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Divisor Class Groups of Ordered Subgroups

Jiti MoCKOR, ANGELIKI KONTOLATOU

Abstract. We show that if a po-group G admits a theory of quasi-divisors (strong theory
of quasi-divisors, respectively), then the factor po-group G/H has the same property if
H is an o-ideal of G. We introduce a notion of a divisor class group C of an ordered
subgroup G of an [-group I' and we show some relationships between properties of C and
conditions under which the inclusion G C T is a strong theory of quasi-divisors. Finally,
we present some examples of po-groups with a strong theory of quasi-divisors.

1991 Mathematics Subject Classification: 06F15

1. Introduction

In [13] we introduced the notion of a po-group G which admits a strong theory of
quasi-divisors and we investigated some relationships between the existence of this
strong theory of quasi-divisors and the existence of some approximation theorems
for t-valuations of G. Recall that a directed po-group (G, ., <) has a theory of
quasi-divisors if there exists an I-group (I',.) and a map h : G — T such that

(i) h is an order isomorphism from G into I.

(ii) (Vo € T4)(3g1,-..,9n € G)a =h(g1) A... A h(gn).

Moreover, we say that G has a strong theory of quasi-divisors if there exists an
o-isomorphism A from G into an l-group I such that

(iii) (Yo, B € T4 )(3y € T )y € h(G), B A7 = 1.

In the theory of po-groups with a theory of quasi-divisors (or, equivalently t-
Priifer po-groups, see [9]) an important role has a localization of an r-system. We
recall very roughly this construction (see [3],[13]).

Let (G, z) be a po-group with an r-system z of a finite character (for the notion
of an r-system see e.g. [9]). Let H be an o-ideal of G, i.e. H is a directed convex
subgroup of G, and let ¢ : G — G/H be a canonical homomorphism. Then for
any lower bounded subset A C G/H we may find a lower bounded subset A C G
such that {aH : a € A} = A (see [13]). Then we set A,, := A;/H. According
to [13];2.1, zy is an r-system on G/H of a finite character. We also introduced a
notion of an z-local o-ideal, where H is such o-ideal if zy is a local r-system, i.e.
in (G/H)4+ there exists the unique maximal z y-ideal.

In this paper we show at first that if G is a po-group with a theory of quasi-
divisors (strong theory of quasi-divisors, respectively), then the same property has
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the factor po-group G/H, where H is an o-ideal. Then for a po-group G and its
o-isomorphism h into an [-group I' we introduce a notion of a divisor class group
Ch of h : G — T’ and we show some relationships between properties of C;, and
conditions under which the inclusion G C I is a strong theory of quasi-divisors.
Finally, using these results we present a method for constructing examples of po-
groups with strong theory of quasi-divisors by using the restricted Hahn group
H(A,Z), where A is some root system.

2. Divisor class groups

We start this section with investigation of some structural properties of po-groups
G and G/H, where H is an o-ideal of G. Recall that if G is a directed po-group,
then a t-ideal generated by a lower directed subset X C G is defined

X = U Y, whereY,= (] (a)
YCX, Y finite a€G, YC(a)y

where (a), = (a)y = {9 € G:g > a}.
Lemma 2.1. Let H be an o-ideal of a directed po-group (G,z) with an r-system
z of a finite character and let Py, be a proper zy-ideal of (G/H)y. Then the
following statements are equivalent:

(1) Pry 1s a prime zy-ideal.

(2) There exists a prime z-ideal Q of G4 such that Q/H = P,y .

PROOF: (1)==>(2). Let P be a lower directed subset of G which represents P.
Then from a definition of a localization we have P, = P,/H. Since P, is a
prime zp-ideal, according to [13];2.4, we obtain that H = [(G/H4+ \ Pz} is an
zp-local o-ideal of G/H, where [X] is a subgroup generated by X. Then there
exists an o-ideal T of G such that H = T/H, H C T. In what follows we may
identify (G/H)/H and G/T (under the map (aH)H + a.T). Then P, NT = § as
follows from the maximality of P;, /H = P./T. According to [9], there exists a
prime z-ideal @ of G4 such that P, € Q, @ NT = . We show that P, = Q/H.
In fact, since Q/T is a proper (zy )x-ideal in G/T, we have

Pen/H=Pe/T = (P:/H)[H C (Q/H)/H C Pey/H

and P,,/H = (Q/H)/H, hence P, /T = Q/T. We show that @ = G4+ \T. In
fact, if a € T4, then from a € Q it follows that T = oT € Q/T = P,/T, a
contradiction. Let @ € G+ \ @ and let us assume that a ¢ T. Then oT > T and
since P, /T = Q/T is the unique maximal zy-ideal in G/H, we have aT € Q/T
(see [9]). Since T is an o-ideal, there exist ¢ € Q,h1, ha € T, such that ah; = gha.
Since ah; > ¢, we have ah; € Q,h; ¢ @ and it follows that a € Q, a contradiction.
Therefore, P, = Q/H.

