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Measure and measurable functions of S"

ANGELIKI KONTOLATOU

Abstract. Let R be the set of real numbers ordered by the usual ordering, R =
RU{-oc0, + 00} and & = {—,0,+} with — < 0 < +. Theset $ = R x E\
{(=00, =), (+00, +)} ordered lexicographically and endowed by some partial operations
and the order topology, is said to be the quasi-real line and its elements the quasi-real
numbers. We clear the disconnected character of S, we give a measure on S™ and gener-
alize an extension theorem on real valued functions ranging over a more general than S,
partially ordered set. The last theorem shows that such a function, under easy conditions,
is extended into a continuous function.

1991 Mathematics Subject Classification: 26A21, 28A25, 54D35

Introduction

Consider R the set of real numbers endowed by the usual ordering, R=RU
{—00, + } and E = {—, 0, +} ordered by — < 0 < +.

The set S =R x Z\ {(—o0, —), (400, +)} ordered lexicographically, endowed
by the order topology and on which a partial addition and multiplication are
adequately defined is said to be the quasi-real line and its elements the quasi-real
numbers.

The set S™ is defined for any natural number n, is ordered by the componen-
twise ordering and from the ”topological aspect” it is endowed by the product
topology. In [4], §1, have been given the partial operations (for these partial op-
erations see also [7]) and in [6], §3, the ordering of S™ has been presented as a
completion of some orderings of R". It’s a natural task to inquire the topological
feature of these new spaces and it is our main purpose in this paper to give easy
as well as necessary information about the subject.

For the completeness sake of the paper we summarize in paragraph 1 some
properties of the space S. For the demonstration of these properties we used the
personal notes of Professor L. Dokas. I thank him again for this.

In paragraph 2 we give a measure on S”. This measure has not solved the prob-
lems we hoped it would do, but the given results are natural and as we expected
them to be.

Last, in paragraph 3 we prove an extension theorem of a real valued function,
defined on an ordered space more general than S™. The theorem works as well
on S™ or on S! and shows how such a function under easy conditions may be
extended into a continuous real valued function.
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For the terminology, notation and definitions we follow these ones of [3], [4]
and [7]

1 Basic topology on S

Consider the set S of quasi-real numbers endowed by the order topology, the
topology of open intervals. Each element of S, a quasi-real number, may be
represented by a couple (p,£) or p* = r, where p € R (called the real part of r)
and £ € E (called the kind of r). We note by S~ (resp. S° S*) the quasi-real
number of kind —(resp. kind 0, kind +). ’ ‘

As usual, given a sequence (pn,én)nen With p, < p,p € R (resp. p, > p,p ER)
and lim p,, = p, there holds: lim p§» = p~ (limp§» = p).

Denote by S~F the set S~ U.S*. The following hold (c.f. [4], p.84):
Proposition 1. The real projection function of S is continuous.

In fact, the function (p, &) — p, where £ € E, is continuous.

Proposition 2. The space S is disconnected. *Particularly, the subset S~t is
disconnected.

ProoOF: Infact,ife, > 0and &, € E, we have lim,, 0(p—€n)é» = p~, lim. , 0(p+
€,)é» = pt. Besides every interval (pi‘, p%’) is open and closed if £; # + and
§2 # —.

We also have {p7} = 0l — &7, 0 {p} =7, rt[
and {p*} = M,salp, (p+)*1 .

Theorem 3. Every closed interval of St is compact.

PROOF: Let O be an open covering of [ry, rs] C S™t. Decompose each U € O
in maximal intervals and so we can regard that the covering is a covering of open
intervals. Let UR be the real projection of U and O® = {UR : U ¢ 0}; if
ry = pg’ and 7y = pg’, then O™ is a covering of [p1, p2]r = [p1, p2] NR.

