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Positivity Theorem 

JOZEF TAKACS 

A b s t r a c t . In this paper we show the positivity of the solution of continuity equation 
of Navier-Stokes system, with boundary conditions considered in [1]. From this result it 
follows the uniqueness of these solution. This enables us to simplify the solving of whole 
nonlinear Navier-Stokes system of equations, also in weak formulation (cf. [2]). 

1991 M a t h e m a t i c s S u b j e c t Class i f icat ion: 35 

We suppose tha t Q is a domain in HN, whose boundary fulfils the Lipschitz 
condition, where N is a positive integer and dQ, = T + + T~. In this paper, we 
will use the terms " in tegra l" , "measurab le" and "measure" instead of "Lebesque 
integral", "Lebesque measurable" and "comple te measure" . 

Let T is a positive real number . We define function 7 by condit ions 

f 7
+ ( * ,* )e [0 ;T]x r -

1~ 1 7~ (l ,z)e[0;T]xr+ 

where 

u-n = y in [0;T]xdtt 

The function 7 meets the condition: 

7 + is a nonnegat ive function 
7~ is a nonposit ive function 

We consider an equat ion 

^ ^ l + divQu(t)(x) = 0 in [ 0 ; * ] x Q (B3) 

with the initial condit ion 

g(0) = g° in fi (B3) 

and with the boundary condition 

Q(t)(x) = Ql(t)(x) in [ 0 ; * ] x r + . (B3) 

We suppose, t ha t the solution of the problem (1), (2), (3) is a continuous function 
on the set [0;T] x Q*. 

In the following we define the solution on the corresponding space: 

* Sufficient condition of continuity is: g G C([0; T], "4^ (0 ) ) , for p> N. 
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Definition. An abstract function g £ C([0;T],X) x Cn((0; T% X1) we call the 
solution of the problém (1), (2), (3) if and only if, when the following conditions 
hold: 

1. The condition (1) holds in X1 for all t G (0;T). 

2. The equation (2) holds in X. 

3. For all t G [0;T] and a. e. z G T+ (3) holds. 

For all íixed t G [0; T] we deíine the set 

0"( í ) = {x £tt;g(t){x) < 0}. 

Lemma 1. Let g be a solution of the problém (1), (2), (3). Then 

í ~g(t)(x)dx>Q (B3) 

Ja-(t) cn 

for all t G [0;T]. 

PROOF: After integrating equation (1) on the set Q~(č), we get 

/ — g{t){x)dx + í (g{Ú-n)){t){x)dx=:0. (B3) 

But an"(ť) = (r+) n (0íT(*)) + (r~) n (0íT(f)) + (íi) n (3íT°(*)). From 
conditions for 7 a £>x the integrál over the hrst and the second domain is nonpositive 
and the integrál over the third domain is a zero. 

The proof is complete. • 

Lemma 2. For sufficiently small h and for all t G (0; T) it holds: 

h{ / g(t + h)(x)dx- / g(t)(x)dx} > 0 

o-(t) a-(t) 

PROOF : The proof follows from the inequality 

0 
< lim i{ I [^ + A)(x)-^)W]dx] 

n-(t) 

We define function m as follows 

(*) = y *?(*)(*)<** m 
O-(t) 



Positivity Theorem 69 

fort E[0;T]. 

Lemma 3. The function m~ is non-decreasing on the interval [0;T]. 

PROOF: Let h is negative and sufficiently small. We have 

m~(t + h)-m~(t) = J g(t + h)(x)dx - / g(t + h)(x)dx+ 
n-(t+h) n-(t) 

+ / {g(t + h)(x)dx-g(t)(x)}dx. (B3) 
n-(t) 

From the previous lemma we have 

m~(t + h) -m~(t) < / g(t + h)(x)dx - / g(t + h)(x)dx. 

n-(t+h) n-(t) 

Thus 

m~(t + h) - m~(t) < / g(t + h)(x)dx - I g(t + h)(x)dx. 

n-(t+h)\a-(t) n-(t)\a-(t+h) 

With respect to the definition of Q~ (t) we have 

/ g(t + h)(x)dx > 0, 

U~(t + h) 

/ g(t + h)(x)dx < 0, 

n-(t)\a-(t+h) 

a-(t+h)\n-(t) 

i.e. m~( l-f h) - m~ (t) < 0. 
The proof is complete. • 

Theorem. Let for every t E [0;T] and a. e. x ' Q, gl(t)(x) > 0 and g°(x) > 0 
holds. If g is a solution of the problem (1), (2), (3); then for every t E [0;T] and 
a. e. x E 0 is g(t)(x) > 0 

PROOF: From the previous lemma m~ is non-decreasing. It is a contradiction to 
m"(0) = 0 and to the fact, that m~ is negative. • 

Remark 1. It is easy to see from the proof, that the same results we can obtain 
for the next two cases: 

1. If we consider the inequality > instead of equality in (1). 

2. If we assume that the right side of (I) is nonnegative instead of zero. 



R e m a r k 2. If we assume everywhere the opposite inequality, then in the propo­

sition of the theorem we obtain the opposite inequalities. 

C o r o l l a r y (Uniqueness theorem). If the problem (1), (2), (3) has a continuous 

solution, then it is uniquely defined. 

P R O O F : By the con tradic t ion. Let Q\) D2 be two different solu t ions of the consid­

ered prob lem and let g = g1 — g2 ^ 0. T h e n g is the solution of the homogeneous 

problem. According to the remarks , g is s imul taneous nonposi t ive and nonnega-

tive. Therefore it is zero. T h i s is the contradict ion . • 
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