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Divisor Class Groups of Ordered Subgroups 

J I Ř Í M O Č K O Ř , ANGELIKI KONTOLATOU 

Abstract. We show that if a po-group G admits a theory of quasi-divisors (strong theory 
of quasi-divisors, respectively), then the factor po-group G/H has the same property if 
H is an o-ideal of G. We introduce a notion of a divisor class group C of an ordered 
subgroup G of an /-group T and we show some relationships between properties of C and 
conditions under which the inclusion G C F is a strong theory of quasi-divisors. Finally, 
we present some examples of po-groups with a strong theory of quasi-divisors. 

1991 Mathematics Subject Classification: 06F15 

1- Introduction 
In [13] we introduced the notion of a po-group G which admits a strong theory of 
quasi-divisors and we investigated some relationships between the existence of this 
strong theory of quasi-divisors and the existence of some approximation theorems 
for revaluations of G. Recall that a directed po-group (G, .,<) has a theory of 
quasi-divisors if there exists an /-group (V,.) and a map h : G —> T such that 

(i) h is an order isomorphism from G into T. 

(ii) (Va € T + ) ( 3 ^ , . . . , ( 7 n € G+)a = h(gx) A . . . A h(gn). 

Moreover, we say that G has a strong theory of quasi-divisors if there exists an 
o-isomorphism h from G into an /-group T such that 

(iii) (Va, /? € r + ) ( 3 7 e r + ) a . 7 G h(G),/3Aj= 1. 

In the theory of po-groups with a theory of quasi-divisors (or, equivalently t-
Prtifer po-groups, see [9]) an important role has a localization of an r-system. We 
recall very roughly this construction (see [3],[13]). 

Let (G, x) be a po-group with an r-system x of a finite character (for the notion 
of an r-system see e.g. [9]). Let H be an o-ideal of G, i.e. H is a directed convex 
subgroup of G, and let (p : G —> G/H be a canonical homomorphism. Then for 
any lower bounded subset A C G/H we may find a lower bounded subset A C. G 
such that {aH : a 6 A} = A (see [13]). Then we set AXH := Ax/H. According 
to [13];2.1, XH is an r-system on G/H of a finite character. We also introduced a 
notion of an x-local o-ideal, where H is such o-ideal if XH is a local r-system, i.e. 
in (G/H)+ there exists the unique maximal £j/~ideal. 

In this paper we show at first that if G is a po-group with a theory of quasi-
divisors (strong theory of quasi-divisors, respectively), then the same property has 
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the factor po-group G/II, where If is an o-ideal. Then for a po-group G and its 
o-isomorphism h into an /-group T we introduce a notion of a divisor class group 
Ch of h : G -—• T and we show some relationships between properties of Ch and 
conditions under which the inclusion G C T is a strong theory of quasi-divisors. 
Finally, using these results we present a method for constructing examples of po-
groups with strong theory of quasi-divisors by using the restricted Hahn group 
II(A, Z), where A is some root system. 

2. Divisor class groups 

We start this section with investigation of some structural properties of po-groups 
G and G/H, where II is an o-ideal of G. Recall that if G is a directed po-group, 
then a t-ideal generated by a lower directed subset X C G is defined 

Xt= [j Yv where K. = f | (a)v 

Y C X , v finite «€G, YC(a)v 

where (a)v = (a)t = {g € G : g>a}. 
Lemma 2.1 . Let II be an o-ideal of a directed po-group (G,x) with an r-system 
x of a finite character and let VXH be a proper XH -ideal of (G/H)+. Then the 
following statements are equivalent: 

(1) VXH is a prime XH-ideal. 

(2) There exists a prime x-ideal Q of G+ such that Q/H = VXH. 

