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Jumping Nonlinearities and Mathematical 
Models of Suspension Bridge 

PAVEL DRÁBEK 

Abstract. In this paper we study the mathematical model of suspension bridge proposed 
by Lazer and McKenna. It is one-dimensioned nonlinear beam equation with damping. 
We use the previous results of Fucfk and Krejci concerning the boundary value problems 
with jumping nonlinearities in order to explain large oscillations of the bridge. 

1991 Mathematics Subject Classification: 35B10, 70K30, 73K05 

(Dedicated to the memory of Svatopluk Fucik) 

1 Introduction 

Let us consider the periodic-boundary value problem for the beam equation 

( utt + EI uxxxx + Sut = -ku+ + W(x) + ef(x, t), 
u (0, t) = u (L, t) = 1^(0, t) = uxx(L, t) = 0, (IT) 

u(x, t + 2ir) = u(x, £), — oo < t < oo, x G (0, L). 
This problem can be regarded as a model of suspension bridge under the following 
simplifying assumptions: We assume that the bridge is one-dimensional, vibrating 
beam, supported above by cables whose restoring force due to elasticity is pro­
portional to u+ = max{u, 0}. Here u = u(xy t) is the displacement at a point at 
distance x from one end of the bridge at time t and u is measured in the downward 
direction. Simultaneously, we assume that a cable does not exert a restoring force 
if compressed. The meaning of the given constants and functions is the following: 

E Young's moduls 
I moment of inertia of the cross section 
8 friction coefficient 
k elastic coefficient of the cable 
W weight per unit length of the bridge pushing it down 
ef external time-periodic forcing term (due to the wind) 
L length of the bridge 

This model was introduced in the work of Lazer and McKenna [8] and then it 
has been studied in several papers (see e.g. Lazer and McKenna [9], [10]], Glover, 
Lazer and McKenna [6], McKenna and Walter [11], Fonda, Schneider and Zanolin 
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[4]). It should be emphasized that the problem (1.1) does not describe the complex 
behavior of the bridge: the motion of the main cable and the towers is ignored, 
the coupling of the main cable and the roadbed is neglected and also the torsional 
oscillations of the roadbed are not considered. 

The purpose of this paper is to explain on the simple model (1.1) some unex­
pected phenomena occuring in connection with the collapse of the Tacoma Narrows 
suppension bridge. The novelty with respect to the previous papers mentioned 
above consists in the fact that we consider here the beam equation (1.1) with 
nonzero friction coefficient S > 0 and concerning the existence result we do not 
assume any kind of symmetries (like in [11]). It fits very well with reality that we 
obtain unique solution in the case e = 0 (there is no wind) and multiple solutions 
for special W(x) and f(x) t)) whenever 6 ^ 0 . More general functions W(x) and 
/ (# , t) are considered in the forthcomming paper Berkovits, Drabek and Mustonen 

[-]• 
Acknowledgement . This paper is dedicated to the memory of professor Svato-
pluk Fucik who died 15 years ago. The notion of jumping nonlinearity introduced 
and studied by Fucik is one of the most important tools in dealing with this simple 
but instructive model. The author is proud to be a pupil of professor Fuci k and 
he is grateful for everything what professor Fuci k tought him during the studies 
at Charles University in Prague. 

2 Preliminaries 

By making a change of scale of variable x we can transform the periodic-boundary 
value problem (1.1) to 

{ utt + OL2UXXXX + f3ut + k u+ = W(x) + ef(xy £), 
1/(0, t) = u (7T, t) = uxx(0, t) = UXX(TT, t) = 0, (2.1) 

u(x, t + 2TT) = u (a,, t), - oo < t < oo, x £ (0, n) 
with a 7- 0, ft > 0. (We write again k, W, e and / for rescaled k, IV, e and / . ) 
We will work with the generalized solution of (2.1). 