(2)=>(1). Let Q be a prime z-ideal of G4 such that ¢/H = P,y. Then
QNH = 0 and if aH,bH > H, abH € Q/H, we have (t1.a).(t2.0)h1 = hap
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for some t;,h; € Hy, p € @ and aty,bt; > 1. Then since hy ¢ @, we have
(t1a)(t2d) € Q and it follows that aH € P,,, or bH € Py,,. u]

In what follows, we denote by Hu (G, z) the set of all z-local o-ideals T of a
po-group G with an r-system z such that H C T. If H = {1}, we write simply
H(G, z).

Proposition 2.2. Let (G,z) be a directed po-group with an r-system = of a
finite character and let Hy be an o-ideal of G. Then there exists a bijection
between Hpu,(G,z) and H(G/Hp,xH,) such that G/H = (G/Hy)/o(H) for any
He HHO(G,I).

Proo¥: Let T € H(G/Hy,zy,). Then T = T/H,, where T is an o-ideal of G,
Hy C T. We show that T € Hpy,(G,z). According to [13]; 24, the set (G/H)4+ \T
is a prime zy-ideal P, in (G/Hy)+. Then according to 2.1, there exists a prime
z-ideal @ in G such that Q/Hy = P,,. Then Q = G4+ \ T and according to [13],
2.4, and according to the proof of 2.1, we have ¢(T) :=T € Hy,(G, z).

Hence, we defined a map ¢ : H(G/Ho,zH,) — Hu(G,z). Conversely, if
H € Hu,(G,z), then H/Hy is an o-ideal of G/H. Again, G4 \ H = Q is a
prime z-ideal of G and according to 2.1, Q/Hy is a prime ry-ideal of G/H,.
Then (G/Hy)+ \ Q/Ho = (H/Hy)+ and it follows that H/H, is zz-local. Hence,
Y(H) = H/Hy is the inverse of ¢. o

Proposition 2.3. Let (G, z) be an z-Prifer directed po-group such that x i3 of a
finite character and let H be an o-ideal of G. Then G/H 1s a xy-Prifer po-group.

ProoF: Let T € H(G/H,zy). Then according to 2.2, there exists T € Hy (G, z)
such that (G/H)/T =, G/T. Then the proposition follows from [2];Th.8. m

Proposition 2.4. Let G be a directed po-group with a theory of quasi-divisors
and let H be an o-ideal of G. Then G/H has a theory of quasi-divisors.

PROOF: Since G has a theory of quasi-divisors, it is a Priifer ¢-group according to
[2]. Then according to 2.3, G/H is a ty-Priifer group and since ty <t in G/H,
then according to [2];Th.1, G/H is a t-Priifer group as well. Hence, G/H has a
theory of quasi-divisors. 0

Proposition 2.5. Let G be a directed po-group with a sirong theory of quasi-
divisors and let H be an o-ideal of G. Then G/H has a strong theory of quasi-
divisors.

PROOF: Let h : G — T be a strong theory of quasi-divisors. Since h is a theory
of quasi-divisors as well, (see [13]),I' may be identified with the Lorenzen t-group
A¢(G) of G and we may assume that h : G — A4(G) is an inclusion z — (z),. If H
1s an o-ideal, then according to 2.4, G/H admits a theory od quasi-divisors which
then may be identified with the inclusion hy : G/H — A{(G/H). Sincety < ton
G/H, then the composition ¢ of morphisms (G,t) — (G/H,ty) — (G/GH,t)
is a (t,¢)-morphism. Hence, according to [2];Th.1, there exists an (-epimorphism
¢ such that the diagram
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(G:1) A(G)
) @
hy
(G/H, 1) A(G/H)
commutes. The proposition then follows from the fact that h is a strong theory of
quasi-divisors and ¢ is an [-epimorphism. ]

Now, let G and I" be ordered groups and let h : G — I' be an o-isomorphism
from G into I'. Then the factor group Cp, = I'/h(G) is called a divisor class group
of h. We show at first that the construction of C; has some functorial character.