PROOF: (l)==-=>(2). Let P be a lower directed subset of G which represents V. 
Then from a definition of a localization we have VXH = Px/H. Since VXH is a 
prime x//-ideal, according to [13];2.4, we obtain that H = [(G/H+ \ VXlf] is an 
z/t-local o-ideal of G/II, where [X] is a subgroup generated by X. Then there 
exists an o-ideal T of G such that H = T/II, II C T. In what follows we may 
identify (G/H)/H and G/T (under the map (aH)H H-> a.T). Then Px f) T = 0 as 
follows from the maximality of VXH/H = Px/T. According to [9], there exists a 
prime x-ideal Q of G+ such that Px C Q, Q n T = 0. We show that VXJJ = Q/H. 
In fact, since Q/T is a proper (xn)n-ideal in G/T, we have 

VXH/H = Px/T = (P,/H)/H C ( £ / # ) / « C 7 > ^ / « 

and P « H / « = (Q/H)/H, hence P x / r = Q/T. We show that Q = G'+ \ T. In 
fact, if a € T+, then from a € Q it follows that T = aT € Q /T = Px/T, a 
contradiction. Let a 6 G+ \ Q and let us assume that a $• T. Then aT > T and 
since P x / T = Q/T is the unique maximal x//-ideal in G/II, we have aT £ Q / T 
(see [9]). Since T is an o-ideal, there exist q € Q,h\,h2 € T+ such that ahi = #/i2-
Since a/ii > g, we have ah\ € Q,^i ^ Q and it follows that a 6 Q, a contradiction. 
Therefore, P** = Q/II. 

( 2 ) = ^ ( 1 ) . Let Q be a prime x-ideal of G+ such that g/II = VXH. Then 
Q 0 II = 0 and if aII,6II > II, abH € Q/H, we have (tx.a).(t2.b)hx = ^2P 
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for some £,-,lit G H+, p G Q and at\,bt2 > 1. Then since hi $ Q, we have 
(Ua)(t2b) G Q and it follows that aH G VXH, or bH eVXH. • 

In what follows, we denote by HH(G,x) the set of all .r-local O-ideals T of a 
pO-group G with an r-system x such that H C T. If H = {1}, we write simply 
« ( G , x ) . 

Proposit ion 2.2. Let (G,x) be a directed po-group with an r-system x of a 
finite character and let H0 be an o-ideal of G. Then there exists a bisection <p 
between HHo(G,x) and H(G/H0,xHo) such that G/H 3 (G/H0)/(p(H) for any 
HeHHo(G,x). 

PROOF: Let T G H(G/H0,xHo). Then T = T/H0, where T is an O-ideal of G, 
Ho C T. We show that T G HHo(G,x). According to [13]; 24, the set (G/H)+\T 
is a prime T//-ideal VXH in (G/Ho)+. Then according to 2.1, there exists a prime 
T-ideal Q in G such that Q/H0 = P I f f . Then Q = G+ \ T and according to [13], 
2.4, and according to the proof of 2.1, we have <p(T) := T £ HHo(G,x). 

Hence, we defined a map <p : H(G/H0,xHo) —• HHQ(G,X). Conversely, if 
H G HH0(G,X), then H/Ho is an O-ideal of G/H. Again, G+ \ H = Q is a 
prime x-ideal of G and according to 2.1, Q/H0 is a prime x//-ideal of G/H0. 
Then (G/H0)+ \ Q/Ho = (H/H0)+ and it follows that H/H0 is z//-local. Hence, 
il>(H) = H/H0 is the inverse of <̂>. D 

Proposit ion 2.3. Let (G,x) be an x-Prufer directed po-group such that x is of a 
fi.nite character and let H be an o-ideal of G. Then G/H is a xn-PTufer po-group. 

PROOF: Let T G H(G/H,xH)- Then according to 2.2, there exists T G HH(G,x) 
such that (G/H)/T ^0 G/T. Then the proposition follows from [2];Th.8. D 

Proposit ion 2.4. Let G be a directed po-group with a theory of quasi-divisors 
and let H be an o-ideal of G. Then G/H has a theory of quasi-divisors. 

