ^(a) = 0 if and only if 
a = ± l . 

Theorem 3.3. (̂ aj JVe have for each a G Z*, and each n G X 

f/(a) = f/(ct,pn) (mod pn). 

(b) The sequence of mappings {q( ,pn)}(£}_l converges uniformly to the map­
ping q. 

(c) The mapping q is uniformly continuous. 

Proof. According to Proposition 2.3 there exists lim q(a,pu) for each a G Z* 

which will be denoted by f(a). By Proposition 2.1 (c) / is a homomorphism from 
the group Z* into the group Z p . 

Assume that n G X and a G Z*. Then there exists an integer ra > n such that 
v(f(a) - q(a,pm)) > n. Using Proposition 2.3 we get 

v(f(a) - q(a,pn)) > mm{v(f(a) - q(a,pm)),v(q(a,pm) - q(a,pn)} > n, 

from which we obtain that the sequence {q( ,pn)}n
<i :1 converges uniformly to / and 

f(a)=q(a,pn) (mod pn). 
Since the p-adic valuation v is non-Archimedean ([BS], Chapt. 1, Sec 4, Ex. 

4) and q( ,pn) are uniformly continuous (Proposition 2.1 (a)), the mapping / is 
uniformly continuous. 

It is easy to see (Proposition 2.1 (b)) that for each n G I the following diagram 
is commutative: 

Z(n + 1)*- qn >Z(n) 

</>n+l Фn 

z; f- •z. 

The result follows from the uniqueness of q. • 

In the following theorem we use the symbol log for the p-adic logarithm and we 
apply LeopoldVs formula ([Lp],(0)) 

Hpn - 1 
logH = lim 

n—>cx) pn 

to the p-adic integer H = av"x, where a G Z*: 

Theorem 3.4. I/a G Z*, then 

loga^- 1 

q(a) = . 
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4. Lerch's Expression for the Fermat Quotient 
In his paper [Lrl] in 1905, Lerch presented the following expression for the Fermat 
quotient of an odd prime with base a (a G Z,p { a): 

P-\ 

x 
(L1) 

P-i j 

aq(a,p) = J ľ - ax 

P 
(mod p). 

This form was generalized by Lerch in [Lr2] (1906) for Fermat quotients of composite 
moduli m (m G Z,m > 2) for base a (a G Z,(m,a) = 1)): 

(L2) aq(a,m) = a 
a * ( m ) __ i 

m -C;[3 (modm) 
x = l 

(see [ADS1], Theorem 2.3 and Historical remarks, p.34). 
To state an analogous formula for the Fermat quotient q we will define for a 

p-adic number £ = Y^L-m X*P% (^i £ Z, 0 < Xj < p -- 1, m G Z, m > 0) the integral 
part [£]p of £ with respect to p by 

oo 

it]p = J2XiPl eZp-
i=0 

Clearly, if CJ G Z, then [-£•] = [•£.]. 

Theorem 4 .1. 7 / a G Z*, i/ien 

pU 1 
a<7(a) = lim V ^ ~ 

1/-+00 --—-*' x 
x = l 
p\x 

ax 

P 7 

Proo/. Assume that a G Z*, /3 G Z and a = /3 (mod p 2 n ) . Using Proposition 2.1 
(b) and (L2) we get 

P i 

aq(aìP
n)~ү^-

x = l 
p\x 

ßx_ 
pn ( m o d p n ) . 