Proposition 2.6. Let G admits a theory of quasi-divisors h : G — I and let H
be an o-ideal of G. Let hy : G/H — Tbea theory of quasi-divisors. Then there
ezists an o-epimorphism ¢ : [ — T and epimorphism o : C, — Cp,, such that
the diagram

h
G r 4 Ch

() P o

hu

>

=3

G/H Chy

commutes.

PROOF: Since G admits a theory of quasi-divisors, G is a t-Priifer group and we
may identify T’ with the group of finitely generated t-ideals of G. Analogously,
' may be identified with the group of finitely generated t-ideals of G/H. Since
the canonical map ¥ is a (¢,ty)-morphism and tyg < t, ¥ is a (¢,t)-morphism
as well and according to [9];Th.1, there exists an o-epimorphism ¢ : I' — T’
such that 1/;.h = hy.p. Let a = Ay € T, where A is a finite set in G. We set
o(¢(Ar)) = @((¥(A)¢). This definition is correct. In fact, let 4;, B, € T be such
that (A¢) = ¢(B¢). Then there exists g € G such that A; = (¢B);. Let f be a
bijection between H(G/H,ty) and Hy(G,t) (see 2.2). Then (p(A))y, = A¢/f(T)
for all T € H(G/H,ty). Hence,

(0(A)eg)/T = A/ f(T) = (9B)e/ f(T) = (¥(9)-¥(B))en /T
Thus, according to [13];2.8, we obtain (¥(A4)): = 1(g).(¥(B)):.

The rest is obvious. a

It should be observed that

kero = {¢(A;) € Cn : there exists Cl:I/lgl(l/)(A))}

In fact, if p(A4;) € kero, then o(p(Ar)) = &((¥(A)):) = 0. Then there exists
9 € G such that (y(4)), = (1(9)) and it follows that ¥(g) = inf((A)).
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Lemma 2.7. Let h be an o-isomorphism from a directed po-group G into an
l-group T'. Then the following statements are equivalent:

(1) h is a theory of quasi-divisors.
(2) (Va € Ty)a = infr(h(G) N (a)e).

PRroOOF: (1)=>(2). Let a € I'y. Since h is a theory of quasi-divisors, there exist
g1y--+,9n € h(G) N (a); such that o = h(g1)A ... Ah(gn) inT. Let B €T bea
lower boud of elements from h(G) N (a)¢. Then ~(G) N (a)¢ € (B); and it follows
that

(@)e = (h(g1) A ... Ah(gn))e = (h(g1)s- -, h(gn))e € (B)s.

Hence, a > B and a = inf(h(G) N (a)e).

(2)==>(1). Let a € T'4. Since h(G) N (a); is lower bounded, we have (h(G) N
(a)e)t = (a):. Hence, (h(G) N (a)i): is a t-invertible t-ideal and since ¢t is an
r-system of a finite character, (h(G) N (a)). is finitely generated and its gen-
erators could be coosen from the set h(G) N (a); (see [9]). Hence, there exist
h(g1),...,h{gn) € R(G)N(a); such that a = h(g1)A... Ah(gn) and it follows that
h is a theory of quasi-divisors. 0

Proposition 2.8. Let h: G — T be a theory of quasi-divisors of a directed po-
group G , let Cy be a divisor class group of h and let ¢ : I' — Cj, be a canonical
map. Then for any a €T, a > 1, we have

@(T+ \ (a)¢) = Ch.

PROOF: Since h is a theory of quasi-divisors, for any o € I' there exists § € '}
such that ¢(a) = ¢(f#). Hence, Cp, = ¢(I'y). Let a ¢ Tya > 1 and let § € T;.
Then there exists ¥ € I'y \ (@) such that .y € h(G). In fact, let us assume at first
that « is incomparable with 8 or & > . Then (R(G)N(B):) \ (R(G) N (e):) # B as
follows from 2.7. Let h(g) be an element of this nonempty set. Then h(g) = 7.8,
where v > 1 and v € 'y \ (a),.