PROOF: Since G has a theory of quasi-divisors, it is a Priifer t-group according to 
[2]. Then according to 2.3, G/H is a £//-Priifer group and since tH < t in G/H, 
then according to [2];Th.l, G/H is a t-Priifer group as well. Hence, G/H has a 
theory of quasi-divisors. D 

Proposit ion 2.5. Let G be a directed po-group with a strong theory of quasi-
divisors and let H be an o-ideal of G. Then G/H has a strong theory of quasi-
divisors. 

PROOF: Let h : G —• T be a strong theory of quasi-divisors. Since h is a theory 
of quasi-divisors as well, (see [13]),r may be identified with the Lorenzen t-group 
At(G) of G and we may assume that h : G —• A((G) is an inclusion x i—• (x)t. If H 
is an O-ideal, then according to 2.4, G/H admits a theory od quasi-divisors which 
then may be identified with the inclusion /i// : G/H —• At(G/H). Since tn < t on 
G/H, then the composition ip of morphisms (G,t) —• (G/H,tn) —• (G/GH,t) 
is a (£,tf)-morphism. Hence, according to [2];Th.l, there exists an l-epimorphism 
(p such that the diagram 
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(G,t) 

f 

(G/H,t) 

Л.(<?) 

HG/H) 

commutes. The proposition then follows from the fact that h is a strong theory of 
quasi-divisors and <p is an /-epimorphism. D 

Now, let G and T be ordered groups and let h : G —• T be an o-isomorphism 
from G into T. Then the factor group Ch = T/h(G) is called a divisor class group 
of h. We show at first that the construction of Ch has some functorial character. 

Proposit ion 2.6. Let G admits a theory of quasi-divisors h : G —> F and let H 
be an o-ideal of G. Let hfj : G/H —> T be a theory of quasi-divisors. Then there 
exists an o-epimorphism t/j : T —> F and epimorphism a : Ch —• ChH such that 
the diagram 

h (f 

G/H 

commutes. 

PROOF: Since G admits a theory of quasi-divisors, G is a tf-Priifer group and we 
may identify T with the grotip of finitely generated ^-ideals of G. Analogously, 
T may be identified with the group of finitely generated ^-ideals of G/H. Since 
the canonical map xp is a (£,t#)-morphisni and tu < t, rj) is a (r, £)-morphism 
as well and according to [9];Th.l, there exists an o-epimorphism xp : T — • T 
such that ij).h = /i//.*/>. Let a = At € T, where A is a finite set in G. We set 
or(ip(At)) — <f((i/>(A)t). This definition is correct. In fact, let At,Bt € F be such 
that if(At) = <f(Bt). Then there exists g € G such that At = (gB)t. Let / be a 
bijection between H(G/H,tH) and HH(G,t) (see 2.2). Then (i>(A))tH = At/f(T) 
for all T e H(G/H,tH). Hence, 

(4>(A)tH )/T * At/f(T) = (gB)t/f(T) ~ Mg).tKB))t* /T. 

Thus, according to [13];2.8, we obtain (</>(-4))< = ip(g).(yj(B))t. 
The rest is obvious. O 

It should be observed that 

kerO = {(f(At) € Ch : there exists inf (V>(-4))}. 
G/H 

In fact, if c/?(At) 6 kerO, then r/((D(-4f)) = <f((il>(A))t) = 0. Then there exists 
g € G such that (t/>(A))< = (</>(#)) and it follows that ?/%) = inf(</>(-4)). 
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Lemma 2.7. Let h be an o-isomorphism from a directed po-group G into an 
l-group r . Then the following statements are equivalent: 

(1) h is a theory of quasi-divisors. 

(2) (Va 6 T + ) a = mir(h(G) n (a) ,) . 

PROOF: ( 1 ) = > (2). Let a € T + . Since h is a theory of quasi-divisors, there exist 
<7i. • • • > <7n € fc(G) H (a ) t such that a = / i (^) A . . . A h(gn) in F. Let ft € T be a 
lower boud of elements from h(G) C\ (a)t. Then h(G) H (a)* C (/?)< and it follows 
that 

(a)t = (h(9l) A . . . A %„) )« = ( % i ) , . . . , h(gn))t C (/?)«. 