If p € [p1, p2]r is not an interior point of any UR € O® and p # —oco or
p # +oo (if p = —00 or p = +o00 the results are obvious), it means that there exist
in O two intervals U, and U, such that p* and p~ belong to the U, U v, =V,
and the real projections of these two intervals are in opposite sides of p. More
precisely, the projections of these two intervals are of the form ]a, p[, ]p, B[. But
in this case p is an interior point of the interval Vp]R = U,I,R U U;"R. Let P be the
family of the intervals belonging to O and of all the sets of the V, we have just
defined. It is also a covering of [r1, ra] by intervals. Let P be the set of the real
projections of P’s elements, all of which we may consider open by substituting
them, if it is need, with their interior.

Let V be the set of the points 7 = pf, such that p € V® where VR is open.
It is also an interval of St which is open because of the continuity of the map
r=(p, §) = p (Prop.1). Since for every r € [ry, 3] the p belongs to the interior
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of some V, it results that the family P= {l; : VR ¢ PR} is an open covering of

[r1, 7o), for which the family P® is an open covering of [p1, p2]R- .
Since the set [p1, po]R is compact (even if p; or ps is infinite), there exists a

finite subfamily W of P, such that the W® is a covering of [p1, p2]m and conse-

quently the W will constitute a covering of [ry, r2]. a

Theorem 4. The space S~ is Hausdorff separable.

PROOF: It is evident that the space S~ is Hausdorff and if Q is the set of rational
numbers, cl (Q~F) = 5, where cl denotes the closure of the set (the meaning of
Q™7 is obvious). O

Theorem 5.

1. Let F* be a perfect (i.e. closed without isolated points) subset of the topo-
logical space S=%. Then the set F® = {x € R : z¢ € F*} is perfect,
too.

2. Inversely, if the subset F® C R is perfect, there is one and only one corre-
sponding set F'* having as real projection the set F', which is also perfect.

PRrOOF: 1) Suppose that p € F® is isolated. Then there is an € > 0 such that the
interval [p—¢, p+e[ of R does not contain any point of F® but p. But then the only
elements of F'* which are contained in the open interval [(p—¢)*, (p+¢€)~[C S+
are of the form p¢, and at least one of the p~, pt belongs to F*. So, if p~ € F*,
it is the only element of the set (o — &), pt[NF? and if p* € F?, it is the only
element of |p~, (p + €)"[NF*. Thus, if p € F® is an isolated point, then every
pt € F* is isolated.

2) Let F® be a perfect subset of R and ask for a perfect subset F'* of S+,
whose the real projection is F. Firstly we prove that if such an F* exists, it is
uniquely defined.

In fact, if p € F*, then p € FR, We prove that p~ € F* (resp. pt € F*) if
and only if p is a limit from the left (resp. from the right) of F®\ {p}.

Suppose that p is such a limit. Then, for each £ > 0, ]p — ¢, p["\F® # @ (resp.
1p, p+e[NFR # @), which implies |(p—e) ¥, p~ [NF?* # 0 (resp. ]pt, (p+€)~ [NF* #
0) and since J(p — €)*, p~[NF* =](p — €)*, p*[N(F*\ {p~})

(resp.]p™, (p+€)"[NF* =]p™, (p+ )" [N(F* \ {p*})),

we observe that p~ (resp. pt) belongs to the closure of F*, and since F* is closed,
p~ € F*. If pis not such a limit, then there is an & > 0 such that J(p—¢)*, p~[F* =
0 (resp. o, (p +€)7[NF* = 0), hence J(p — &)*, p*[N(F* \ {p~}) = 0 (resp.
107, (p+e)"IN(F\{p*}) = 0).

Thus, if p~ (resp. p*) belongs to F*, it would be an isolated point of S~7,
absurd.

Then p~ (resp. p*) does not belong to F*°.
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Consider the set F* defined as above (in fact, we consider the left (resp. right)
limits p~ (resp. pt) of elements of F®\ {p}, p € FI}).

Firstly, we will prove that its complement is open. Let p¢ ¢ F*. Then, either
p & F® or p € F® but without being a limit of elements of F™® from the left into
R, if £ = — and from the right, if £ = +.

If p ¢ F® since F® is closed, there exists an interval (p — ¢, p+¢) disjoint of
F® hence the neighborhood J(p —€)*, (p + €)™ [ of p¢ does not intersect F*.