Since ax = /3x (mod p 2 n ) for each rational integer x, there exists 7 = j(x) G Z p 

such that Sf = ££ + p n 7 , therefore [s*l == [ ^ ] (mod p n ) and 

n 

ag(a,p") = f 2 - í ^ l (modp"). 

pfx 

The result follows. D 
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Notat ion. For integers IV, k (IV > l,p\ IV, 0 < k < N - 1), put 

s(k,N,n)= J2 
X 

£Frk<x<l£(k+\) 
P\x 

Then Lerch's formula (L2) for Fermat quotient of pn for base IV can be expressed 
in the following way: 

Iv-i 

Nq(N,pn) = ^2 ks(k,N,n) (mod pn). 
fc=0 

Thus we can state: 

Theorem 4.2. If N is a positive integer (p\ IV). then 

Iv-i 

Nq(N) = lim У" ks(k,N,i>). 
17 — 4 0 Û « -** V —rOO 

fc = 0 

Corollary 4.3. Let N e {1 ,2 ,3 ,4 ,6} , 0 < k < IV - 1 (k e Z). Tlien tfiere exists 
lim s(k,N,v) = s(k,N) and we have 

V—fOO 

fa,) 5(0,1) = 0, 
(&; 5(1,2) = -5 (0 ,2 ) = 29(2), 

s(3,4) = - s ( 0 , 4 ) = 39(2), 
s( l , 4) = - s ( 2 , 4 ) = 9(2), for p^ 2, 

(c) s(2,3) = - s ( 0 , 3 ) = §9(3), 
s ( l ,3) = 0, forp^Z, 

(d) s(5,6) = - s ( 0 , 6 ) = 29(2) + §9(3), 
s ( l ,6 ) = - s ( 4 , 6 ) = 29(2), 
5(3,6) = -5(2 ,6 ) = 29(2) - §9(3), for p > 5. 

Proof. The result follows from the congruence 

s(k,N,n) = -s(N -l-k,N,n) (mod pn) 

and from Theorem 4.2. • 

Remark . For N = 5 or N >7 (N £ Z) the question which sequences 

{«(*,*.„)}", 

are convergent (0 < k < IV — 1) remains an open problem. 
Lemma 4.4. Let N be a positive integer, p\ IV and suppose there exists 

lim 5(0, IV, n) = a. 
n-~*oo 
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Then 

£ 
i /=0 

Ladislav Skula 

£ < x < ^ 
V pt- / 

Proof Put 

/ -* т> 

p j x 

for each non-negative integer v. Then the nth partial sum of the series ^2^L0 cru 

equals 
n-x j 

2_V„= ] Г - = s(0,JV,n) 
"=° l<x<Ç 

Płx 

and the result follows. 

Corollary 4.5. 
(a) If p 7- 2, £/ien 

29(2) = - £ 
i / = 0 

fo) I/P7-3. £hen 

D 

/ 

Z-/ 7. 
£ < x < í ť £ I 

V pt- / 

/ 

,39(2) = - £ 
i / = 0 

E ì 
V Pt* / 

зg(з)—2f;( E ì 
i / = 0 

fcj J/p > 5, £/ien 

V-Ç<*<^ / 

/ 

9(24-33)=49(2)+39(3) = - 2 £ 
i /=0 

Z-t nr 

. ^ < x < ^ t i 
V Pt* / 
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5. Wilson Quotients for the p-Adic Case 

Definition 5.1. Let m > 2 be an integer and em = — 1 if m = 2 ,4 ,p a or 2pa (p 
an odd prime and a a positive integer) and em = 1 otherwise. 

The integer 

(>.m) = l 

is called the generalized Wilson quotient of m (see [ADS2], Definition 2.1). 
According to [ADS2], Propositions 3.1 and 3.2, we have 

(5.1) W(pn+l) = W(pn) (mod pn~l), 

hence there exists lim W(pn). 
n—>oo 

Definition 5.2. Set 
W = Wp = lim W(pn) 

n-»oo 

and call the p-adic integer Wp the IVi/sOn quotient for the p-adic case, or simply 
p-adic Wilson quotient. 

Proposition 5.1. v(W - W(pn)) > n - 1. 