Let a < 3. Then a.f > 8 > a and it follows that (A(G) N (a.B)¢) C (R(G) N
(B)1). Let h(g) € h(G)N(B): be such that h(g) & (a.8):. Then h(g) = 1.8, where
71 > 1. If 91 > a, then h(g) = B.7; > B.a, a contradiction. Hence, we proved
that p(L+) C (T4 \ (a)e). o

Now, we say that an l-group I is finitely atomic, if for any element a € T',a > 1,
the set of all atoms o € I'y such that ¢ < a is nonempty and finite. A trivial
example of a finitely atomic [-group is a group Z(?).

Theorem 2.9. Let h be an o-isomorphism from a directed po-group G into an
l-group T, let Cy be a divisor class group of h and let ¢ : T' — Cj, be a canonical
map. Let us consider the following statements:

(1) h is a strong theory of quasi-divisors.
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(2) If aj,...,an are elements of T' such that o; > 1 for all i, then o(T'y \
{ary .. an}e) =C(.

(8) If ay,...,an are atoms in Ty, then o(Ty \ {a1,...,an}s) = Cp.

Then (1)== (2)==>($). IfT 1is finitely atomic, then all the statements are equiv-
alent.

PRrROOF: (1)=(2). Let ai,...,a, € I'ya; > 1 for all i. Let ©(6) € C,. Then
there exists o € I'y such that 6. € h(G). Let 8 = ;... a,. Then there exists
v > 1 such that Ay =1 and a.7 € h(G). Hence, p(a)+ ¢(7) =0 = p(8) + ¢(a)
and ¢(7) = ¢(6). If v € ();(F+ \ (@i)s), then there exists 7 such that v > a;. But,
in this case we have y A f 2> a; > 1, a contradiction.

(2) = (3). Trivial.

Now, let us assume that that I is finitely atomic and let (3) hold. Let o, 8 €
I't,a € h(G). Since Cp = ¢(I'y+), we have —p(a) € (T'+) and there exists § > 1
such that —p(a) = ¢(§). Hence, a.6 € h(G). Now, according to the assumption
we have {0 : 0 is an atom in 'y,0 < B} = {01,...,0,} and according to (3) we
have o([);(T'+ \ (0i)¢)) = Ch. Then there exists v € [);(T+ \ (0:)¢) such that
w(7) = ¢(8). If ¥y A B > 1 then there exists an atom o such that 0 < B Ay < 8,9
and it follows that ¢ = o; for some ¢, a contradiction with v 2 o;. Hence, fAy =1
and a.y € h(G). Therefore, h is a strong theory of quasi-divisors. O

3. Examples

In this part of the paper we should like to present a method for constructing
examples of po-groups with a strong theory of quasi-divisors. This methos uis
based on application of Theorem 2.9 onto a special I-group, the restricted Hahn
group H(A, Z) and this method generalizes in some sense a method of constructing
examples of groups with divisors theory presented by L. Skula [17].

Recall that if A is a root system (i.e. (A, <) is a partly ordered set for which
{a € A:a > v} is totally ordered for any v € A), then the restricted Hahn group
H(A,Z) on A is the group Z(®® ordered in a following way:

a € HA/Z),a >0 aq >0 for all a € ms(a),

where ms(a) is the mazimal support of a, i.e. the set of all maximal elements in
supp(a) = {a € A : aq # 0}. Then H(A,Z) is an l-group (see e.g. [2]).

Now, let Ay be the set of all minimal elements of A. We say that A is atomic
if for any element o € A there exists § € Ag such that a > 3. Moreover, we say
that A is finitely atomic if for any o € A, the set {0 € Ag : 0 < @} is nonempty
and finite. Finally, let « € A. Then by a® we denote the element of H(A, Z) such

that
o = 1, ff=a
8 0, otherwise.

In the following lemma we summarize some properties of H(A, Z) which would
be of interest for our examples of groups with a strong theory of quasi-divisors.’
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Lemma 3.1. Let A be a root system.

(1) Let A be atomic and let o € Ng,b € H(A,Z)4. Then b > a* if and only if
there ezists B € ms(b) such that § > a.

(2) If A 1s atomic, then a € H(A,Z) 1s an atom if and only if a = a® for some
a € Ay.

(3) If A 1s finitely atomic, then H(A,Z) 1s finitely atomic.

PROOF: (1). Let b > a® for some a € Ag. If b = a®, then o € ms(b). Let b > a®.
Then supp(b—a®) \ {a} C supp(d) and a € supp(b). In fact, if b, = 0, then there
exists 8 € ms(b—a®) such that a < 8. If a = 3 then a € ms(b— a®) and it follows
that —1 = (b = a*)a > 0, a contradiction. Hence, a < § and § € supp(b). Then
there exists v € ms(b) such that a < § < 7.