If p€ FR and € = — (resp. & = +), then there is an ¢ > 0 such that
lp—¢, p[NFB® = § (resp. ]p, p+ e[NF® = ), hence J(p — £)*, p¢[NF* = (resp.
16°, (p+¢€)~[NF* = 0). Thus p¢ is an interior point of S~+\ F* and the set F* is
closed.

It rests to show that F'® has not any isolated point in S=1.

Let p¢ € F* be an isolated point of F* in S~%. Then p € F® and we have
llp—e)t, pm[NF* =B or Jp*, (p+¢)"[NF* = 0, with respect to the fact £ = —
or £ = +. But then in R

Jp—e, p[NFT =0 or Jp, p+e[NF® =10,

respectively and thus p is not in R the limit from the left (resp. from the right)
of elements of F® when £ = — (resp. £ = +). Thus, from the construction of F'*,
there must be p¢ & F* , which is absurd. Hence F* is perfect. 0

Real functions of a quasi-real variable

Theorem 6. (C.f [{], p.85) Bvery real function f* of a real variable is the
real projection of a continuous real function f of [p1 ,p2 *] C S if and only 1f,
for every real number p € [p1, p2], the functzon f* admaits a right and a left limit

(f*(p+0), f~(p = 0)).

Proor: Consider a continuous function f : [p'if‘, p51 € S — R and f* its real pro-
jection, that is, for every z € [p1, p2]R it is f*(z) = f(z). Let 21, 2, ..., @i, ...
be an increasing sequence (resp. decreasing sequence) of real numbers which con-
verges to p € R. Then, since f is continuous at the point p, we have on the
quasi-real line limz,, = p~ (resp. p*) and lim f*(z,) = f(p~) (resp. f(p*)).
Hence, the lim f*(z,,) does not depend on the choice of the sequence (2r), that is,
there exist f*(p — 0) and f*(p + 0) for every p. Similarly, there exist the values
f*(p1+0) and f*(p2 — 0).

Conversely, let f* be a real function defined on the real interval [p1, p2] with
side — limits f*(p + 0), f*(p — 0) at a point p.

Put

(™) =f(p=0), £(p) = f*(p), f(p*) = F*(p +0).

We give arbitrary values to f(p}) and f(p3 ).
It is enough to show that f is continuous on the interval [p}, p5].
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Let I be an open interval of R and p € I, and let be p* ¢ g cuch that
f(p%) = p. Since I is open, there is an € > 0, such that ]p —¢, PHe[CI. Ife =0,

put V. =]p~, p*[= {p}, hence f(V;) = {p} Clp —€,p +¢[. Let be ¢ = —; then
there exists an n > 0, such that for every real 2 € V; =]p —n, p[C S there holds:

and

[f*(z) = f(p = 0)| = |f*(x) = F(p7)| £

N »io

we have f*(cl (V; NR)) C [p— §, p+ §]. But then f(V})
=5 p+5]Clo—¢ p+el
The proof for £ = + is analogous. 0

cl [f*(cl (V; NR))] C

2 Measure on S"

2.1 The measure of a hypercube

Consider again the set S™ as it has been defined above. The topology is always this
one of the product topology of the open intervals. Throughout this paragraph we
make use of partially defined operations mentioned in the introduction and mainly
of the addition. We recall that the addition of two quasi-real numbers is possible
if and only if they are not of opposite kind, and it means it is not permitted the
one to be of kind + and the other of kind —. If the sum p§‘ + p§* exists, then it
equals (p1 + p2)¢, where € is the common kind or it is the kind which is not zero.
(For the rest definitions and the properties of the partially defined operations one
can see to the references mentioned in the introduction).

Definition 1.

1. If I is an interval of S, the intersections I N S°, I NS*T, IN S~ are called
the proper intervals of kind 0, +, —, respectively and they are symbolized
by 10, I+, I~.

2. Every cartesian product [];, I of any kind of proper intervals I; C S is
called a hypercube.

3. We call elementary set of hypercubes every finite union of pairwise disjoint
hypercubes.

The intervals I; may be open, closed or semiclosed.

