
Acta Mathematica et Informatica Universitatis Ostraviensis

Ladislav Skula
Maximal reflectivity preserving subextensions

Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 1 (1993), No. 1, 59--66

Persistent URL: http://dml.cz/dmlcz/120474

Terms of use:
© University of Ostrava, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/120474
http://project.dml.cz


Acta Mathematica et Informatica Universitatis Ostraviensis 1(1993)59-66 59 

Maximal Reflectivity Preserving Subextensions 

LADISLAV SKULA 

Abstrac t . Let rC be a category with a full reflective subcategory 1Z and let /C be em­
bedded into a category C with the same objects. For some often used concrete categories 
/Cs it is proved that each subextension M/K (M ^ K) of the extension CjK breaks the 
reflectivity of 1Z. 
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0. Introduction 

This pape r deals wi th the following question. There is given a category /C and i ts 

full reflective subcategory 1Z. The category rC is embedded into a category C wi th 

the same objects . T h e main aim of this paper is to show for two very often used 

concrete categories /C's tha t each subextension M/JC (M ^ /C) of the extension 

£ / /C breaks the reflectivity of 1Z (Theorems 2.1 and 3.5). 

In the first case the category rC is the category of all completely regular spaces 
wi th their cont inuous mappings , in which the full subcategory 1Z of all compac t 
spaces is reflective. T h e reflection for topological space X is the embedding flx of 
X into the Cech-Stone compactification (3X. T h e category rC is embedded in to 
the category C of all completely regular spaces bu t wi th the (set) mappings. 

In the o ther case the category rC of all (part ial ly) ordered sets is consid­

ered, where the morph i sms are special isotonic mappings - the "c- mapp ings" 

(f(M*+) C f (M)*+). T h e full subcategory 1Z of complete lattices is reflective 

a n d t he embedd ing jx of an ordered set X into the Mac Neile completion j(X) 

is a reflection for X. T h e morphisms of the category C are the (set) mappings as 

well. 

It follows from these results tha t the class of the morphisms generally used in 

the category of topological (completely regular) spaces - the class of the continuous 

mappings - cannot be extended by further (set) mappings without breaking the 

Cech-Stone compactification reflection. 

In a similar way, we cannot add (in case of the ordered sets) to the class of the c 

mappings further (set) mappings if we want to preserve the Mac Neile completion 

reflection. 

T h e "abso lu te" view on this question is also ment ioned (1.5) bu t it seems to 

be , from the point of view of this direction, less interest ing . 
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In this paper basic knowledge of the category theory is used ([5], [3]) and we 
denote by 0(C) and M (C) the class of objects of a category C and the class of 
morphisms of C, respectively. 

Further, we recall a notion of the reflective subcategory: 
Let 1Z be a full subcategory of a category C. (In this paper only full re­

flective subcategories are considered.) An IZ-reflection for a /C-object X is a 
morphism px G Horn A: (X, R(X)) (R(X) £ 0(R)) such that for each 1Z ob­
ject Y and each morphism / £ Hom/c (X, Y) there exists a unique morphism 
/ £ Horn*; (R(X), Y) with the property / o px = / . The category 7Z is called a 
reflective subcategory of K if there exists an 1Z reflection for each rC-object. 

1. Reflectivity Preserving Subextensions 

1.1. Defini t ion. Let 1Z be a reflective subcategory of a category K with px £ 
Hom/c (X, R(X)) an 7^-reflection for a rC-object X, and let rC be a subcategory 
of a category C with O (K) = O (C). 

Let M be a subcategory of C and let K be a subcategory of M. The category 
M is said to be a reflectivity (of1Z) preserving subextension of the extension C/K 
if for each X £ 0(K) = O(M), Y £ 0 ( f t ) , / £ HomM (X, Y) there exists a 
unique morphism / £ HomJVf (R(X), Y) such that f o px = / . Briefly we can 
say that M is an RP-subextension (of C/K). 

If 1Z is a full subcategory of M with 0 (1Z) = 0 (7£), then M is an RP-
subextension if and only if1Z is a reflective subcategory of M with R-reflection 
px X -> R(X) for each X £ 0(TZ). 

