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Transformation of Spaces of Vector Functions of 
Scalar Argument 

Z D E N Ě K B O H Á Č 

A b s t r a c t . The present paper studies the generalized Kummer's transformation of regu­
lar spaces of real vector functions of scalar argument and comiection to the transformation 
of the spaces of the solutions of the systems of linear differential equations of the first 
order. 

1991 M a t h e m a t i c s Sub jec t Classificat ion: 15A03, 34A30 

Introduction 
In paper [4] the propert ies of the t rans format ion of solutions of the system of n 
linear differential first-order equat ions in the real d o m a i n are studied 

(a„) dy/dt = M{t)y d__/dT = N{T)Y_ {An) 

where 

y{t) = (s/i{t),y2{t), . . . , g n ( 0 ) T , 

Y_{T) = ( y i ( T ) , y 2 ( T ) , . . . , y n ( T ) ) T , 

M{t), N{T) are square matr ices of the n-th order defined on the intervals j , J. 
T h e t rans format ion s tudied is of the following form: 

u(t) = K(t)U_[Z(t)}, (0.1) 

where u resp. U__ is the solution of {an) resp.(v4 n ) defined on j resp. J; K is a 
square m a t r i x of the n-th order defined on j , and Z is some function m a p p i n g the 
interval i C j into the interval I C J. 

T h e present paper studies the t rans format ion (0.1) of regular spaces of real 
vector functions of the scalar a r g u m e n t . T h e spaces of solutions of ( a n ) , {An) are 
the special cases of these spaces. T h e considered t rans format ion is, in the m a i n , 
the generalized K u m m e r ' s t rans format ion the propert ies of which are s tudied in 
the papers [1] a n d [3]. 

1 Basic considerations 
C o n v e n t i o n 1.1. In this paper, i, j , I, J will represent open intervals which m a y 
be bounded as well as u n b o u n d e d . Only the column vectors will be considered 
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here, and O will represent the zero vector. 

Definition 1.1. Let uX) u2, ..., u± be real vector functions of scalar argument 
(here after refered to as vector functions or vectors) defined on the interval j C E\. 
If l real numbers c\) C2, . . ., c\ exist, such that 

] P c\± 0 and ] P CkUj, = O 
/e = l fe = l 

on the whole interval ^, then we say that the functions u/c (k = 1,2,...,/) are 
linearly independent on j . If l numbers c\, C2, . . . , c/ do not exist, such that 
J2k=\ ck 7̂  0 and the interval s» C j , on which XA-=I ckHk — 2> ^ n e n w e s a v that 
the vector functions uk (k = 1, 2, . . . , /) are linearly independent on f 

Definition 1.2. Let j C E\. Let the vector functions uk (k = 1, 2, . . . , n) be 
continuous and linearly independent on the interval j . The set R of all the vector 
functions of the form y = YHk=\ cklik^ where Ck (k = 1, 2, . . . , n) are arbitrary 
real numbers will be called the linear space of continuous vector functions of the 
dimension n (in brief, the vector space R) . 

Theorem 1.1. Let R be a vector space defined in the definition 1.2. Let y £ R 
(k — \ , 2, . . ., n). Then y , y . . . . . u a?̂ e either linearly independent or linearly 
dependent. 

PROOF: According to the definition 1.2, there exist numbers Cki (k, / = 1, 2, . . . , 
n) such that 

^ = Ck\UX + C / c 2 M 2 + 1-C/cnMn ( * = 1 , 2 , . . . , f l ) . ( 1 . 1 ) 

If it is assumed that, for example, y , y , . . . , g are independent, then there exist 
numbers a^ (k = 1, 2, . . ., n) and the interval i C j such that 

] П a\ ф 0 and ] Г a ^ = o 
/c = l /c = l 

on the interval i. If we substitute y into the last equality according to (1.1), we 
get 

n / n \ 

X ^ ( Y l a k C k i ) --
i=i \k=i J 

As the vectors uly u2, . . . , un are linearly independent, the following must be true: 

n n 

y^afcCfc/ = 0 (/ = 1, 2, . . . , n), where ^ P a)5 ^ 0. 
A: = l /c = l 
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Should then the system (1.2) with the unknowns ak have an untrivial solution, its 
determinant must be equal to zero, i. e. 