Proposition 2. If the subsets A, B of S™ are elementary sets of hypercubes, then
the subsets AN B, AU B, S®\ A are also elementary sets of hypercubes.

ProoF: Let be A = U;1;1 P; and B = U:n=1 Q;, where P; and Q; are pairwise
disjoint.
The proof that AN B and A U B are elementary hypercubes is as for R”.
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We prove that the S™\ A is an elementary set of hypercubes. It is

S\A = ((S™\P),

i=1

where P; = I} x Iy x ... x I,. It is sufficient to show that S™\P; is an elementary
hypercube. Consider S as S® U St U S™, thus the set S™ can be considered as a
set of finite number of elementary hypercubes of the type Ay X Ay x ... x A,
where each A; is an interval of kind 0, + or —. If, for example, the I; is of kind +
and I; = {& = p* : a; < p < B, @i, p, Bi in R}, then the set S; (where S; is a
copy of S in the i-position of the cartesian product S™) could be divided into the
intervals I;, {x = p* : p < a;} and {z = p* : p> bi}.

So the set S™ can be considered as the union of finite number of hypercubes,
one of which will be the P; and consequently the set S™ \ P; will be an elementary
set of hypercubes, as the finite union of pairwise disjoint hypercubes. a

The proofs of the next statements follow in a great length these ones of an
elementary measure theory on R”, so these proofs are given briefly.

Proposition 3. If Py, Py, ..., Py, are hypercubes of S™, there exist hypercubes
Q1, Q2, ..., Qr of S™ pairwise disjoint such that

0 Ur=UQ, (i) PNQ#0=Q,CPh.
i=1 j=1

ProOF: Because the unions of elementary hypercubes can be written as unions of
pairwise disjoint hypercubes, for the proof of the proposition it is enough to prove:
(o) There exist elementary sets of hypercubes 'y, I's, ..., Iy, such that
UL Pi=Uj= T, ANT; #0=T; C P
The proposition (a) is evident for m = 1. Suppose now there exist elementary
sets of hypercubes Ay, A, ..., A, pairwise disjoint such that:

m—1 r
UPi:UAj, PiﬂAj;éﬂiAng,'.
i=1 Jj=1

Put Taj—1 = Aj N Py, Taj = A0 (S™\ Py), j €{1, ..., 7} and T'or41 the set of
the elements of P, which do not belong to the union U;=1 Aj.
Thus, U2, Pi = (U:n:—l1 P)U P = (U;:1 Aj)U P = (U;=1 Aj)Ulzrir =
2r41
Uj:l L.
It remains to show that

P,-ﬂFj;é(Z):>Fngzu (1)

Firstly the subset I'2r41 is disjoint of the sets Py, Ps, ..., Pm—1 and Is contained
mn Pp,.
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We show the relation (1) for I'; (the proof is similar for I's, I's, - - - ['2-1) and
for I'; (as well, the proof is similar for 'y, T'g, ..., I'y,).

It is [y C Ay and as Ay N P; # @ implies Ay C P;, for i € {,2,..,m~— 1},
the same relation holds for I'y.

On the other hand, by supposition, Iy N P; # @ for i € {1, ..., m— 1} implies
Fngi,While FgﬂPm:(b a

Definition 4. For every bounded hypercube P = I} x I x ... x I, of S™ we
define as n-dimensional measure (or simply measure) of P the number m(P) =
(lgh) (g ly)-...- (lg I,), where lg I; = length I; = 3 — a and I; is an interval
with edges the ot 8¢ for o, B in R and &;, ¢! in E.

Remarks 5.
1. The measure is independent of the order of the components of P.
2. If one of the components is a singleton, then the measure is equal to 0.
3. If P, @ are bounded hypercubes with P C @, then m(P) < m(Q).

4. If P is a bounded hypercube and € > 0, then there exists an open bounded
hypercube P’| such that P C P’ and m(P’) < m(P) +¢.

Proposition 6. If P = |JI_, P;, with P; bounded and pairwise disjoint hyper-
cubes, then m(P) = m(P1) + ...+ m(Py).

