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Some .records on second order differential 
equations 

TADEUSZ DLOTKO 

Abstract. Solutions of special Neumann boundary value problems will be find. 

1991 Mathematics Subject Classification: 34B15, 34C25 

In spite of more than 150 years of investigations on asymptotic behaviour of 
ordinary differential equations (see [8]) the theory of second order ordinary differ­
ential equations still has interesting but insufficiently investigated areas. This has 
been confirmed again by a recent paper of Jean Mawhin [6], even though quite a 
lot of papers were devoted to such problems (especially [1], [2], [3], [4], [6], [7]). 

Our purpose is to find a solution to the Neumann boundary value problem 

u" + g(u')=f(t)} te[a,b] m 

u'(a) = u'(b) = 0 [ } 

or periodic problem with additional conditions 

u(a) - u(b) = 0, u'(a) - u'(b) = 0. 

In the paper [3] it was demonstrated that for a bounded g E C^ and / such that 
_ ~ _ b ~ _ 

/ = / + / , f = (b — a ) - 1 f f(s)d,S) for every / there exists a unique / such that 
a 

(1) has a solution. 
Another form of the above existence theorem, different from the typical form of 

such theorems in the theory of differential equations, was given by S. Fucik [3]. 
This theorem assures the existence of solutions only for some functions / . It can 

happen that for / the problem (1) has a solution and for / such that 0 < \f—f\ < e 
the problem 

u" + g(t, u') = / , u'(a) = u'(b) = 0, t E [a, b] (2) 

has no solution. 
An explicit example of such a situation is provided by the problem 

u"(t) = cp(t)uf(t) + k<p(t), u'(0) = u'(l) = 0, t£ [0,1], k > 0, (3) 

where <p is a given continuous function. 
Substituting u' = v we have 

|k + v(t)| = k exp j / <p(s)ds J (4) 
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and for t = 0 and t = 1 we get k = k exp I f cp(s)ds 1. 

l 

When k > 0 and f (p(s)ds ^- 0, then (3) has no solutions. When k is arbitrary 
o 

l 

and f (p(s)ds = 0, then (3) has solutions. These troubles are consequences of the 
o 

absence of a Green function for the problem 

f «'(<) = «(<) < e M ] 
\ «'(*) = ff((,«(<)) + /iW. "(a) = v(b) = 0, w 

So it is impossible to transform (1) to an integral equation over a suitable Green 
function. Interestingly enough, also the method of " a priori" estimates for bound­
ary value problems in ordinary differential equations, so excellently described in 
[4], cannot be applied to systems (1). 

J. Mawhin [6] proposed to use the integral form of (1) instead of the Green 
function. Thus we consider 

t b 

<t) = f[g(s1v(s))-(b-a)'1fg(t)v(t)dt-}-f(s)-

(6) 

-{b-«)~lff{t)]d8. 
a 

It is clear that the solution v(t) of the last equation satisfies (5) with f\ = 

/ + (6 - a ) - 1 f[g(t, «(<)) + f(t)]dt and 

u(t) = I v(s)d, s + c, c Є E n 

satisfies (1). 
An open problem is to establish the density of such functions in L1([a, 6],IRn). 

The observed situation of existence of solutions to (1) is in accordance with the 
above example (3). 

Our aim is to generalize J. Mawhin's results using the theory of completely 
continuous vector fields in Banach spaces (see [5]) instead of Schauder fixed point 
theorem. 

To this end let us consider the Banach space 

X=:{x: x eC([a,6],IRn), x' E Lx{[a, 6],IRn), x(a) = x(b) = 0} (7) 

with the norm 
6 

\x\x=: m a x | * ( t ) | + f \x'(t)\dt. (8) 
*€[a,6] J 



Some records on second order differential equations 23 

Let us consider a more general form of the problem (1), namely 

u"(t) = A(t)u'(t) + g(t, u(h(t)), u'(k(t))), t e [a, b] 
u(a) = u0) u'(a) = u'(b) = 0, ^ 

Here A(t) is a given n x n matrix, u and g(t) it, v) are n-vectors, 

A(t)u' : [a, 6] x E n -» !Rn, g(ty u, v) : [a, 6] x IRn x IRn -> E n 

and satisfies Caratheodory conditions. The given continuous functions h(t),k(t) 
denote the deviations of the argument t 

li, k : [a, b] —> [a, b], /i(a) = a, t/0 E Ftn is given. 

The solution tt and the derivative u' are absolutely continuous in [a,b]. 
Together with (9) let us consider 

{ MO 

v'(t)=A(t)v(t)+g(t)UQ+ f v(s)ds,v(k(t))), 

v(a) = v(b) = 0, te [a, 6]. 

We assume that there exists such an Ho > 0 that 

t h(r) 

sup f[g(r)u0+ f v(s)ds,v(k(r)))-
v£X, \v\x=Ro a a 

b h(t) 

-l^fgtt,uo+ f v(s)ds,v(k(t)))dt]di 

(9' 

(10) 

< inf 
vqX, \v\-RQ 

v(t) - j[A(т)v(т) -(b-a)-1! A(t)v(t)dt]dт 
x 

and the problém 

t 0 

v(t)= [ [A(T)V(T) - (b - a)'1 I A(t)v(t)dt]dT, v(a)=v(b)=zQ (11) 

a a 

has only the v = 0 solution. 