C\\ C21 • • • C n l 

C\2 C22 • • • c n 2 

C\.n C2n • • • c n n 

One column of the determinant is the linear combination of the other columns. If, 
for example, the ra-th column is the linear combination of the other columns, then 
according to (1.1), y is the linear combination of the vectors y , y , . . . , y _ , 

Um+V '"'Un* t h a t i s U.V V.2* • • ' ' Un a r e l i n e a r l y dependent on j . D 

T h e o r e m 1.2. Let y , y , ..., y be linearly independent vectors of the space 
R. Each vector y E R may be expressed in the form 

n 

y = Y.akh> 
k = l 

where a/, (k = 1, 2. . . . , n) are suitable real numbers. 

P R O O F : Since y , y , . . . , y are linearly independent, we can write 

y_k = C/dMl + Ck2U.2 + 1-C/cnMn {k = 1, 2, • • • , fl) , (1.3) 

where 

# 0 

C Ц Cl2 • • • C i n 

C21 C22 • • • c2n 

C n l Cn2 • • • c n n 

Let 

У = ClMl + C2^2 + • • • + Cn.Mn • 

Having solved the system (1.3) with respect to ul) u2) 

into (1.4), we get the required expression. 

(1.4) 

un and substituting 
D 

Definition 1.3. Let each ordered n-tuple (u1: u2, . . . , un) of linearly independent 
vectors of the space R be called the basis of the space R . 

Definition 1.4. The vectors uli u2, . . . , un defined in definition 1.3 are called 
the basis vectors. 

Definition 1,5, The numbers a/, (k = 1, 2, ..., n) from the theorem 1.2 are 
called the coordinates of the vector y in the basis y , y , . . . , y . 



lo Z. Boháč 

Definition 1.6. The matrix arranged from the basis vectors of R so that its k-th 
column is formed by the components of the k-th basis vector is called the basis 
matrix of the space R. 

Theorem 1.3. Let b\(t) be a basis matrix of the space R. The matrix b2(t) is 
the basis matrix of space R if and only if a regular constant matrix C of the n-th 
order exists, such that 

h{t) = h{t)C (1.5) 

P R O O F : Let b\(t) be the basis matrix formed from the vectors x_k(t) (k = 1, 2, 
. . ., n) and b2(t) be the basis matrix formed from the vectors y (t) (k = V 2, . . . , 
n). There exist numbers cki (k, / = 1, 2, . . . , n), such that 

y_x(t) = cux_(t) + c12x2(t) + h clnxn(t) 

yM) = C2lX1(t) + C22X2(t) + h C2n£n(0 

»,(•) C/cl?лC) + c fc2£ 2 ( l ) + 1- CfcnЖnft) 

(1.6) 

y n(t) = CnlX^t) + cn2x2(t) + . • • + cnnxn(t) 

The system (1.6) may be written in the following form: 

/ Vki{t) \ 

yk2(t) 

V y/cn(0 / 

Ckì 

Xl2(t) 

\ xìn(t) ) 

+ ck2 

í 121 (0 \ 
a?22(t) 

V *2n{t) j 

Л V ckn 

( xnl(t) \ 
xn2(t) 

\ xnn(t) ) 

(k = 1, 2, . . . , n) as well as y_k = bi(l) • (ckX) ck2) . . . , c/,n)T, (k = 1, 2, . . . , n). 
This is in fact the same relation as that of (1.5), but recorded in another way, such 
that C is a constant matrix, the k-th column of which is formed by the elements 
c/ci, ck2) . . . , ckn. Obviously, the matrix C is regular, in the opposite case the 
vectors y (t) (k = 1, 2, . . . , n) would be linearly dependent. 

Let bi(t) be the basis matrix, C a regular constant matrix of the n-th order and 
(1.5) holds true. If we designate a?i(£), x_2(t), . . . , x_n(t) the columns of the matrix 
bi(t) and y (t)1 yAt), . . . , y (t) the columns of the matrix b2(t), then (1.5) may 
be written in the form (1.6). Obviously, y (t) (k = 1, 2, . . ., n) are independent 
vectors of the space R. In the opposite case, the matrix C would have to be 
singular. • 

Corollary 1.1. Let R be the vector space defmed on the interval j , b(t) a basis 
matrix. If the matrix b(t) is regular (singular) at the point t = to, to G i , then all 
the basis matrices are regular (singular) at the point t = to. 
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Definition 1.7. The point t0 £ j is called the regular (singular) point of the 
domain of definition of the space R if all the basis matrices of the space R are 
regular (singular) at the point t = lo-

Definition 1.8. Space R, the domain of definition of which contains regular 
points only, is called regular. A space, the domain of definition of which contains 
at least one singular point, is called singular. 