Hence, a > /3 and a = inf(/i(G) H (a)*). 
(2) =-=> (1). Let a € T + . Since h(G) n (a)e is lower bounded, we have (A(G) n 

(a)t)t = (<*)<. Hence, (h(G) f) (a)t)t is a tf-invertible t-ideal and since £ is an 
r-system of a finite character, (h(G) 0 (a)t)t is finitely generated and its gen­
erators could be coosen from the set h(G) f) (a)t (see [9]). Hence, there exist 
h(g\),..., h(gn) 6 h(G) 0 (a)t such that a = h(g\) A. . . A h(gn) and it follows that 
h is a theory of quasi-divisors. D 

Proposition 2.8. Let h : G —• r be a theory of quasi-divisors of a directed po-
group G , let Ch be a divisor class group of h and let <p : T —• Ch be a canonical 
map. Then for any a € T, a > 1, we have 

<fi(T+\(a)t)=Ch. 

PROOF: Since h is a theory of quasi-divisors, for any a 6 T there exists /? 6 T + 

such that <p(a) = </>(/?). Hence, Ch ~ <p(T+). Let a 6 P,a > 1 and let ft € F + . 
Then there exists 7 € T + \ ( a ) ( such that p.y € /i(G). In fact, let us assume at first 
that a is incomparable with 0 or a > /?. Then (h(G) D (fi)t) \ (h(G) H (a)<) ^ 0 as 
follows from 2.7. Let h(g) be an element of this nonempty set. Then h(g) = 7./?, 
where 7 > 1 and 7 E T + \ (a)t. 

Let a < /?. Then a./3 > /? > a and it follows that (/i(G) n (a./3)() C (/i(G) H 
(/3)t). Let /i(p) e h(G)n(fi)t be such that h(g) <£ (a./3)t. Then % ) = 71 ./3, where 
71 > 1. If 71 > a, then /i(#) = /3.71 > /5.a, a contradiction. Hence, we proved 
that <p(r+)C<p(T+\(a)t). a 

Now, we say that an /-group T is finitely atomic, if for any element a € T,a > 1, 
the set of all atoms o~ € F + such that (j < a is nonempty and finite. A trivial 
example of a finitely atomic /-group is a group Z^p\ 

T h e o r e m 2.9. Let h be an o-isomorphism from a directed po-group G into an 
l-group r , let Ch be a divisor class group of h and let y> : T —• Ch be a canonical 
map. Let us consider the following statements: 

(1) h is a strong theory of quasi-divisors. 
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(2) If a i , . . . , a n are elements of T such that a,- > 1 for all i, then <p(T+ \ 
{a i , . . . ,a„}<) = C ( . 

(S) I/ai,... , a n are atoms in Y+, then <p(T+ \ {a\,... ,an}t) = C/>. 

Then (1)=> (2)'=^ (3). IfT is finitely atomic, then all the statements are equiv­
alent. 

PROOF: (1)==>(2). Let au...,an £ r , a , > 1 for all i. Let <p(6) £ Ch. Then 
there exists a £ T+ such that S.a £ h(G). Let /? = a\ . . . an. Then there exists 
7 > 1 such that /? A 7 = 1 and a.7 £ h(G). Hence, <p(a) + <p(j) = 0 = <p(S) -f <p(a) 
and (^(7) = <p(S). If 7 ^ f l i (r+ \ (°ti)t), then there exists i such that 7 > a,-. But, 
in this case we have 7 A / ? > a , - > l , a contradiction. 