Clearly, K is also an RP-subextension of the extension C/K. 
If JVf is an RP-subextension of C/K an JV si not an RP-subextension for each 

subcategory Af of £, M is a subcategory of Af, M 7*- JV, then AA is called a 
maximal reflectivity (oflZ) preserving subextension of the extension C/K or briefly 
a maximal RP-subextension (of C/K). 

The following two examples show variety of the number of maximal RP-sub-
extcnsions. 

1.2. Example. Let 0(/C) = {X, F , Z} , 0(71) = {F, Z} , 
M(rC) = {ix, *y> «z, p}, M(1Z) = {zy, * z} , where ix, iy , ^z are identities on 
X, F , Z and D is a morphism from X to F . In this way the categories K and 1Z 
are defined, 1Z is a reflective subcategory of AC, D : X —> F is an 7£-reflection for 
X. 

Let M. be a non-empty set, M D M(rC) = 0. We define the category CM as 
follows: 0 ( £ A < ) = 0(AC) = {X, F , Z} , M ( £ ^ ) = M(rC)U Af U {/}, where / is a 
symbol not belonging to the set M (rC)U M. The elements from M are morphisms 
from F to Z and / is a morphism from X to Z. For each ?n £ M we have mop~ / . 

We define a subcategory £.M (ra) of £ ^ for each m £ M as follows: 

0(Cм(m)) = 0(Cм) = {X,Y,Z}, 

M(Cм(m)) = M()C)U{m,f}. 
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Then {CM ( m ) : m £ M] is the set of all maximal reflectivity of 1Z preserving 
subextensions of the extension CM/^-

1.3. Example. Let I be a non-empty class and J a subclass of I. We define the 
following categories /C, 1Z, £, C(J) as follows: 

0(K) = O ( £ ) = 0(C(J)) = {X, Y} U {Zt: » € / ) , 

0(K)={Y}U{Zt: t€l},M(IC) = {p}l){iu: U eO(IC)}, 

M(Tl) = {iu: UeO('R.)},M(C) = M(IC)U(j{ft,gl,hl}(ieI) and 

M(C{J)) = M(JC)U\J{ft,gl}(ieI)U\J{flthl}(leI-J). 

The mentioned symbols are mutually different. The symbols it are identities on 
U's, p e Hom/c (X, Y), fL £ Hom£ (X, zTt), gt, h4 E Horn/: (F , Z () and gt o p = 
hL o p — ft (L G I). The categories 1Z, /C, £ (^7) are subcategories of £. 

Then 1Z is a reflective subcategory of AC, p : K —> F is an ?Z- reflection for X. 
For each subclass J C I tfhe category C(J) is a maximal RP-subextension of C/K 
and for each maximal RP-subextension M of C/K there exists a subclass J C I 
such that JVf = £ (J). 

1.4. N o t e . We investigate this question about adding of further morphisms 
preserving reflectivity in a "relative" form. A little contribution to the "absolute" 
view of this problem is given in the following assertion. 

1.5. Proposit ion. Let 1Z be a reflective subcategory of a category K. Then there 
exists a category C such that K is a subcategory of C, 0(K) ~ 0(C), K ^ C, and 
C is an RP-subextension of C/K. 

PROOF: Let O = {U>XY : K, F 6 O (K)} be a class mutually different symbols not 
belonging to M(K). Define the category £ in the following way: 

O ( £ ) = O(rC),M(£) = fiUM(£), 

Hom£ (X, F ) = Horn*: (X, F ) U {WXY} for each X, F <= O (K), 

for X, F , Z £ 0(C), g <E Hom £ (X , F ) , / e Hom£ (F , Z) let the following 
qualities be satisfied: 

WYZ ° 9 ~UXZ = /°WXY 

and let K be a subcategory of £. 
Then the category £ possesses the required properites. D 

2. The Cech-Stone Corapactification 

In this section we shall denote by 

K the category of all completely regular spaces with the continuous mappings, 
1Z the full subcategory of K of all compact spaces, 
£ the category of all completely regular spaces with the mappings. 
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It is a well-known result of Cech ([1]) and Stone ([6]) that K is a reflective 
subcategory of K and for a completely regular space X the embedding fix from X 
into the Cech-Stone compactification fiX is an /^-reflection for X (s. also Herrlich 
[2])-