Convent ion 1.2. In the following discussion only the regular spaces will be 
considered. 

Theorem 1.4. Let P, Q be two matrices of the same type and for each x E R 
holds Px = Qx^. Then P = Q holds. 

PROOF: Let x^ (k = 1, 2, . . . , n) be basis vectors of the space R . According to 
this assumption the following then holds, 

Pxk^Qx* ( f c = l , 2 , . . . , n ) 

and therefore also 
Pb(t) = Qb(t) 

holds, where b(t) is basis matrix formed from the vectors x^ (k = 1, 2, . . . , n). 
Multiplying the last equality from the right hand side by the inversion matrix to 
b(t) we obtain the statement already proved. • 

2 Transformation of regular spaces 

Definition 2.1. Let two vector spaces R and S of the dimension n be given and 
defined on the intervals j , J. Let there exist the function Z(t) and the matrix 
K(t) possessing the following properties: 

(i) K(t) is the square matrix of the n-th order defined on some interval i C j , 

(ii) Z(t) is defined, continuous and strictly monotonic on the interval i, 

(iii) the domain of functional values of the function Z(t) is some interval I C J, 

(iv) for every U_ E S there exists u E R . such that 

u(t) = K(t)U[Z(t)] (2.1) 

for every l E i, 

(v) for every u E R there exists U_ £ S, such that (2.1) holds on the interval i. 
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Then we say that the space S may be transformed on the interval I onto 
the space R on the interval i. The relation (2 + ) is called the transformation 
T(I\, zT, I, i) of the vector U_ onto the vector u. We write u = T(U_). 

Theorem 2.1. Lel T(K, zT, I, i) be the transformation from the definition 2.1. 
Let __x, u2 £ -& and u.k £ T(t-J-) (^ = x> ^ - Then T(ciU__ + c2(/2) = C\u_ + c2tz2. 

PROOF: 

T í d i t , + c2U2) = K(t)ClU_x [Z(t)\ + c2U2 [Z(t)} = 

= c1K(t)U1 [Z(t)] + c2K(t)U2 [Z(t)\ = 

= ciux(t) +c2u2(t) 

Theorem 2.2. Let R ; S be the spaces of the dimension n, T(I \ , zT, I, i) the 
transformation from the definition 2.1. If U_k (k = 1, 2, . . ., n) is a basis of S , 
then uk — T(U_k) (k = 1, 2, . . . , n) is a basis OfR. 

PROOF: Assume that u^. (k = I, 2, . . . , n) is not a basis of R. We choose u G R 
so that it cannot be expressed as a linear combination of the vectors uk (k = 1, 2, 
. . . , n). According to property (v) of the definition 2.1, there exists U_ E S such 
that u — T(U_). If we consider that U_ can be expressed as a linear combination of 
the vectors of the basis of the space S , the following may be written: 

u(t) = I\(l)U[zT(0] = / i ( O E c ^ ^ W ] = 
k=i 

n n 

= __]ckK(t)Uk[Z(t)] = __]ckuk(t). 
fc=l k=l 

Hence u is the linear combination of uk (k = 1,2, . . . , n). This is a contradiction, 
and the proof is thus completed. • 

Theorem 2.3. Lel R, S be the spaces of the dimension n, T( I i , zT, I, i) the 
transformation from the definition 2.1. If the vectors U^ G S (k = 1, 2, ..., I) 
are linearly independent, then u_k = T(U_k) G R (k — I, 2, ..., I) are linearly 
independent as well. 

P R O O F : Let u_, u2) • • •, Ui be linearly dependent. Let us complete the set of the 
vectors U1, U_2) • - . , ( / / by the vectors UL+i > • • •, lLn)

 s u c r i that f/̂ . (k = 1, 2, . . ., 
n) would be a basis. Let uk = T(f/A.) (k = 1,2, . . ., n). According to the theorem 
2.2 y^ (k = 1, 2, . . . , n) is a basis of R , which contradicts the statement that wl5 

u2, . . . , u_[ are linearly dependent. • 

Theorem 2.4. The space S Of the dimension n on the interval I may be trans­
formed onto the space R Of the dimension n on the interval i if there exist the 



Transformation of Spaces Vector Functions . . . 13 

matrix K(t), the function Z(t) with the properties (i), (ii), (iii) of the definition 
2.1, and the linearly independent vectors U__, U_2, ..., U_n £ S and the linearly 
independent vectors u_, u_2, . . .. un £ R, such that for every t £ i the following 
holds: 

uk(t) = K(t)Uk[Z(t)] (* = l , 2 , . . . , n ) . 