Let H = F2([0, 7r] x [0, 27r]) be the usual Hilbert space and let V stands for all 
smooth functions v : [0, n] x IR —> IR satisfying the boundary conditions in (2.1). 
Let ^ be a continuous real function defined on IR and suppose that there exist 
ai , 02 > 0 such that 

WO I <ax+a2KU€R. 
Let h G H. A function u £ H is called a generalized solution (GS) of the beam 
equation 

utt + OL2UXXXX + ftut + ip(u) = h 

(with periodic-boundary conditions from (2.1)) if and only if the integral identity 

27T IT 

f f u (vtt + a2vXXxx - ftvt)dxdt = 
0 0 
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= f0
2"fZ[h-rP(u)]vdxdt 

holds for all v G V. 
The system 

{eintsmmx;n €Z,me N} 

forms a complete orthogonal system in II = II + %H and each u £ H has a 
representation 

oo oo 

u(x,t) = ^jP ^ unmetntsinmx, 
n = —oo m = l 

where the convergence of the series is considered in the space H. Here 
oo oo 

2^ X ^ \Unm\2 < °°» w - n m = Unm 
n = —oo m = l 

(see e. g. Berkovits, Mustonen [1]). Let p, r G N U {0}. Define 

oo oo 

H?'r = {heH; Y, ^ ( » 2 r + m 2 " ) | h „ m | 2 < o o } . 
n = —oo m = l 

Then Hp>r with the norm 
oo oo 

h\\H„r = ( J2 X > 2 r + m2p)|/i„„ 
n = —oo m = l 

is the Sobolev space (see e.g. Vejvoda [12]). 
The starting point are some basic properties of the linear beam equation 

utt + oc2uxxxx + j3ut - \u = h. (2.2) 

If {unm} and {hnm} are Fourier coefficients corresponding to u and ft, respectively, 
then u is a GS of (2.2) if and only if 

(i/3n -f a 2 m 4 - n2 - A)nnm = hnm (2.3) 

holds for all n G Z, m G N. 
Put 

jVA = {(m, n) G N x Z ; a 2 m 4 - 7 ? 2 - A = 0}, 

5 = {AGlR;yVA^0}, 

a- = {AGlR;A = a2(74, g G N } . 

Then <r C S and some important properties of (2.2) can be proved. 

Proposition 2.1. Let A G R,. Then the equation (2.2) has for arbitrary h G H a 
unique GS u £ H if and only if \ £ a. If \ (£ a then the mapping 

Tx : H -+ H, Tx : h -> u, 

tvftere n 25 £fte unique GS O/ (2.2) ws£ft lfte n#ft£ ftanJ side ft G H, ftas £fte following 
properties: 
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(i) FA is linear and Im T\ C C([0, w] x [0, 2TT]); 

(ii) Fx : H —> H is compact and for its norm \\T\\\ we have 

11^11 — m&x{dist(X, S), min{/?, dist(X, a)}} ~ 

— 1 . 
~ m\n{dist(X)a), m a x { ^ dist(X, S)}} ' 

(iii) The mappings 
mbTx: H -> C([0, *r] x [0, 2jr]), TA|C([O,^]X[O,2»]) : C([0, x] x [0, 2T-]) -> 
C([0, TT] x [0, 2*]) 
are compact to. 

(iv) Ifp, r GNU{0} tten T\(m>r) C HH-2,r+i 

The proof follows the lines of the proof of Theorem (2.4) in Fucik [5] (see also 
[2])-

Following the ideas from Propositions 2.1 and 2.2 in [5] we get the "regularity 
property" of u £ H2,1. 

Lemma 2.1. Let u £ H2*1. Then 

(fiu+ -vu~)eH1>1 

for any real numbers \x and v. 

The following assertion justifies the reduction of the beam equation to the 
fourth order ODE in some special cases. 