Proof. According to (5.1) we get for each integer m > n the inequality v(W(prn) — 
W(pn)) > n - 1. There exists an integer m > n such that v(W - W(prn)) > n - 1, 
therefore 

t,(JV - W(pn)) = v((W - W(pm)) + ( W ( p m ) - TV(pn)) > 

> min{t)(IV - JV(pm)),i;(VV(pm) - W(pn)) > n - 1 

and we are done. D 

Notat ion. For an integer m > 2 set 

m m m 
c r i ( m ) = ] P g(a,m), rj2(m) = ] T ]jjT q(a,m)q(b,m). 

a = l a = l Ď=a+1 
(a,m) = l (a,m) = l (6,m) = l 

Further let 

£ - P = { " 1 ! ! P i S ° d d ( = e P 3 ) a n d c ( n ) = ^ " ) = p " - 1 ( P - l ) . 
t 1 if p = 2 

As usual the n-£/i Bernoulli number will be denoted by Bn (B\ = —-^^B^ = 

i , B 3 = 0 , . . . ) . 
In the following proposition the congruence mod m in Proposition 2.1 of [ADS2] 

is extended to mod m 2 using the same method of the proof. 
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Proposition 5.2. For integers m > 3 we have 

emip(m)W(m) + I ) mW(m)2 = Or (m) + ma2(m) (mod m 2 ) . 

Proof. The result follows from observing that 

/ x <p(m) 

m 

= (em + mW(m)Y(m) = e m

( m ) + ip(m)e^m)-1mW(m)+ 
m 

n > 
\ ( j \ m ) = l / 

+ 
V(m)N 

2 ^ e ^ ^ - ' m ^ M 2 (mod m3) = 

= 1 + em<p(m)mW(m) + (V ^)m2(W(m)Y' 

and also,by the definition of q(a,m), 

/ \ v(m) 
/ m l m 

П І П (l + mo(a,m)) = 

D 

1 .7 = 1 / a = l 
\ ( j , m ) = l / (a,m) = l 

= 1 + mOr(m) + m2a2(m) (mod m 3 ) . 

Proposition 5.3. lim Or(pn) = 0. 
n—voo 

Proof. Using Proposition 5.2 we get tj(Or(pn)) > n - 1 and the result follows. D 

Theorem 5.4. £ ~ . ( E f = ^ - . + 1 «.(*)) = 0. 
p\a 

Proof. Let n > 2. According to Theorem 3.3 (a) we have for each integer a (p \ a) 
v(q(a) - q(a,pn)) > n, therefore 

\ 

a = l 
p\a 

í 
! > ( < * ) - ( n ( p n ) =v J2Ыa)-q(a,pn)} 

J 

\ 

\ a=l 
\ p | a 

> 

ì 
> min{v(q(a) — q(a,pn)) : 1 < a < p n , a G Z ,p{ a} > n. 

The result follows from Proposition 5.3. 

Proposition 5.5. 

D 

Wp = єp 

P ,- í<7i(vn) 
hm ( _ ' + ст2 p — 1 n—>oo \ pn 

( p " ) ) = - ^ l i m ( ^ + p . 2 ( p " ) ) . 
/ p — 1 n—>oo \ p n x / 

Proo/. If we substitute for m the power pn (n > 3) in the congruence of Proposition 
5.2, we get 

ip(p - \)W(pn) = ^ 1 + P a 2 ( p n ) (mod p " - 1 ) . 

Using Proposition 5.1 we get the result. D 

For the proof of Theorem 5.7 we will need the following lemma: 
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Lemma 5.6. Let t be a positive integer and n > 5. Then 

£a«e<n> = Btc{n)p
n (modP

3n-1). 
a—1 
p\a 

Proof For the sake of simplicity put c = c(n) and m = p n . Then by a well-known 
identity for Bernulli numbers, 

m ~ 1 1 tc /, -x 

a = l /c=0 x ' 

Since for 0 < k < £c - 2 the inequality v(Bkmtc+l~k) > 3n - 1 is satisfied by the 
von Staudt-Clausen theorem, we get 

E * -- ̂  (('7 > - - + C T h - - 1 " ) <-<- *3"~'>-
The integer tc - 1 is odd and greater than 3, hence Btc-\ = 0 . If a is an integer 

divisible by p, then v(atc) >tc> 2 n _ 1 > 3n + 1. The result follows. • 

Theorem 5.7. 