P R O O F : Since the matrix K(t) and the function Z(t) already possess the properties 
(i), (ii), (iii) of the definition 2.1. properties (iv) and (v) remain to be proved as 
follows: 
I. Let U_ £ S. Since U1? U__2, . . . , U_n is basis of S, there exist numbers ck (k = 1, 
2, .. ., n) such that 

The following holds: 

ц=J2ckц Шc-
k=l 

K(t)U[Z(t)] = K(t) __n

k=1 ckUk [Z(t)] = 

= E L i ckK(t)uk [z(t)\ = E L i **«*(*)• 

Obviously u = YHe=i Ck^k ^ -^ The property (v) of the definition 2.1 is proved 
analogously. 
II. Validity of the inverse theorem is evident. • 

Definition 2.2. Two transformations T i , T 2 from the definition 2.1 are called 
identical if for every U £ S the following holds: Ti(U) = T2(U). 

T h e o r e m 2.5. Let T i ( K i , Z, I, i), T2(K2, Z, I, i) be two identical transforma­
tions of the space S on the interval I onto the space R on the interval i. Then 
K_(t) — K2(t) for every t £ i. 

PROOF: For every U £ S TX(U_) = T2(U) (= u E R) holds, i.e. Kx(t)W[Z(t)] = 
K2(t)U_[Z(t)] for every t £ i. According to the theorem 1.4, K\(t) = K_(t) holds 
as was proved. D 

T h e o r e m 2.6. Let T(K, Z, I, i) be a transformation of the space S onto the 
space R. Then the matrix K(t) is continuous on the interval i and its rank is 
h — n. 

PROOF: According to the theorem 2.4 there exist basis vectors u^ £ R (k = 1, 2, 
• • •, n) Uje ̂  S (A: = 1, 2, . . . , n) such that 

uk(t) = K(t)UJt[Z(t)] (k = l , 2 , . . . , n ) . 

If we designate the basis matrix created from the vectors uk (U_k) (k = 1, 2, . . . , 
n) as b (JB), the following may be written: 

6(0 = K(t)B[Z(t)]. 
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Since the matrices 6, B are continuous and possess the rank n (the spaces R, S are 
regular) the matrix K(t) (= b(t)B~l[Z(t)]) must be continuous and of the rank n 
as well. • 

Theorem 2.7. Let S, R be spaces defined on J, j and Z(t) is a continuous and 
strictly monotonic function mapping j onto J. Then there exists the transforma­
tion T(K, Z, J, j) mapping the space S on the interval J onto the space R on 
the interval j where K(t) = b(t)B~l[Z(t)] and B(T), b(t) are the basis matrices 
of the spaces S, R. 

P R O O F : Let B(T), b(t) be basis matrices of the spaces S, R. Let 

K(t) = b{t)B~l[Z(t)]. (2.2) 

Multiplying (2.2) from the right hand side by the matrix B[Z(t)]} we have 

b(t) = K(t)B[Z(t)]. (2.3) 

Designating the k-th column of the matrix 6 (B) as uk (U_k), then according to 
(2.3) we have 

uk(t) = K(t)U_k[Z(t)]. 

According to the theorem 2.4 the transformation T(K, Z, J, j) maps the S on J 
onto R on j . • 

Theorem 2.8. I/T(Iir, zT, I, i) maps S on I onto R on i, then T(cK, zT, I, i) 
where c is a constant, maps S on I onto R on i as well. 

P R O O F : Let T(A', z7, I, i) maps S on I onto R on i. Then according to the 
theorem 2.4, b(t) = K(t)B[Z(t)] where 6, B are basis matrices of the spaces R, S. 
Multiplying the last equality by the constant c we obtain: 

b(t).(cE) = cK(t)B[Z(t)], (2.4) 

where E is the unit matrix. On the left hand side of (2.4) there is — according to 
the theorem 1.3 — a basis matrix of the space R . This completes the proof. • 

3 Inverse transformation 
Definition 3.1. Let U_ £ S be mapped onto u £ R by means of the transformation 
T(I \ , Z, I, i). Every transformation T(K , zT, i, I) which maps u £ R onto U_ £ S 
is called the inverse transformation to T with respect to the vector U_. 

