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Fast growing sequences of partial denominators 

CHRISTOPH BAXA 

Abstract. It is common knowledge that numbers with a fast growing sequence of partial 
denominators are transcendental. Several versions of this fact have been used repeatedly 
in the past. We give a rather general one which can serve as a convenient technical tool. 

1991 Mathematics Subject Classification: 11J70, 11J82 

1 Preliminaries and a Theorem 

We will use the following notations: If a0 G 2 and ai , a2, as, . . . G N, then 

a = [a0; a i , a2, a3, ...] 

serves as a short notation for 

1 
a = a0 + 

a 3 + 

As usual, we set &*- = [a0; a\) . . . , an] for n > 0, where (pn), qn) = 1. Then the 
recurrence relations Pn+i = an+ipn + P n - i and qn+\ = a n+ig n + gn_i are valid 
for n > 1. Our proofs will heavily depend on the following theorem. 

Theorem 1 (A. Bakerfl]). Let a G C. K > 2 and let K be an algebraic number 
field. Suppose there exists a sequence ((,j)j>i of pairwise different elements in K 
such that 

l«-6KIIfe)-K 

for all j > 1, whei^e H((j) denotes the height of £j. Then a is transcendental. If 
further 

log 17(^+1) 
hmsup 6 ^ y y <oo, 
j^oo logH(^) 

then a is a S- or T-number according to Mahler's classification. 

This is a generalization of the celebrated Thue-Siegel-Roth Theorem. The 
following Lemma is a basic fact from the theory of continued fractions. We include 
it for convinience. 
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Lemma 2. Let /, n G N. Then 

a n + i a n + 2 . •. an+i > -k±-- > ( a n + 1 + l ) ( a n + 2 + 1 ) . . . (a n + . + 1) 

> 2 / a n + i a n + 2 • • .an+i 

P R O O F : Use induction on / and the above mentioned recursion formulae. D 

We now proceed to our main technical lemma. 

Lemma 3. Let K > 1. Assume that qn < an+l and 2 ^ " 1 ) / 2 < a n + / . Then at 
least one of the following inequalities holds: 

K{1+1) . K(l+1) . K(l + 1) . 
an + l > ^ n , a n + 2

 7 > _n+l, . . . , «„+! > _ n - t f - l -

P R O O F : Lemma 2 implies 

qnqn+i • • • qn+i-i < qn • (2a n + ig n ) • ( 2 2 a n + 2 a n + i g n ) • . . . • ( 2 / _ 1 a n + / - i . . . a n + i g n 

_ 9 i+2+ . . .+( / - l ) J J-i J-2 
~ l K ,qnan + lan+2'-'an+l~l 

<C 9 ' ( ' - l ) /2 J " * J~2 n , nKl 
<*K " a n + 1 a n + 2 . . . a n + / _ i a n + / 

/ J-l 1-2 „ K{1+1) 
< an+lan+2'--an+l-la

n+i 

Assuming 

< ( a n + 1 a n + 2 . . . a n + / _ i a n + í )
j (/+1I 

кџ+i) . кџ+i) ^ кџ+i) ^ 
a n ^ < qПì an^2 < a n + ъ . . . , a n | ^ ; < an+.--i 

leads to 

( a n + i a n + 2 . • .an+i) ( + 1 ) < qnqn+i • • .g n +J-i, 

a contradiction. D 

The announced theorem is now proved by appealing to Roth's theorem. 

Thorem 4. Let a = [0; a\} a 2 . a3, . . . ] . Suppose there exists I G N, K > 0 
and a strictly increasing sequence (nj)j>\ of positive integers with the property 
qnj < a n

c

+ / . Then a is transcendental. 