( 2 ) = > ( 3 ) . Trivial. 
Now, let us assume that that V is finitely atomic and let (3) hold. Let a, f3 £ 

T+,a ^ /i(G). Since C,-. = <^(r+), we have ~<p(a) £ <p(T+) and there exists S > 1 
such that — <£>(a) = vK )̂* Hence, a.S £ ft(G). Now, according to the assumption 
we have {a : a is an atom in F+, <r < /5} = {O^,..., an} and according to (3) we 
have <D(nt(r-f \ (<?i)t)) = ^ft- Then there exists 7 £ fli(F+ \ (<Tt)t) such that 
<p(j) = v?(<5). If 7 A (3 > 1 then there exists an atom a such that a < 0 A7 < /?, 7 
and it follows that cr = <Tt for some i, a contradiction with 7 ^ a,-. Hence, /? A7 = 1 
and a.7 € h(G). Therefore, /i is a strong theory of quasi-divisors. D 

3. Examples 

In this part of the paper we should like to present a method for constructing 
examples of ;>O-groups with a strong theory of quasi-divisors. This methos uis 
based on application of Theorem 2.9 onto a special /-group, the restricted Hahn 
group # ( A , Z) and this method generalizes in some sense a method of constructing 
examples of groups with divisors theory presented by L. Skula [17]. 

Recall that if A is a root system (i.e. (A, <) is a partly ordered set for which 
{a 6 A : a > 7} is totally ordered for any 7 6 A), then the restricted Hahn group 
# ( A , Z) on A is the group Z ^ ordered in a following way: 

a € # ( A , Z), a > 0 & aa > 0 for all a € ms(a), 

where ms(a) is the maximal support of a, i.e. the set of all maximal elements in 
supp(a) = {a G A : a a 7-= 0}. Then # ( A , Z ) is an /-group (see e.g. [2]). 

Now, let Ao be the set of all minimal elements of A. We say that A is atomic 
if for any element a 6 A there exists /? € Ao such that a > /?. Moreover, we say 
that A is finitely atomic if for any a £ A, the set {a £ Ao : a < a} is nonempty 
and finite. Finally, let a £ A. Then by aa we denote the element of # ( A , Z) such 
that 

if £ = a 
otherwise. 

a" = 1 0, 
In the following lemma we summarize some properties of # ( A, Z) which would 

be of interest for our examples of groups with a strong theory of quasi-divisors. 
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L e m m a 3 .1 . Let A be a root system. 

(1) Let A be atomic and let a G A0,6 G Iif(A,Z).f. Then b > aa if and only if 
there exists ft G ms(b) such that ft > a. 

(2) If A is atomic, then a G H(A, Z) is an atom if and only if a = aa for some 
a G An. 

(3) If A is finitely atomic, then H(A, Z) is finitely atomic. 

PROOF: (1). Let 6 > aa for some a G A0. If 6 = a a , then a G ms(6). Let 6 > aa. 
Then supp(6 — aa) \ {a} C supp(6) and a G supp(6). In fact, if ba = 0, then there 
exists ft G ms(6 — a a ) such that a < ft. If a = ft then a G ms(6 — aa) and it follows 
that — 1 = (6 = aa)a > 0, a contradiction. Hence, a < ft and ft G supp(6). Then 
there exists 7 G ms(6) such that a < ft < 7. 

Conversely, let ft G ms(6) be such that ft > a. Let ft > a firstly and let 
7 G ms(6 — aa). Let us consider the two only possible cases. 

(a) 7 = a. Since bp > 0 and a°. = 0 we have ft G supp(6 — a a ) , a contradiction 
with the maximality of 7. 

(b) 7 ^ a. Then 7 7-= /? and it follows that 7 G ms(6) as follows from the 
minimality of a. Then 67 — aa = 67 > 0. Hence, if /5 > a, we proved that b > aa. 

Now,let ft = a and let 7 G ms(6 — aa). Let us consider again the two only 
possible cases. 

(a)7 = a. Since ba — 1 7- 0 and 6a > 0, we have ba > 2 and it follows that 
( 6 - a a ) a > 0 . 

(b) 7 ^ a = ft. Then from the minimality of a it follows that 7 G ms(6) and 
we have (6 — aa)y = b1 > 0. Therefore, 6 > aa in this case. 