Definition 3.2. Let U^ G S (k = 1,2,. . . , /) be transformed onto uk £ R 
(k = 1,2,.. . ,/) using the transformation T(I \ , Z, I, i). The transformation 
T(K, Z, i, I) which maps uk £ R (k = 1, 2 , . . . ,l) onto U_k £ S (k = 1, 2 , . . . , I) is 
called the inverse transformation to T with respect to the vectors U_x, f/2 > - • - ->UJ.-
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Theorem 3.1. The transformation T(K , Z, i, I) which is inverse to 
T(K , zT, I, i) with respect to the vectors U_1} U_2, . . . , U4 is inverse with respect to 
each non-tmvial linear combination of these vectors. 

PROOF: Let Ck (k = 1,2,...,/) be.the constants. Let us designate: 

«*(-) = K(t)Uk(t)[Z(t)], (* = 1, 2 I) 
I 

U(T) = ^c^T) 
k = l 

I 

k=l 

It holds: 
Uj,{T) = K(T)Uk[Z(T)] (k = 1 , 2 , . . . , / ) (3.1) 

According to (3.1) as well as to the designation indicated, the following may be 
written: 

um = j2ckUk(T) = J2ckK(T)y*iz(T)] = 
k = l k=l 

l 

= K(T) J2 ckUb\Ž(T)} = K(T)u[Ž(T)]. 
k = l 

Definition 3.3. Let T(K , Z, I, i) be the transformation of the space S on I onto 
the space R on i. The inverse transformation to all vectors of the space S is called 
the inverse transformation to T and is designated as T - 1 ( K , Z, i, I). 

Theorem 3.2. The transformation f ( K , Z, i, I) is inverse to T(K , Z} I, i) iff 
T is inverse with respect to a basis of the space. 

P R O O F : The statement follows directly from theorem 3.L Q 

No te 3.1. It is possible to put Z(T) = Z~l(T) throughout part 3 of this paper, 
where Z~l is the inverse function to Z. 

Theorem 3.3. Let T(K , zT, I, i) be the transformation from the definition 2.1, 
T~l(K, Z~l, i, I) be the inverse transformation to it and Z~l be the inverse 
function to Z. Then the matrix K(T) is inverse to the matrix K[Z~X(T)]. 

P R O O F : Let 6, B be basis matrices of the spaces R, S, such that 
b(t) =J<(t)B[Z(t)]. Then B(T) = ~K(T)b[Z~l(T)] = TC{T)K[Z-l{T)]B(T), 
hence K(T)K[Z~l(T)] = E. • 
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4 Transformation of solutions of systems of 
linear differential equations 

Convention 4.1. The following systems of linear differential equations of the 
first order in the real domain are considered here 

(an) y = M(t)y t=N(t)Y_ (An) 

where y(t) = ( y i( t ) , y2(t)y . . . , t/n(*))T, Y(t) = (Yi(t), Y2(t), . . . , Yn(t)f and the 
prime designates the derivation of t, and the point derivation of T . The matrices 
M(r), N(T) are assumed to be continuous on the intervals jy J. Let the numbers 
to e j , To € J be given. The solutions u(t), U_(T) of the systems (an) , (An) are 
uniquely defined on j , J by the initial conditions 

(«*) M(*O) = MO E(-To)=fio (-4*) 

where Mo = (wio, ̂ 20, . . . , un0)
T, Ho = (^10, ̂ 20, . . . , ^no)T and w^o, £4o (* = 1, 

2, . . . , n) are arbitrary numbers. 

N o t e 4 .1 . T/ie spaces of the solutions of the systems (an), (An) are regular (see 
e. g. [2]) therefore everything what was said about the regular vector spaces holds 
for the spaces of the solutions of the systems (an), (An) as well. 

Theorem 4.1. Let 

a) S be the space of the solutions of the system (An), R be the space of the 
solutions of the system (an); 

b) Z(t) e C ( 1 )( i) mapping j onto J and Z'(t) 7- 0 forte j ; 

c) T(K, Z, J, j) maps S on J onto R on j ; 

Then the matrix K(t) is the solution of the matrix differential equation 

K'(t) = M(t)K(t) - K(t)N[Z(t)]Z'(t) (4.1) 

P R O O F : Let $ M ( 0 > *-V(*) be fundamental matrices of the systems (an) , (An)-
According to the theorem 2.7 it follows that 

K(t) = *M(t)*J[Z(t)]. 

Derivating the last equality and applying the formula 

d$-l(t)/dt = - * - 1 ( < ) * / ( < ) * - 1 ( 0 

we obtain the statement being proved. 