2.2 Measurable functions of S™

1. Any sum of quasi — real numbers may appear as a sum of a quasi — real
number of kind — and a quasi — real number of kind +, for, every quasi — real
number of kind 0 can be summed up either to the first or to the latter term. So,
every sum of quasi — real numbers would take the form of a couple (o™, 1),
where a, # are real numbers and a~, 8% the sums which we talked about before.
In the case where one or both of the kinds + and — do not exist, then at least one
of the elements of the couple will be of kind 0 or, instead of the couple, will exist
a real number.

Now, on the set S~ x ST we define an obvious equivalence relation ~ as
following:

(awr /3+) ~ (al—a ;BT) <ba"'ﬂ“_‘al“f'ﬁl'

It 1s evident that this equivalence would also be extended to the case where,
either the one of the two elements of the couple is of kind 0, or the couple is
reduced to a real number. So, the couple (a®, 3) corresponds to the class of
a + 3, while the a° corresponds to the class of a . On the other hand, since the
existence of one or even two elements of kind 0 in a couple does not play any role
in the whole theory, from now on we will write (o=, 81) for any case.
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In the present paragraph we symbolize by C(o-, p+) the class of any element
(a=, Bt).
In the set S™ x S*/. define an addition & (simply +) as following:
Cla=,p4) + Clag p) = Cllatan)=, (5+81)%)-
Evidently the operation + is well defined.

2. We recall that if X is a non-void set, a subset C of P(X) is said to be a race
if it fulfils:

1.heC

2. ABeC=A-Be(C thatis AnNB°e€C
3. ABeC=AUBEeC.

If, instead of (3), there holds:

(3) (Vn)A,eC= U A, € C,

n=1

then the set C is called o-race.

If, in addition with (1), (2), (3’) there holds:
(4) AeC—oX\AeC,

then the set Cis called a tribe.

We define as a measurable space every couple (X, B), where B is a tribe on
the set X.

If f is a function defined on a measurable space (X, B) and ranging in an other
measurable space (X1, B1), then f is called measurable function if and only if

(VA € B1)[f~'(A) € B].

Consider the set of the proper intervals of S of any kind and any form. The
set of all the countable unions of intervals of this kind constitutes a tribe which
we symbolize by o5(C).

Analogously we form the tribe o(C) in S™.

Definition 3. A quasi-real function f of S™ is said to be a step function, if there
exists a finite number of bounded hypercubes Py, Py, ..., P,,, pairwise disjoint

such that:
_J o, ffze PR
f(@) = { 0, iffzesm\UL, P
where i € {1, ..., m}, ¢; is a quasi-real constant, not infinite.

If Xp, is the characteristic function of P;, then f is written as f = ¢; Xp, +
o+ CrnXPm~
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Remark 4. If fi, fo are step functions and fi + f2, f1 - f2 can be defined, then
they are step functions, too.

Notation 5. We symbolize:

1. by S(> 0) and S(< 0) the sets {(p, &) € S : (p, £) > (0, 0)} and {(p, £) € S
: (p, €) < (0, 0)} respectively,

2. by E(S™, o(C), S(> 0)) the set of all finite measurable quasi-real step func-
tions of S™,

3. by M(S™, o(C), S(> 0)) the set of all measurable quasi-real functions of S™
into S(> 0).

Proposition 6. Let be (X, C*) a measurable space and f a quasi-real function
of X. The function f is measurable iff the sets

Xo={z€X : f(2) =(p, 0) < (a, 0)} € C*,
for every (a, 0) in S°, and
X ={zeX: flz)=(p &) <(a,§)}eC

for every (o, £) € S™F, are measurable.
Proor: Evident. ]
Remark 7. If f, g belong in E(S™, ¢(C), S(> 0)) or in M(S™, ¢(C), S(> 0)),

then the sum f + g and the product f - g are defined if and only if the kinds of
f(z) and g(x) are not opposite.