(2) Let a G A0 and let us assume that 6 G -fI(A, Z) be such that aa > 6 > 0. 
Then it may be proved easily that ms(aa — 6) C {a}. Now, if aa > 6, we have 
ms(a°f — 6) = {a}. Let ft G supp(6). Then it follows easily that ft < a. Thus, 
ft = a, a contradiction. Therefore, aa = b and aa is an atom. Conversely, let 
6 G H(A, Z ) + be an atom. Then ms(6) 7- 0 and for ft G ms(6) there exists an 
atom a G A0 such that a < ft. From (1) it follows that 6 = aa. 

(3) Let 6 G H(A,Z)+, 6 > 0. Then ms(6) is a finite set and according to 
(2) and (1), the set {a G H( A, Z)+ : a is an atom and a < 6} equals to the set 
{a a : a G ms(6)} which is nonempty and finite. 
Hence, H(A, Z) is finitely atomic. Q 

Now, using the /-group jfJ(A, Z), where A is a finitely atomic root system, we 
may derive examples of po-groups with a strong theory of quasi-divisors. Let us 
consider the following example. 

E x a m p l e 3.2. Let A = {anj : n G N , j = 1,2} be a root system such that 
ai2 022 ...an2 

#11 « 2 1 . . . < * n l 
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Let us consider a map <p : # ( A , Z) —> Z such that 

f{a)= £ aani.(-ir 
n€N,j=l ,2 

Then </? is a group homomorphism and # ( A , Z ) is finitely atomic (see 3.1). Let 
&!,. . . , &n be atoms in # ( A , Z ) + . Then y?((n"= 1(#(A, Z) \ (bi)t)) = Z. In fact, 
according to 3.1, we may assume that 

b(a) = / 1 ' i f a = a«1 

^ ' ^ 0, otherwise 

Let ra £ Z. If ra > 0, then there exists atn,i > n, and i is even. We set 

( ) = f m' if <* = an 
^ ' \ 0, otherwise. 

Then according to 3.1, a € H ^ i W A , Z)+ \ (&,)<) and ip(a) = m.(-l)1* = m. If 
m < 0, then there exists atT such that i > n and i is odd. We then set 

( ) = / - ~ m ' ^ a = ttil 

^ ' \ 0, otherwise. 

Then a is from ther same set as in previous case and y>(a) = (—ra).( —1)* = m . 
Hence, 

n 

^ ( p | ( i f ( A , Z ) + \ (&.)«)) = Z 
i = l 

and for the subgroup G = kenp of # ( A , Z ) (with ordering induced from this 
group) the inclusion G «—• # ( A , Z) is a strong theory of quasi-divisors by 2.9. 

This example may be modified in a following way. 

Example 3.3, Let A be a finitely atomic root system such that card (A) = No 
and let a : A —• No be a bijection. Let m £ Z and let ipm : Z —• Z/(ra) 
be a canonical homomorphism. Then we may define a group homomorphism 
V? : # ( A , Z) —• Z/(m) such that 

¥>(«) = E M a * ) . ( - i r ( a ) 6 Z/(m). 

Then Z/(m) = ^ ( n " = 1 ( i ? ( A , Z ) + \ (&,-),)) for any finite set {6 i , . . . ,&-»} of atoms 
in # ( A , Z ) . In fact, according to 3.1, we may assume that there exist atoms 
a\,..., an in A such that 

6 * ( ö ) = \ 0 , othe otherwise. 
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Let ipm(s) G Z / ( m ) . Then we may assume tha t s > 0 and then there exists 

QTJ £ ----o \ {«i - • • • > # n } such tha t a ( a o ) is even . We then set 

, , / s, ifa 
a (°) = \ 0, oth, 

= C*Q 

otherwise . 

T h e n a £ H(A, Z) and according to 3 .1, a Jf fefc, A: = 1 , . . . ,n. Moreover, (/?(a) = 

V?m(aao)-(™l)c r^ao^ = V?m('5). Hence, G = ker</? *—> II(A, Z) is a s t rong theory of 

quasi-divisors. 
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