WP = -£P0t P U H m 4 (B^(n) ~ 4^ c ( n ) +
 3 ( P ~ 1 ) N ) • 2(p - 1) n->oo pn V P J 

Proof. Put 7(n) = 5Da=i q(a>Pn)2 ar-d c = c(n)- According to Lemma 5.6 we have 
p\a 

for n > 5 

T(») = " i £ > 2 c - 2flC +1) = £ (** - 25c + E^l) + x ^ - 1 

and 

^(P") = ̂ r E(° c - 1) = Bc - ^ - i + y-p2*"1, 
^ a = l F 

p\a 

where xn and 2/n are (rational) integers. 
Further 

^ i ( P n ) 2 = 7 ( n ) + 2O2(pn), 

therefore 

_i_i+,2(P"). i . (B, _ _ _ i ) + „„„-. + - L | £ _ 2M _ 
pn z v^ ' p n ^ p y 2 2 

_ i (a,______> _ B 2 c + 2 B c - f i z i ) + t a . _ & ^ i + _sK£-
2pn V p p / 2 2 

i ( B 2 2 . 4 B 2 + fci)) + ( > „ . ^ - . + £ _ | 

DO(2/„ - a)n)pn _ 1 = 0 and lim„-+00 ---f--- = 0 (by Pro 
the proof is complete according to Proposition 5.5. • 
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6. Friedmann-Tarriarkine Congruence 
In their paper [FT] (1909) Friedmann and Tamarkine proved for an odd prime p 
and an integer m (3 < m < p — 2) the following congruence: 

P - i . 

(FT) Y.am^a^ = B™ ( m o d P)' 
m 

a = l 

Note that the congruences of this kind were given by Lerch ([Lrl], 1905) for 
special m. 

P - I 
(4), m = 0 : ] T g ( a , p ) = VV(p) (mod p), 

a = l 

(17), m = l : ]T^ag(a,p) = - (mod p), 
a = l 

P - I j 
(24), m = 2 : ^ a 2 a ( a , p ) = - — (mod p), (p ^ 3), 

a = l 

P - l 

(18), m = Hfi : 5 3 ( " ) o ( a , P ) = 0 (™°d p), (p = 3 (mod 4)), 
a = l P 

P - l 

(21), m = ^ : £(--)g(a,p) = 2 5 V ( m ° d P ) ' ( ^ ~ * ( m ° d 4 ) ) ' 

a=l P 

P - l 

(221), m = 2$i : £ ( - W ( a , p ) = 0 (mod p), (p = 1 (mod 4)), a = l 

P - l 

( 2 2 2), m = E±ł . У " ( = ) a ç (û .p ) = C*(-p) (mod p), (p = 3 (mod 4)), 
a = l 

where Ct(—p) is the number of divisor classes of the quadratic field Q(\/—p) and 
Ct(-p) = - 2 5 ^ (mod p) for p > 3 ([BS], Chap. 5, Sec. 8, Problem 4). 

The aim of this section is to transfer the congruence (FT) to the p-adic case for 
the Fermat quotient q. For m = 0 the modified relation was expressed by Theorem 
5.4." 

Further we will assume that p is an odd prime and for a positive integer IV* set 

SN(n) = lN +2N + -.- + (n-l)N. 

To prove the main theorem of this section we will state some lemmas. 



Fermat and Wilson Quotients for p-Adic Integers 179 

Lemma 6.1. I//i,V are positive integers, v > v(p, + 1). then 

S»(p") = B»pu (modp2^1). 