Proposition 2.2. Let (/i, v) £ -R2, u £ H and h £ H1,1, h independent oft. 
Then u is GS Of 

utt + o?uxxxx 4- put = fiu+ - vu~ 4 h(x) 

if and only if the function u is independent of the variable t and u(x) = u (x, t) 
is a classical solution of the boundary value problem 

a2u/4I = /ii*+ — vu~ 4- h in (0, 7r), 
u (0) = u (TT) = u"(0) = U"(TT) = 0. 

(For the proof see [5] or [2].) 
Combining Proposition 2.2 and Theorem 3.8 from Krejci [7] we get the following 

characterization of the Fucik's spectrum of damped beam operator. 

Proposition 2.3. Fbe set of all (/i, v) £ Ft2 such that there exists a nontrivial 
GS u of the equation 

utt 4- oc2uxxxx 4 put ~ p,u+ — vu~ 

is a system of continuous curves {Sf, S~;i £ N} such that 
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(i) 5 + = {(a2 , v);v G R}, Sf = {(/., a 2 ) ; ^ R}; 

(ii) 5 + , 5 - C ( 0 , o o ) x ( 0 , oo), t > l ; 

(iii) Sj~ is symmetrical to S~ with respect to the straight line fj, = v. If i is even 
then Sj~ = S~; 

(iv) for each i £ N we have 

( 5 + U 5 - ) n ( 5 " +
1 u 5 - + 1 ) = ^. 

R e m a r k 2 .1 . In particular, this means that the equation 

utt + c?uxxxx + /3ut = iiu+ 

has only trivial GS for any fi £ IR. 

3 Main results 

We have the following basic existence result. 

T h e o r e m 3.1. Let e £ R, k > 0, We L2(0, TT), / E H. Then (2.1) hat at least 
one GS u £ H. 

PROOF: The generalized solvability of (2A) is equivalent to the existence of u 6 H 
solving the operator equation 

u - T0(fc u+) - T0(W + ef) = 0 (3.1) 

with To from Proposition 2.1. Hence, to prove the assertion, it is sufficient to show 
that 

deg[G;BR(0)}0}^0, (3.2) 

where "deg" denotes the Leray-Schauder degree, G : H —> H is defined by 

G(u) = u - To(k ti+) - To(W + ef), 

and BR(0) is the ball in H centered at the origin with sufficiently large radius 
R > 0. To show (3.2), consider the homotopy 

U(r, U) = u - T0(rk u+) - rT0(PV + e / ) , 

u £ H, r 6 [0, 1]. Assume that there are {t/n} C H and {rn} C [0, 1] such that 
\\v>n\\H -> co and 

W(rn , i i„) = 0. (3.3) 



14 P.Drabek 

Passing to suitable subsequences, we may assume Tn —•> To £ [0, 1], vn = rr^-n 
v0 £ I1 (weakly). Due to the compactness of To : H —> H, we have t;n —>• fo 
(strongly) and after the limiting process we get from (3.3) that To and v0 verify 

v0 - T0(rok t;+) = 0. 

This is equivalent to the fact that v0 is GS of the equation 

vtt + ®2vxxxx + f3vt = -Tok w+. 

But this contradicts Proposition 2.3 (see Remark 2.1). • 

T h e o r e m 3.2. Lel k > 0, e = 0 and IV 6 H1' *, W independent oft. Then (2.1) 
has unique GS uo £ H which is independent oft. 

PROOF: Due to Proposition 2.2 any GS of (2.1) with e = 0 is independent of time 
t and u0(x) = uo(-£, £) is a classical solution of 

a2u^ = -fcu+ + IV in (0, rr), ( . 
u(0) = U(TT) = U"(0) = U#/(TT) = 0. l j 

The uniqueness of this solution follows from the monotonicity of the operator 

u H+ a2u^ -f- k t/+. 