K'(t) = VM(t)^\Z(t)} + *M(t)(*-N'[Z{t)})' = 

= M(t)$M(t)$rf[Z(t)] - *M(t)$-N\Z(t)]$N[Z(t)}$-N
l[Z(t)}Z'(t) := 

= M(t)*M(t)*-N\Z(t)]-

-^M(t)^[Z(t)]N[Z(t)]^N[Z(t)]^[Z(t)]Z'(t) = 

= M(t)K(t) - K(t)N[Z(t)]Z'(t). 
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No te 4.2. Let t0 e j , T0 e J and Z(t0) = T0. Obviously 

$M(to) = K(t0)$NZ(t0). 

Theorem 4.2. Let for every solution U_(T) of the sys- tern (An) defined by the 
initial conditions (A*) there exists a solution u(t) of the system (an), such that 

u(t) = K(t)U[Z(t)}. (4.2) 

If the initial values of the solution u(t) are of the form (a*) then the matrix K(t0) = 
K0 satisfies the relation u0 = K0 U_0. 

PROOF: Since u(t) satisfies the equation (4.2) and the system (an) , the following 
must hold: 

u'(t) = {K'(t) - K(t)N[Z(t)}Z'(t)}U[Z(t)} 

and 
u/(t) = M(t)K(t)U_[Z(t)]. 

Comparing the righ sides of both equalities and applying the theorem 1.4 we obtain 
(4.1). D 

No te 4.3. Let <I>JV be a fundamental matrix of the system (An). Obviously the 
matrix 

w(t) = K(t)4>N[Z(t)} 

satisfies the system (an), however, it need not be its fundamental matrix. 

Theorem 4.3. Let A(t), B(t) be square matrices of the n-th order and continuous 
on j . Then the matrix differential equation 

X' = A(t)X - XB(t) (4.3) 

has a solution on j , given uniquely by the initial conditions K(^o) — -̂~o- The 
solution X of the equation (4-3) may be expressed in the form X(t) = uj(t)<bg (t) 
where w(t) is a square matrix satisfying the system y1 = A(t)y, and $B(t) is a 
fundamental matrix of the system Y/ = B(t)Y_. 

PROOF: I. Let 

(A) y[ = A(t)y Y! = B(t)Y (B) 

be the systems defined on the interval j , u)(t) be a square matrix satisfying 
the system (A), <£>#(£) be a fundamental matrix of the system (B), and Ko = 
a;(^o)^^1(^o)- (Evidently the matrices w(r), $#(£) of the required properties do 
exist). Analogously, as in the proof of the theorem 4.1, it is possible to show that 
the matrix X(t) = ^ ( t ) * ^ 1 ^ ) is the solution of (4.3). 
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II. Let there exist matrices Xi(t), X2{t), these being the solution of (4.3), such 
that Xx(t0) = X2(*o) = No, Xi(t i ) 9* X2(ti) w h e r e *o, *i 6 J- Let us designate 

W l ( t ) = Xi(t)*B{t) 

u2(t) = X 2 ( 0 * B ( * ) . 

According to the note 4.3 the matrices u>i(r), to2(t) satisfy the system (A). As 
ui(t0) = w2(*0) holds, and the solutions of the system (A) are given uniquely by 
the initial conditions, the following must hold: u>i(ti) = u)2(ti). Hence we have 
Xi(ti) = u>i(ti)$Bl (t\) = tD2(^i)^B1(^i) — X2(ti) and thus we have reached a 
contradiction with the assumption Ki(ti) ^ X2(ti) and the proof is completed. D 

T h e o r e m 4.4. Let X(t) be the solution of (4-3) on j . If X(t0) is regular for 
some to G j , then X(t) is regular on the whole interval j . 

P R O O F : See [4]. D 

T h e o r e m 4.5. Let 

a) S be the space of the solutions of the system (An), R be the space of the 
solutions of the system (an); 

b) Z(t) e C(1)(i) maps j onto J and Z'(t) ± 0 for t G j ; 

c) the matrix I{(t) be the solution of (4-1) defined by the initial conditions 
K(to) = KO; and let Ko be regular. 

Then T(A', Z, J, j) maps S on J onto R on j . 

P R O O F : Let <J>AT be a fundamental matrix of the system (An). According to the 
theorem 2.6 K(t) is regular on the whole interval j , and therefore also the matrix 
$(r) = K(t)$tf[Z(t)] is regular on j . According to note 4.3, $(t) satisfies the 
system (an). With regard to regularity, $(t) is the fundamental matrix of the 
system (an) and this — with respect to the theorem 2.4 - proves our statement. 
D 
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