Conversely, let 8 € ms(b) be such that 8 > a. Let § > a firstly and let
v € ms(b — a®). Let us consider the two only possible cases.

(a) v = a. Since bg > 0 and aj = 0 we have € supp(b— a®), a contradiction
with the maximality of .

(b) ¥ # «. Then v # B and it follows that v € ms(b) as follows from the
minimality of . Then b, —aJ = b, > 0. Hence, if 8 > a, we proved that b > a“.

Now,let B = « and let v € ms(b — a®). Let us consider again the two only
possible cases.

(a)y = a. Since bq — 1 # 0 and by > 0, we have b, > 2 and it follows that
(b—a*)a > 0.

(b) ¥ # @ = B. Then from the minimality of a it follows that y € ms(b) and
we have (b — a®)y = by > 0. Therefore, b > a® in this case.

(2) Let @ € Ag and let us assume that b € H(A,Z) be such that a® > b > 0.
Then it may be proved easily that ms(a®* — b) C {a}. Now, if a* > b, we have
ms(a® — b) = {a}. Let # € supp(b). Then it follows easily that § < a. Thus,
B = a, a contradiction. Therefore, a® = b and a” is an atom. Conversely, let
b € H(A,Z)4+ be an atom. Then ms(b) # @ and for 8 € ms(b) there exists an
atom a € Ag such that o < 8. From (1) it follows that b = a®.

(3) Let b € H(A,Z)4, b > 0. Then ms(b) is a finite set and according to
(2) and (1), the set {a € H(A,Z)+ : a is an atom and a < b} equals to the set
{a® : @ € ms(b)} which is nonempty and finite.

Hence, H(A, Z) is finitely atomic. u]

Now, using the l-group H(A, Z), where A is a finitely atomic root system, we
may derive examples of po-groups with a strong theory of quasi-divisors. Let us
consider the following example.

Example 3.2. Let A = {an;:n € N,j = 1,2} be a root system such that
12 (s 27) v Qpn2

an Qaz1 ce.Qpy
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Let us consider a map ¢ : H(A,Z) — Z such that

p@= Y a1

nelN,j=1,2

Then ¢ is a group homomorphism and H(A,Z) is finitely atomic (see 3.1). Let
bi,...,bn be atoms in H(A,Z)4. Then o((Niz;(H(A,Z)\ (b:):)) = Z. In fact,

according to 3.1, we may assume that

bi(a) = { 1, fa=a;

0, otherwise

Let m € Z. If m > 0, then there exists a;;,¢ > n, and 7 is even. We set

_fm, fa=ay
a(a) = { 0, otherwise.

Then according to 3.1, a € e, (H)A,Z)4 \ (bi):) and ¢(a) = m.(~1)} = m. If
m < 0, then there exists a;; such that : > n and ¢ is odd. We then set

) -m, fa=ay
o(a) = { 0, otherwise.

Then a is from ther same set as in previous case and ¢(a) = (—m).(=1)} = m.
Hence,

P((V(H(A,Z) \ (b)) = Z

and for the subgroup G = kery of H(A,Z) (with ordering induced from this
group) the inclusion G — H(A,Z) is a strong theory of quasi-divisors by 2.9.

This example may be modified in a following way.

Example 3.3. Let A be a finitely atomic root system such that card (A) = R
and let o : A — Ry be a bijection. Let m € Z and let ¢, : Z — Z/(m)
be a canonical homomorphism. Then we may define a group homomorphism
¢ H(A,Z) — Z/(m) such that

p(a) = D pm(aa)(~1)7 € Z/(m).

a€A

Then Z/(m) = @(Niz;(H(A,Z)4 \ (bi))) for any finite set {b,...,bn} of atoms
in H(A,Z). In fact, according to 3.1, we may assume that there exist atoms
ay,...,an in A such that

(1, fa=
bi(e) = { 0, otherwise.
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Let ¢om(s) € Z/(m). Then we may assume that s > 0 and then there exists
ag € Ap \ {a1,...,a,} such that o(ag) is even. We then set

a(a):{ s, fa=ag

0, otherwise.

Then a € H(A,Z) and according to 3.1, a 2 b, k = 1,...,n. Moreover, ¢(a) =
Om(@ag).(—=1)7(2) = ¢, (s). Hence, G = kerp — H(A,Z) is a strong theory of
quasi-divisors.
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