2.1. Theorem. The category K is a maximal reflectivity of 71 preserving subex-
tension of the extension C/tC. 

PROOF: I. Let M be a reflectivity of 71 preserving subextension of C/K different 
from tC. Then there exist X, Y G O(K) and / € Homju (X, Y) - Homjc (X, Y). 
X , Y are completely regular spaces and / is a mapping from X into Y which is 
not continuous. Then there exists a mapping / from jiX into /3Y such that the 
diagram 

/ 

is commutative. 
If the mapping / is continuous, then the mapping / is also continuous. Hence 

/ is not continuous. 
II. Therefore we can assume that X, Y are compact spaces. There exist x G X 

and a neighbourhood V of f(x) in Y such that U = f"l(V) is not a neighbourhood 
of x in the space X, from which it follows x G clx (X — U). Put P = X — U with 
descrete topology and let g be the identity embedding from P into X. Since g is a 
continuous mapping from the space P into the space X, there exists a continuous 
mapping h from fiP into X with the property ho ftp — g. 

III. The set h(ffP) is closed in X (because it is compact) and it contains the 
set P = X — U. Since x G clx (X — U), it holds x G h (/?P), therefore there exists 
£ € pP such that h(z) = x. Put k = / o / i andfc = fog. Then k G H o m ^ (P, 1"), 
k G Hornet (fiP-, Y) and k o fip = k. As k is continuous, there exists a continuous 
mapping / from fiP into Y such that / o /?p = k (s. diagram). 

The category M is an RP-subextension of £ /X , hence k = I so that k is 

continuous. But k(z) = f (x) and k (V) = h"1 (U) C fiP -
not a neighbourhood of z in /3P, which is a contradiction. 

P, hence k (V) i s 
D 
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3. The Mac Nettle Completion 

Let P = (P , <) be an ordered set. For M C P put 

M* — {p e P : p>m for each m G M} , 

M + = {p € P : p < m for each m € M} , 

cM = M*+. 

Then c is a closure operator on P . We denote by v(P) the set of all c-closed 
sets of P ordered by inclusion C (v(P) = (^(P), C)). For p € P put 

i/P(p) = c{p} = {p}*+ = {* € P : x < p} = = (p] € K P ) . 

.vp defines a mapping from P into v(P). The ordered set i/(P) is a complete 
lattice and vp is an embedding of (P , <) into (v(P)y C). The lattice v(P) is called 
the Mac Neille completion of the ordered set P (Mac Neille [4]). 

We call a mapping / from an ordered set X into an ordered set Y a c-mapping 
if for each M C I w e have 

/ ( cM) C c / (M) , 

which is equivalent to the property that for each c-closed subset N of Y the set 
f~l(N) is also c-closed. Clearly, there holds: 

3 .1 . Proposit ion, (a) Every c-mapping is isotonic. 
(b) Let L\y 1/2 be complete lattices. Than a mapping f from L\ into L2 is a 

c-mapping if and only if for each M C L\ the equality 

/ ( sup LlM) = sup L2f(M) 

is valid. 

(c) Let P be an ordered set. Then we have for M C P : 

vP(cM) = cvp(M) fl vP(P)} 

hence the mapping vp : P —» v(P) is a c-mapping. 
Further we denote by 

K the category of all ordered sets with the c-mappings, 
71 the full subcategory of K of all complete lattices, 
C the category of all ordered sets with the mappings. 

This is well known (s. Herrlich [2], 8.3 (10)): 

3.2. Theorem. 7Z is a reflective subcategory of K and vx : X —» v(X) is an 
7Z-reflection for each K-object X. 

Further, we mention two Lemmas. 

3 .3 . L e m m a . Let X, Y be ordered sets and f a mapping from X into Y. Let f 
be a mapping from v(X) into v(Y) such that the following diagram 



64 L. Skula 

is commutative. 
If f is a c-mapping, then f is also a c-mapping. 

PROOF: Let N C Y be c-closed and let M = f"l(N). According to 3.1(c) we 
have 

-yy(N) = cvY(N) fl VY(Y). 