Definition 8. Let f = ¢; X1+...+¢,X, be a quasi-real step function of S®, where
Xi, ..., X, are characteristic functions of bounded pairwise disjoint hypercubes
Py, ..., P, respectively. If the numbers ¢1, ..., ¢, can be summed up, then we call
integral of f on S™ the quasi-real number ¢;m(Py) + com(Ps) + ...+ ¢, - m(P,)
and symbolize by [ f.

Proposition 9. Let f1, fo, f be quasi-real step functions on S™ and A € S. Then:
1. If the [(f1 + f2) can be defined, then [(fi + f2) = [ fr + [ fa.
2. If the [ Af can be defined, then [ Af = X [ f.

Evidently, every step function is measurable.

10. We define now a function ®; of the space E(S™, o(C), S(> 0)) into S~ x.S* /.
as following;:
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If f e E(S", 0(C), S(>0)) is of the form f = Y"1~ (as, &) - Xa,, where Xy, is
the characteristic function of A;, then
@1 (f) = Ca-, p+)

iz a7, m(Ac,) (resp. gt = Z;"zeﬂ aj”p -m(Ae,)), where A, (resp.

A.,) are hypercubes of kind— or 0 (resp. 4+ or 0).

where a™ = )

Proposition 11. Let be f, g in E(S™, ¢(C), S(> 0)). There holds:

1 ®1(\f) = A®y(f), for every A € S°.
2. If f+ g can be defined, then

@1 (f +9) = @1(f) + 21(9)-
3. If f < g, then &1 (f) < ®y(g).

ProoF: 1) In fact, let be f = Y°7", (o, €)i X4, and @1(f) = Claz, at) » Where
ap = yimi(@)e,m(Ae,) and of =Y L (af)e,m(A,).
A®1(f) = AC(a- at) = Clrar rat) and
A=Y (A, €)iXa,, hence
P1(Af) = Cirar, aat) = P21 (Af) = A0 (f).

The proof of (2) and (3) is analogous. =

Remarks 12. (1) We could transfer the notions of the almost everywhere equal
functions or of the functions of the same measure, or of the functions which are
almost everywhere continuous, for two functions which are equal or they are of
the same measure in domains which differ in sets of measure 0, or for functions
which are continuous in a set and discontinuous in another of measure 0. Besides
if two functions differ in a set of measure Oand the first is measurable, then the
other will be measurable too.

(2) We remark that each class C'(q- g+) corresponds to a real number, the number
a +  and hence the values of f; also correspond to a real number.

13. Now we attempt to define an integral for arbitrary measurable functions.

Consider a function f € M(S™, ¢(C), S(> 0)) and for every z we symbolize
by f°(z) the real projection of f(z). (That is, if f(z) = af € S, f°(z) = a). In
this way, in such a function f we assign a real function f°, which we will call in
the present section, the real part of f.

Proposition. The real part of a measurable function is a measurable function,
too.
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PrRoOOF: Let be f and f° as above and E an open subset of S. The set E is the
union of elementary hypercubes , say (/;)ier. The inverse image of I; via f, is a
measurable set in S, while the (f°)~(I;) differs from f~!(I;) possibly at the end
points of I;, that is, it remains measurable. 0

Proposition 14. For every function fO (real part of a measurable S-function f
on S™), there exists a sequence (f°)i of real step functions with the same domain,
converging to f°.

PROOF: As it is known by the proposition of 13, there exists a sequence (f_io),-em
of real step functions defined on R", converging to the restriction of f* on R™.
We extend each f{ on S™, by putting for every r € R", f2(r) = fX(r), and
Fet)y=R07) =) ‘

So, we define the (f°)i;en corresponded to (f?)iemw, which also converges to

fo. 0

Definition 15. Consider a function f € M(5™, ¢(C), S(> 0)), which has kind ¢

(where € € {+, —}) or 0 everywhere but a set of measure zero; let be f° its real part

and (f2),emn the sequence of the step functions which converges to f° (according

to Prop. 14). For this sequence it is meaningful the function 81 (Defin. 10).
Define a function ® : M(S", ¢(C), S(> 0)) = S~ x St/ ~ with value

O(f) = (sup ®1(f2))*,

where ¢ is the kind of f.
Symbolize ®(f) = [ f(z)dm(z).