P R O O F : As qnj < a^.+ / < anj+i whenever 0 < K < 1 we may restrict ourselves to 

K > 1. From lirry^oo qnj = oo we see that 2 /( /- 1)/ 2 < qn. < a^j+l for sufficiently 

large j . Thus, we may assume 2l^h^2 < a * + / for all j G N without loss of 

generality. By virtue of Lemma 3 there exist infinitely many mj G N (j = 1, 2, 3, 

. . .) such that a m . + 1 > qmj. The assertion is a consequence of 

Pmj 
a -

qm3 

amá+iqmj 

_ < Q~2-l/(Kl+K) 
o — Чmj 

and Theorem 1. 
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Remarks and Further Results 
. The condition qnj < aK.+l for a K > 0 and all j > 1 is just another way of 

expressing 
logan+, 

limsup — > u. 
n-j-oo l o g g n 

If a is an algebraic irrational then 

logan+j logan + / 
lim — = hm sup — = 0 

n->oo l o g a n n->oo log qn 

for all l e N. 

!. Let a be an algebraic irrational. Then for any positive integer / and any 
positive real number K there exist just finitely many indices n such that 
an+i > tfn- Using results of [3] or their sharpenings in [2] and [5] a bound 
for the number of n can be given. 

T h e o r e m 5. Let a be an algebraic irrational of degree < d and K > 1. Let 
h(a) denote the absolute height of a. The number of n, for which aK

+1 > qn 

is satisfied, is bounded by 

i TTTT7^\ log+logft(tt) + 2 • 105 • K5(logJ)2log(200K2logJ), 
log(l + 1/A ) 

where log"1" x — max{log£, 0} for x > 0. 

P R O O F : Each such n renders a solution (p, q) of the inequality \qa — p\ < 
q-i-i/K rp^e bound follows from Theorem 3 in [5]. Q 

Note that this is not the same height function as above. Whereas H is the 
field height as defined in [1], h denotes the absolute height as used in [2] and 
[5]. The bound So which is employed in Theorem 3 in [5] may be replaced by 
min{l, 6/\/28} = 1 by virtue of Theorem 2 in [2] and a remark to be found 
a few lines above. 

Corollary 6. Let a be an algebraic irrational of degree < d and K(l + 1) > 
1. Let h(a) denote the absolute height of a. The number of n, for which 
an+i ^ Qn is satisfied, is bounded by 

\og(l+l/\Kl+K))1 l o S + l oS M*) 

+2 • 105 • /(/ + l ) 5K 5 ( logd) 2 log(200K2(/ + l)2logrf). 

P R O O F : Each index n, for which aK,t > qn is satisfied, gives a solution of 
the inequality \qa — p\ < q-l-1/(Kl^K) by virtue of Lemma 3. As above, 
a bound for this number follows from Theorem 3 in [5]. The number of n 
which are related to a pair (p, q) is bounded by /. D 
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3. Let pmj) qmj be as in the proof of T h e o r e m 4. T h e second p a r t of T h e o r e m 
1 yields t h a t 

,. l o g g m . + i 
h m sup — - — < oo 

j->oo logqmj 

implies t h a t a is a S- or T-number . 

4. Among the numbers to which T h e o r e m 4 applies are also Liouville-numbers 
and therefore U-numbers (choose e.g. a n + i > a™ for n > 1). 

5. Recently J . L. Davison a n d J . O. Shallit [4] proved the t ranscendency of Ca-
hen's constant C by exploring its continued fraction expansion. C a h e n ' s 
constant can be defined as follows. Let So = 2 and S n + i = Sn — Sn + 1 for 
n > 0 then 

' ( - i ) j 

C = Ľ 
j=o 

as Let a 0 = 0, ai = 1 a n d a n + 2 = g n for n > 0, then C = [0; a 1 ? a 2 a 3 , 
was shown in [4]. Obviously qn < a n + 2 and the transcendency of C is an 
i m m e n d i a t e consequence of T h e o r e m 4. According to L e m m a 3 at least one 
of the inequalities a n + 1 > qn a n d a n + 2 > qn+l holds for all n. As 

l ° g ? m i + 1 < l o g g m i + 3 < log 4 + 5 1 o g g m j 

t h e n u m b e r C is a S- or T-number . 
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