Proof. Put x — v(p + 1). Since v(Bk) > — 1 by the von Staudt-Clausen theorem, 
we have for 0 < k < p — 2 (k an integer): 

«Ш":V("+-") > -x- 1 + 3/V > 2v- 1, 

therefore, as in the proof of Lemma 5.6, 

~~k)) = W»=^ÉC*:>-
1 /" OJ+1\D _v . lV + A r ^2^\ / . „ 2 . - U -B ^ + r B M - I P 2 H ( m o d p ' " - 1 ) 

/i + i vv /i ; ^ VM-I> 
E B / i m o d p 2 - 1 ) . 

D 
In Lemmas 6.2 and 6.3 we assume that m is a positive integer, m ^ 0 (mod p— 1), 

v is an integer, v > v(m + 1) + 2 and M = m + pu~x(p - 1). 

Lemma 6.2. ±(SM(pu) ~ Sm(p")) - ~Pm~lBm (modp^1). 

Note that v > t;(m + l) = v(M + l ) , hence the numbers -^SM(PU) and juSm(pu) 
are integers by Lemma 6.1. 

Proof. We will use Rummer's congruence for the Bernoulli numbers modulo a prime 
power ([W], Corollary 12.3, p. 241): 

If m = M (mod pu-x(p - 1)), and m ^ 0 (mod p - 1), then 

Since M - l >pv~l(p~l) > Z"-l-2 > v, we have ( l - p " " 1 ) ^ = ~ f ( m o d p " " 1 ) , 
therefore 

B M = (1 - p m ~ 1 ) B m (mod p " " 1 ) . 

Using Lemma 6.1 we get 

i - (SM(p") - sm(p")) = BM-Bm = -pm-lBm (mod p " " 1 ) . D 

Lemma 6.3. 
p" 

^ a m ( ? ( a , / ) = 0 ( m O ( i / - 2 ) . 
a = l 
p\a 
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Proof. For an integer a divisible by p we have v(w ) -̂  M > pv (p-1) > 3U -2 > 
2v,- hence 

Yja
M=SM{pu)(^^P2v) 

a = l 
p\a 

and there exists A E Z such that 

P1' 

(6.1) ^ a M = 5 M ^ ) + ^ ' p : 

a = l 
p f a 

Since Sm(Pn = H i , «m + P m E a l T " 1 am- <* h a v e 

2 i / 

p f a 

(6.2) J2am = Sm(p")-pm!7<n(PU~1)> 
a=l 
p\a 

and using Lemma 6.1 we get 5m(p l y~1) = Bmp^ l (mod p 2 " " 3 ) . Therefore there 
exists a p-adic integer C such that 

(6.3) pmSm(pu-1) =pm+v-lBm +Pm+2u~3C. 

Summarizing (6.1) - (6.3) we obtain 

pu * ( PU PU \ 

E-m9(«.p")=iiEвл/-i;a" 
a = l У 

p\a 
\ a = l a = l / 
\p\a P\a / 

= -=-(SмЮ + Ap2v - SmW)+ć**v-lBm+p nm+2v-Ъ c) 

= ~(SM(PU) - Sm(Pn) +Pm^Bm (mod p"~2) = 
Pu 

= 0 (mod p"-*) 

according to Lemma 6.2. D 

Theorem 6.4. If p is an odd prime and m a positive integer, m £ 0 (mod p — 1), 
then 

£ 
i /=i 

0. £ amg(o) 
1 a = p l - 1 - f - l 
\ pfa 

Proof. For a positive integer v put 

^ ) = EP*. am?(a)and w = EP" i am«(-*.ĵ )-
--—-'a=l -"-—-'a=l 
p f a p\a 

According to Theorem 3.3 (a) we have v(A(v) - B(v)) > v. 
If v > v(m + 1) + 2, then by Lemma 6.3 v(B(v)) > v - 2, therefore v(A(v)) = 

v(A(v)-B(v)+B(v)) > min{v(A(v)-B(v)),v(B(v))} > v-2 (for v > v(m+l)+2). 
This proves lim„_>oo ^(^) = 0 and the proof is complete. D 
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