Corollary. A55t/me zn Theorem 3.2 that W(x) = IVo f= nonzero constant). Then 
the corresponding GS u0 £ H is positive, symmetric with respect to the line x = f. 
an J satisfies 

M * ( 0 , < ) > 0 , (tioMir, *) < 0. (3.5) 

P R O O F : Since wo is a classical solution of (3.4), we can apply Lemma 5 from 
McKenna and Walter [11] together with a simple shift of variable 
_(_:=_ + §). a 

T h e o r e m 3.3. Lel e £ R, k > 0, W(x) = IV0, / £ H1,2. Then lhere is e0 > 0 
5ach that for \e\ < eo the problem (2.1) has positive GS u £ H3'3 which is "close" 
to u0 from the Corollary. 

P R O O F : Let us go back to the assertion (iv) of Proposition 2.1. Let us assume 
that h £ Hp'r and u = Txh with A £ a. Then due to (2.3) we have u £ Hp+2' r+1 

and 

oo oo 

E E("2r+2 + ™2p+4)Km|2 = 
n= —oo m = l 

Ä ~ (n
2r+2+m2r+4) ,, ,2 / o ^ 

Z_ 2_ ^2n2 + ( a 2 m 4 _ n 2 _ Л ) 2 | " n m | • W-Oj 
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For a2 > 1 we have 

(m2P+4 + n2r+2) < (m4 + n^m2" + n2 r) < 

< ( a 2 m 4 + n 2 ) ( m 2 P + 7i2r) 

and for a2 < 1 we have 

(m2"+4 + n2r+2) < \(a2m4 + n2)(m2" + n2r). 
a1 

Hence it follows from here and from (3.6) that 

H«llffP+-, r+l < 

< 7 E ~ = - o o £ ^ n H ( > m t n ^ - A ) ^ ( ^ 2 P + " 2 r ) i / w | 2 , (3.7) 
rn=l 

where 7 = 1 for a2 > 1 and 7 = -^ for a2 < 1. Let us denote 

ex 771 -J- n 
a n m = 5 9 2 o rry^ « = dist(A, a). 

pznz + (cHm4 — n2 — A)^ 

Then we get 

(i) for n = 0 : a n m = g % ^ $ < J + $ ; 

(ii) for n -t 0 and |c*2m4 - n2 - A| < 1 : 

2n2 + jA[+l |A[ + 3 
a " m - /?2n2 ~ p2 ' 

(iii) for n ^ 0 and |a 2m 4 - n2 - A| > 1 : 

a <- l̂±A + _ <M±1 + 1 
a n m - /?2n2 ^ a 2 m 4 „ n 2 „ A ^ £2 + 1 ' 

It follows from (3.7) and (i)—(iii) that there is a constant c > 0 independent of u 
and h such that 

\\u\\ffP+2.r+l <c\\h\\Hp,r. ( 3 . 8 ) 

Let us denote u£ = Tk{ef), for given / G H1'2. We have u£ £ H3>3 and if 
\s\ < e0 (with sufficiently small e0 > 0) then due to (3.5), (3.8) and the imbedding 

H3>3<->Cl>l{[0}n] x [0,2*]) 

(see Vejvoda [12]) we obtain that u = i_0 + u£ is positive in (0, 7r) x (0, 2*). But 
this implies that u <E H3,3 is GS of (2.1). • 
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Remark 3.1. Let us assume the same as in Theorem 3.3. If there is also some 
other GS u\ £ H3,3, u\ ^ it, then this solution must assume negative values due 
to Proposition 2.3. Really, if tti was positive too, then u\ — u is nontrivial GS of 
the equation 

vtt + ot2vxxxx + /3vt + k v = 0 

which is a contradiction. The question of the multiplicity result of this kind will 
be studied in the forthcomming paper [2]. 

Let us assume, now, that W £ H1, 1 from Theorem 3.2 is of the form 

W(x) = W0smx, x £ [0, 7r]. 

Then the corresponding unique GS u$ £ H is of the form 

uo(x) - 9 ,° , sing, (3.9) 
a- + k 

i.e. no is positive in (0, 7r) and satisfies (3.5). Hence we get the following variant 
of Theorem 3.3. 