T h e o r e m . Assume that the functions A,g,h,k in the equation (9') satisfy the 
conditions (10) and (11). 

Then the integral equation 

t b 

v(t) = f[(Fv)(r) ~(b- a)-1 f (Fv)(s)ds]dr (12) 

where 
ңt) 

(Fv)(t) = : A(t)v(t) + g(t, щ + í v(s)ds, v(k(t))) 
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t 

has at least one solution in X. The function w(t) =: uo + f v(s)ds satisfies 
a 

w"(t) = A(t)w'(t) + g(ty w(h(t))} w'(k(t))) - (b - a)'1 f[A(t)w'(t)+ 

+g(t, w(h(t)), w'(k(t)))]dt, w(a) = ti0, w'(a) = w'(b) = 0, 
for a.e. t £ [a, b]. 

PROOF: It is clear that the solution v of (12) satisfies v(a) = v(b) = 0, 

6 

v'(t) = (Fv)(t) ~(b- a)-1 f(Fv)(s)ds and w(a) = u0, (13) 

a 

t 

where w(t) = UQ + f v(s)ds. As a consequence of the earlier assumptions the 
a 

solution v of (12) is absolutely continuous in [a, 6]. 
Let us define two completely continuous vector fields (see [5]) in the Banach 

space X by setting 
t 6. 

(<j)v)(t) =: v(t) - I\A(T)V(T) - (b - a)'1 fA(s)v(s)ds]dT, xeX (14) 

a a 

and 

t b 

(j>v)(t) =: v(t) - [[(FV)(T) - (b - a)'1 j(Fv)(s)ds]dT, x£X. (15) 

a a 

It is important that </>, ip : X -» X. In particular 

(<j>v)(a) = (<f>v)(b) = ( ^ ) ( a ) = (^ ) (6 ) = 0. 

From (11) it follows that the vector field <f> on spheres 

SR=:{X: xeX,\x\x = R>0} (16) 

is correctly defined and 

0(-t ;) = - ^ H , VGSR. (17) 

Therefore the rotation J^^SR) of the completely continuous vector field <\> on the 
sphere SR is nonzero. 

Now let us consider the difference 

t h(r) 

(<t>v - i/>v){t) = / [ g ( r , t i o + / v(«)d8,t;(*(r)))-
a
 b

 a m W 
-(t-a)(b-a)-1 fg(t,u0+ f v(s)ds}v(k(t)))dt]dT. 
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We have 

inf \(<j>v)(t)\x = R inf |(<^)(i)|x -> oo, when R -> oo. (19) 
v€X, |v|A-=R veX} \v\x = l 

Now using (11) we have for v G SR0 

\<t>v — 4>v\x < inf \<j>v\x < \<t>v\x- (20) 
veX, \v\=zR0 

It follows that the rotation 
O , s * o ) 7 * 0 . (21) 

The last inequality is sufficient for the existence of at least one solution v of the 
problem (13) in X. Moreover, it satisfies \v\x < Ro- a 

Remarks. 

h(t) 

1 When A = 0 and g(t, f v(s)ds, v(k(t))) --- g(t,v(t)), then equation (12) is 
a 

of the form (3) considered in [6]. 

2 Condition (10) is satisfied, for instance, when the function g is bounded. 
The same is true, when the growth of the left hand side of (10) is sublinear 
with respect to the radius of the sphere SR0 . 

Similarly, the method of completely continuous vector fields in Banach space can 
be applied to the following problems. First, we can apply it to gradient systems of 
differential equation 

( V." (t) = VG(t,u'(t)) + f(t,u(h(t)),u'(k(t))), te[a,b] 
u'(a) = u'(b) = 0, K ' 

and second, also to periodic solutions of systems 

ulf(t) = A(t)uf(t) + g(t, u{h{t)), u'(k(t)))} t E [a, 6], 
tt(a) - u(b) = 0, u'(a) - u'(b) = 0. K } 

Applying the above considerations it is enough to examine the following integral 
equations: 

for the gradient equation (22) 

t b 
v(t) = f[VG(T,u'(r)) - (b- a ) " 1 f VG(t,u'(t))dt+ 

a a 

+f(T, / v(s)ds,v(k(r)))- (24) 

b h(t) 
-(b-a)-1 Jf(t, f v(s)ds,v(k(t)))dt]dT 



and 

where 

V 0 

v(t) = í I(т)dт - (b - a)-1 í I(т)dт (25) 

6 ft(t) 

I(t) = A(t)v(t)-(b-a)-1fA(s)v(s)ds-rg(t, / v(s)ds,v(k(t)))-
a a 

b t h(r) 
-(b-a)-1 f fg(T, f v(s)ds,v(k(T)))dTdt 

a a a 

for the periodic systems (23). 

As in the above theorem one can prove existence results for the problems (22) 

and (23). Unfortunately, t h e results hold only for special types of homogeneity 

terms. 
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