So that, since / o vx = VY O / , 

T\cvY(N))r\vx(X) = vx(M). 

If / is a c-mapping, the set / (CVY(N)) is a c-closed, hence 

cvx(M)nvx(X) = vx(M), 

and according to 3.1 (c) vx(M) = vx(cM). Thus M = cM and the result 
follows. D 

3.4. L e m m a . Let P, Z be ordered sets, Z has a least element u and let { 6 Z , 
aeP. Put 

f(j}) _ [ t forpeP~(a] 
/ W " ~ \ u> forpe(a}. 

Then f is a c-mapping from P into Z. 

PROOF: Each c-closed set N of Z contains the element u. Therefore / _ 1 ( N ) = (a] 
for a N and f~r(N) = P for £ G N so that f~l(N) is c-closed. D 

3.5 . T h e o r e m . The K is a maximal reflectivity of R preserving subextension of 
the extension C/K. 

PROOF: I. Let M be an RP-subextension of C/K different from K. Sccording to 
3.3 we can assume that there exist complete lattices X and Y and a mapping / 
from X to Y which is not a c-mapping. First, we show that / is isotonic. 

Suppose a, b £ K, a < b and f(a) non < f(b). Put a = / ( a ) , /? = /(&), 
7 = supy{a , /?}, 6 — inf y{a , /?}. Then a ^ 6. Let U = {u, v} be a two-element 
antichain. Then v(U) = {o, r, 6, i} , where r = {u}, 3 = {v}, o = 0 and i = [/, 
i/(U) is ordered by inclusion C and v(u) = r, i/(t;) = s. 

v(U) 

U 
ІVA/(U) = ro; ,03 = u(J(vj 
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Define the following mappings : 

g:U -+Y, g(u) = a, g(v) = /?, 

g : v(U) -* F , g(r) = a, £(*) = /}, £(i) = 7 , £(o) = 5, 

<j> : 1/(17) - K, <j>(r) = <l>(o) = a, 0(s) = 0(i) = 6, 

h = fo<l>:u(U)-+Y. 

Then #, #, <£ are c-mappings, hence g, g, <f> 6 M(M) and then h 6 M(M) . 

Since /i(r) = a, /i(s) = /S and h(o) = a 7-. 8 = (7(0), we have houjj — Tjoujj = #, 
while K ^ #. 

The mapping / is isotonic. According to 3.1 (b) there exists M C I such that 
/ ( s u p x M ) 7*- sup y / ( M ) . Since / is isotonic, we can suppose that M has the 
following property: 

meM,xeX,x<m=>xeM. 

Put /i = s u p x M and a = s u p y / ( M ) . We denote the least element of Y by u;. 
Then w < a < f(fi) and \x^M. 

II: Let M = 0. Then /u is the least element of X. We denote the set of all 
negative integers ordered in a usual way by P. Then v(P) = vp(P) U {0} and 0 is 
the least element of v(P). Put 

AM-, for te tn . /.(«) = {«") t ! = «'(P) 

Clearly, /1 : i/(P) —• X is a c-mapping and according to 3.4 f2 : v(P) - » i " a s well. 
ForpG PwegetfoftouP(p) = / ( / i ) = f2ouP(p), but /o / i (0 ) = /(/*) 7-u> = / 2 (0) , 
which is a contradiction. 

III. Let M ^ 0. We denote the set M U {/i} by N. The sets M and N are 
ordered sets by order induced by that of X. There exists an isomorphism i from 
v(M) on N such that zt/M(m) = m for each m G M. 

Put 

f m f / M f o r r € F - H f /(J*) for * € F - (/(,*)] 
* W - \ w for * € (a], ' / 2 W " \ w for t € (/(/*)]. 

According to 3.4 / 1 , / 2 are c-mappings from Y into Y. Put F = /1 o / o j o i, 
G = f2ofojoi where j is the identity embedding from N into X. Then, F , 
G e HomM(i /(M), F ) , F o i/M = Go i/M, but F ( r x ( ^ ) ) = /(/*) ^ " = G ( r l ( / * ) ) , 
which is a contradiction. The Theorem is proved. D 
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