2.3 Properties of measurable functions
Proposition 1. Fvery continuous function of S inlo S is measurable.

ProOF: Since the tribes defined on the domain and the range of the function
coincide and the function is continuous, the proof is evident. m]

Proposition 2. Let (fi)iew be an increasing sequence of measurable step func-
tions of S™ and f € M(S™, o(C), S(> 0)) such that f < sup; f;.

Then p1(f) < sup; Bu(fi)-
ProoOF: We prove it in two steps:
1st step Let f = (a, £)Xa, where (a, £) > (0, 0) and A € ¢(C). (If (a, &) = (O,
0) , then the results are evident).

We also suppose (p1, 0) < (e, €) and (p2, &) < (a, &), & # 0. Now, since the
functions f; are measurable, we have (Prop. 6)

[fi > (p1, O)]o ={z € 5™ : fi(z) = (p,0) > (p1, 0)} € 0(C)and
[fi > (p2, )=, +) ={z € 5" : fi(z) = (p, &) > (p2, &)} € 0(C).
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Next, we construct an increasing sequence of elements of ¢(C) as follows (for
notation see Prop. 6):

Ai = AnA[fi > (p1, 0o U[fi > (p2, €)](-, 1 }-

It is J; Ai = A and m(A) = sup; m(4;).
But

®1(fi) > (p1, O)m(AN[fi > (p1, 0)]o)
+(p2, E)Ym(AN[fi > (p2, &)~ +))-
In fact, putting X, = I(A;), and (p, €) = pt, it is:
> P IANLS 2 p00) + 05 1(ANLf > 5512, +)
and @2 (1A O f 2 pflo) + 55 T(ANLf 2 8- 1)) =
= pm(AN[fi > plo) + o m(An[fi > p§ ], 1),
Since (p, 0) < (e, &) and (p2, &') < (a, &), we have:
sup ®1(fi) > (o, §)m(A) = ®1(f).

2nd step Let now f = > (o, )k I(Ax), where the sets Ay are pairwise disjoint

and belong to o(C).
According to the 1st step, and since f; - I(Ax) and f - I(Ax) are, respectively,
the restrictions of f; and f in A, there holds: .

Slzpq’l(fi I(Ag)) > @1(f - 1(Ak)).

On the other hand,
fi > 3 fi - I{Ax), hence

@1(fi) > 3k ®1(fi - I(Ax)), that is
sup; ®1(f;) > sup; Zk Q1(fi - 1(Ax)) =

- Zk sup; ¢ (Ak))
because the sequence @1 (fi - I(Ak))ien is increasing.
ThUS, Supz fl > Zk‘ f [ Ak)) (f) ' 0

Proposition 3. The integral of a positive measurable function is zero if and only
if this function is almost everywhere equal to zero.

PROOF: Let be f € M(S™, 0(C), S(> 0)) and f # 0.
We have:

Urlf >

= £ 0l UULS > (% )]<_+)
Ukl

[f #0] ( 2
= (%> )]oU[f>(% )=, +)-

L
v
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The sequence of the sets: ([f > (
hence m([f # 0]) = sup, m([f > (%, (=, 4))-
Besides, we have:

1 1 1 1

F2 (50 1 2 (5 000) + (5, ) I(F 2 (5 -, )y

>~

hence

[ s> G 0mr 2 (5 Olo) + (5 Hmll > (Dl )

L Ol > (3, Olo) + (5, HmllF 2 (1, +i- ),

which implies m([f > (4, 0)]o) = 0 and m([f > (4, +)](-,+)) = 0, that is,
m([f # 0]) = 0.

Conversely, if m([f # 0]) = 0, then [ fdm = 0.