Theorem 3.4. Let e £ R, k > 0, W(x) = PVosinx, / £ H1'2. Then there is 
Eo > 0 such that for \e\ < £o the problem (2 + ) has positive GS u £ H3'3 which is 
"close" to UQ defined by (3.9). 

The proof is the same as that of Theorem 3.3. 

Remark 3.2. In the forthcomming considerations we will show that under some 
special additional assumptions in Theorem 3.4 we have the existence of another 
solution which has to assume also negative values due to Remark 3.1. 

Let us suppose that the assumptions of Theorem 3.4 are satisfied, and 

f(x, t) = sin x • sin(l + p) 

with some p £ IR. Looking for GS of (2.1) in the form u(x, t) = v(t) • sin a?, we 
arrive at the following equation for v: 

v" + / V + (a2 + k)v+ -a2v~ = vVo + £sin(l + p). (3 + 0) 

Then the results of [6] show that if e > 0, 

2 n 1 1 
<2< - + Va2 + k a yja2 + k 

and the ratio -^- and (5 > 0 are sufficiently small then the equation with jumping 
nonlinarity (3.10) will have exactly two stable 2n-periodic solutions V{, i = 1, 2, 
one of which (say v\) is "close" to the constant J¥lk and the other (^2) is "close" 
to a nonconstant 27r -periodic solution of 

v" + (a2 + k)t;+ -a2v~ = IV0. 
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Hence u\{x, t) = v\{t)smx is GS of (2.1) the existence of which is guaranteed 
by Theorem 3.4. On the other hand u2{x, t) = v2{t)sinx is the other GS which 
assumes also negative values due to Remark 3.1. 

4 Concluding remarks and discussions. 

Remark 4.1. Similarly as in the papers mentioned in the references, we were 
motivated by an unexpected behavior of the Tacoma Narrows bridge. We consider 
the model which includes nonzero damping term and use some results of Krejci 
concerning the Fucik's spectrum for the fourth order equation. It seems that this 
result published more that 10 years ago was not very well known. 

Remark 4.2. Let us remark that this paper offers a unified view on the behaviour 
of the model (1.1) in certain sence. As it was already pointed out this model was 
proposed by Lazer and McKenna [8] and it has been investigated in a series of 
forthcomming papers. The results showing the existence of large scale oscillations 
of the bridge were proved considering the beam equation with or/and without 
damping. In the case of damped equation the existence of multiple solutions 
considered in Remark 3.2 were known (see e. g. [9,10]) but there was no uniqueness 
result (as in Theorem 3.2) or general existence result (as in Theorem 3.1). Note 
that always a special form of W{x) = IVo sin x was considered. On the other hand, 
in the case of the equation without damping, the multiplicity result was proved in 
[11] under more realistic assumption W{x) == Wo- However, the multiple solutions 
persisted also if e = 0 ("if there is no wind") in this case and it is not "natural". 
Interpretation of the main results. The existence result of Theorem 3.1 
justifies that the problem is well-prosed. Theorem 3.2 asserts that if there is 
no external disturbance (e.g. there is no wind) then the bridge achieves unique 
position determined only by its weight W{x) per unit length. Under some special 
assumptions on W{x) Theorems 3.3, 3.4 show that in the case of small external 
disturbances there is always the solution "near" to the position when the bridge 
is not disturbed. Considerations in Remark 3.2 imply that if W{x) = IVosinz 
and externally imposed periodic function f(x, t) is of special from then there is 
another solution which is "far" from the position of the non-disturbed bridge. 

It is clear that there are still many open questions. Note that the open problems 
posed in [10] are not answered yet. It should be interesting to derive the same 
multiplicity result as in Remark 3.2 but considering W{x) = IVo, e tc 

Note also that the methods of this paper allow to deal with damped beam 
equation without "separation of variables" and the restriction to the second order 
equation (see [6,8,9,10]), and also without the restriction to the spaces of symmetric 
functions (see [11]). 
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