In fact, f < supy k- I([f # 0]), hence [ fdm < sup; k- m([f # 0]) = 0, that is
ffdm =0. m}

[

0> (

3 A generalization on the extension of a real func-
tion

In this last section we give a generalization of Theorem 6, §1.
Notation and definitions 1. Let (E, <) be a structure of partial ordering
without jumps and with the topology of the open intervals on it; (E, <) is the
well known MacNeille’s completion of the given structure. (For the completion
one may see in [1] p. 126). For each cut (A, B) we symbolize by (A;)ier, (Bj)jes
the decompositions into up-directed or down-directed, maximal by containment,
subsets of A and B respectively. For each e € E we symbolize by (Af)ier, (Bf)jes
the decompositions into up- and down-directed maximal by containment subsets
of the sets ] «— e[, Je — [, respectively.

We say that the real function F has limit in the cut (A, B) at the direction A;
the number [ € R, if and only if

(Ve > 0)(Fzo € Ai)(Va € Ai)[wo <z — |F(z) — 1| <¢]
(li‘m F(z) =1 by symbols).

Analogous is the definition for the limit at the direction B;.
We say that the real function F' has limit in the point e € E at the direction
AS when x tends to e and © # e, the number | € R, if and only if

(Ve > 0)(Fzo € A)(Ve € A])[zo <z — |F(z) = 1| <¢]
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(symb. A:lyuxn# F(z)=1).

Analogous is the definition for the limit at the direction Bj, when x tends to
eand z # e.

Theorem 2. We consider a real function F' defined on a partially ordered set E,
without jumps and carrying the topology of the open intervals. If F' 1s monotone
and has a limit in each Mac Neille’s cut (A;, Bj) at all the directions A;, 1 € I,
Bj, j € S and it has a limit in each e € E at all the directions Af, 1 € I, B,
J €S, when z tends to e and z # e, then there exists a completion Eku of E, mto
which F' can be continuously extended to a real function F.

ProoF: Following the above symbolisms, consider the Mac Neille’s completion
E of E. Next, on the set £ we consider for each e € E the decompositions
of ] «—, e[ and ]Je, — [ into maximal directed sets, which have no ends. Put
E(E) = E_(E) UE4(E), where Z_(E) (resp. E4(FE)) is the set of the right
directed subsets of | +— e[ resp. left directed subsets of Je — [).

The set Ey, = EUE(E) is an extension of E', which is ordered by an extension
of the given <; to do that, it is enough, for each # € E_(e), # = A; or ¢ = A
(referring to a cut (A;, B; )( yor (A, Bf) (i, j)), one to put z < (4;, Bj) orz <e.
(Analogous results are for z E E4(e), ¢ = Bj or x = Bf). 0O

Definition of F. If ¢ € E, we put F(z) = F(z).

Let « € E\E. Then z is a cut (A = (A;), B = (B;)) which is a gap and there
exists the limit of F' at all the directions. Because of the monotony of F' we have
that, if lima, F'(z) = l; and limp, F () = m;, then l; <m;.

Put F(x) = e, with [; < e < mj foreveryie I, j €S

Let now 2 = A} € Ejy be aright directed subset of some ] +—, e[, without end.
The trace A; of A} on E will not have an end, too. If e € E, then, by supposition,
there exists the lima; F(z). If e ¢ E, then A; belongs to a Mac Neille’s cut, which
is a gap and, by supposition, there exists the limy,; F(z), too. In both of the cases,
if 1 is this limit, we put F(z) = [.

Analogously we define the F'(z), when x = Bf is a left directed subset of Je — [
without end.

The function F is an extension of F.

We will prove its continuity.

If e € E, the continuity is obvious.

Ife € E, Fle) =l and e = ((4)i, (B;);) € E, then limy, F(z) <1 <
limp; F’(:c) and hence there will exist o; € A;, b; € B; such that

(]az»ﬂj[) clr (az) F(ﬁ])[

Now, let e € Exy \ E say e = A}, a right directed subset of E. The set Al will
belong to the decomposition ((A;);, (B;);) of an = € E, and then there will hold
F(e) < F(x) = L. It is obvious that the trace A; on E of A, will have an element
a; € A;, such that F(a;) = F(a;) < F(e) and hence F(Jas, z[) C1F(ay), F(z)].
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The monotony of F is evident.
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