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Abstract

At the present work we consider infinitesimal deformations

izt — ot +e2i(d?)
of a space Ly with non-symmetric affine connection L;k, expressing the
deformations of geometric magnitudes by virtue of Lie derivative. Be-
cause of non-symmetry of the connection, we use four kinds of covariant
derivative to express the Lie derivative and the deformations.
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1 Introduction

Deformations and infinitesimal deformations have been studied by many au-
thors. We refer to [6-11] for more details and references.

Let us consider a space Ly of non-symmetric affine connection Lg-k with the
torsion tensor T;k = L;k - L}'cj, at local coordinates z* (i = 1,...,N). At the
beginning we are giving some basic facts according to [4, 6, 7, 10].
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Definition 1.1 A transformation
f:Ln—Ly:z=(z',...,2") = (z%) - z = (F,...,z") = (&),

where
Z =1z + z(x)e, (1.1)

or in local coordinates
=142, i,j=1,...,N, (1.1

where ¢ is an infinitesimal, is called‘ infinitesimal deformation of a space Ly,
determined by the vector field z = (z*), which is called infinitesimal deformation
field (1.1).

We denote with (7) local coordinate system in which the point z is endowed
with coordinates z*, and the point Z with the coordinates z!*. We will also
introduce a new coordinate system (i'), corresponding to the point x = (x%)
new coordinates
¥ =7, (1.2)
i.e. as new coordinates ' of the point x = (z*) we choose old coordinates (at
. the system (i)) of the point Z = (Z*). Namely, at the system (i’) is

2
where ‘=) denotes “equal according to (1.2)”.

Definition 1.2 Coordinate transformation we get based on punctual transfor-

mation f : x — I, getting for the new coordinates of the point z the old

coordinates of its transform Z, is called dragging along punctual transformation.

New coordinates =’ = Z* of the point T are called dragged along coordinates.
In the case of infinitesimal deformation (1.1’) coordinate transformation

o =3 =z + 2z}, 2V)e (1.3)
is called dragging along by z'e.

Let us consider a geometric object A with respect to the system (i) at the
point = = (z%) € Ly, denoting this with A(i, z).

Definition 1.3 The point I is said to be deformed point of the point z, if
(1.1) holds. Geometric object A(i, x) is deformed object A(i, ) with respect to
deformation (1.1), if its value at system (¢'), at the point z is equal to the value
of the object A at the system (i) at the point Z, i.e. if

A(i', z) = A(i, 7). (1.4)
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Remark 1.1 In this study of infinitesimal deformations according to (1.1)
quantities of an order higher then the first with respect to ¢ are neglected.

We will now define some important notions of the theory of infinitesimal
deformations, following from (1.1): Lie differential and Lie derivative, and in
further considerations we will find them for some geometric objects.

Definition 1.4 The magnitude D.A, the difference between deformed object A
and initial object A at the same coordinate system and at the same point with
respect to (1.1'), i.e. B
DA = A(i,z) — A(i, z), (1.5)
is called Lie difference (Lie differential), and the magnitude
£.A= lim DA _ tim Al ) - Ai, 2)

/
. Lim e (1.5")

is Lie derivative of geometric object A(i,z) with respect to the vector field
z = (2*(z?)).
Using the relation (1.5) for deformed object .A(i, z) we have
A(i,z) = A(i,z) + DA, (1.5")
and thus we can express A, finding previously D.A. The known main cases are:
1.1. According to (1.5) we have Dz* = &' — z¢, i.e. for the coordinates we have
Dz’ = 2'(2%)e, , (1.8)

from where _ o
Lzt =2 (a). (1.6")

1.2. For the scalar function o(z) = o(z!,...,2") we have

Dp(z) = (@) = Lop(a)e, (¢, = 0o/ 0a), (L.7)

i.e. Lie derivative of the scalar function is derivative of this function in direction
of the vector field z.

1.3. For a tensor of the kind (u,v) we get

u v .
i 110y o [ P\ yi1..tu p [IB Y\ iyedin] . $1.0dy
Dt = [t er— 2 2 (2 )t + 30 2 ()i = et
a=1 B=1
(1.8)
where we denoted

P\ iy _ gi1eda—iPiasletu JBY yir i Ly
<za)t]: do = b, ? (p)t.h -Jv tjll..-ja—xpjaﬂ-.-ju' (1.9)
1.4. For the vector dz' we have
D(dz') = L,(dz") = 0. (1.10)
1.5. In the same way, as for the tensors, for the connection coefficients we have

DLy = (Lt + 256~ 2yl + L+ ALiple = LuLlge, (111
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2 The Lie derivative of a tensor

2.1. Because of non-symmetry of connection, at Ly we can consider two types of
covariant derivatives for a vector and four types for general tensor. So, denoting
by [(6 =1,...,4) derivative of the type 6, we have ([1]-[3]):

6

B m = h,m+ZL’“ ( )tii g ZL,,,m( )t§1 . (2.1a-d)

mig

N

pm mig

w

mp

'S

jﬁ‘rn
Generally, the next theorem is in the force:

Theorem 2.1 Lie derivative of a tensor t]1 ]“ of the type (u,v) is a tensor of

the same type and can be presented in the following four ways

et = gty =t = et (D )+ o (2

a=1 6 B=1 o

u
+(—1)"‘IZT$?<:)t:::Z”+ (-1)°" IZ m( )t 2P, 6=1,2; (2.2a,b)
a=1 @ b

E t’L1 £z ll Zu J— t'Ll

-1 JB
J1.- Jv J1eedw g1 ]u“’z Zz ( )t +(=1) Zz][,<p>t_

a=1 @6 B=1 o
+(-1)- IZT“(, )t 2P, =234, (2.3a,b)

where LQ:Z denotes that Lie derivative L, is expressed by covariant derivative of
the type 0, (|), 6 =1,...,4
0

Proof We will prove only the fourth case. The others can be proved in an
analogous way. According to (1.8) we have

u

B1eetey 43 o I8\ i

capt=tiner - S (D)a e T (ak oo
a=1 .

and we have to express partial derivatives with respect to | From (2.1d) we
have

gt = gi

Ji.. vaP J1-- ]vlp ZL ( )tﬁ -Jv +ZL1M’< )t.;ll Ju? (2.5)

2y = zln — Lin2®, (2.6)
4
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and by substituting at (2.4) we obtain:

u

iaf S\ M i
cot = - o L)) +ZLM( )i

4 a=1
Z(z — Linz S< )t“ +Z L’ .z )( )t“

According to
(e ) e
+ZL’“( )t“:::‘“ 2 Z ms< ) e
a=
-3 )t;t )

the previous equation gives (2.3b). a

Of course, as the same magnitude at the right side at (2.4) was expressed in
different ways, we have

Lr=L, 0=1,... 4. | (2.7)
0
0 0. )
Corollary 2.1 For the space Ln of symmetric connection LY (T;k = 0) we
have

u
JB\ i
i tu _ T1.ty ) P i
Etl th]‘l v _tl Jml’z —ZZ»P <z )tJll JU+ZZJ[5< )tJll Ju?

a=1
(2.8)
because in that case all 4 types of covariant derivatives reduce to one, which we
denote by semicolon (;).

2.2. So, Lie derivative of a tensor at a space of symmetric affine connection can
be obtained as a special case from the formulae for Lie derivative at a space of
non-symmetric affine connection. We will investigate the way of presenting the
Lie derivative of a tensor by covariant derivative with respect to symmetrical
part L% ik of non-symmetric connection L: ik Let us consider a space Ly of non-
symrr(l)etnc affine connection L; , and let be

(L i+ Lig), Doy =Lk = Li (2.9)

Then 1
k= gék + §T}k- (2.10)
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The magnitudes Li- ;i are the coefficients of symmetric connection associated to

the connection L] &> and T? i are the components of torsion tensor of connection
L’,c If we denote with L zt“ “‘ * the expressxon as on the right side at (2.8), but

formed by means of IOJ].,c from (2.9) instead of le we have the next theorem

Theorem 2.2 In the non-symmetric connection space Ly Lie derivative of
tensor t71 " can be expressed as

J1.--Ju
3 _ 110y i1t
L t]i ] £2t111 Jv ﬁzt'l.‘.‘
u
i P _ o i1t JB
L R e SO A (YLD
a=1

where the semicolon (;) denotes covariant derivative with respect to symmetric
part L%, of the connection L.
0

Proof According to (2.7), we can start from any of the gz, (0=1,...,4). Let
us start from th;'-‘l"'. ';-‘; from the equation (2.3b). According to (2.1,10) we have
4

3 7 o (, 7
t;'I v Ip t 1 Ju,p + Z(Ll + 2T;s ( )tjlx Jv
IB\ it iu i
Z(LJL'JP ;ﬁp) ( s >tj11-~-ju t 1 Jw,p
1 b 7 1
+§ZT1§S <z )tJll ]v—‘z Jap< >t111 Jv?
a=1

la — Sla ta R ™ T S __ Jla o s
7y =25 +L532° =z (Lps+ 2Tps)z =zl 2Tps ,
4

which by substituting at (2.3b) gives

u
i I8\ iy...i
B1e0tu 1 1 P _ 1 e
L t.711 Jv Eztjll Jv tl vapz Z z, ( )t N + Z%a( ) J1eJu?

a=1

ie. (2.11). ) O

2.3 Comparing (2.2,3) and (2.11), we can see that Lie derivative of a tensor at
Ly can be simpler be given by means of (2.11), i.e. with respect to covariant
derivative formed by symmetrical part L%, of non-symmetrical connection L;.k.

If we use at the same time different kinds of covariant derivative at the
right side at (2.2,3) with respect to L;-k, we can write this equations in the
more condensed form (analogously to (2.11)). In connection with this the next
theorem is in the force
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Theorem 2.3 The Lie derivative of the tensor of type (u,v) can be ezpressed
using covariant derivatives with respect to non-symmetric connection L Gk the
next way

u
I8\ ,i
110ty __ 40 P _ 11...%0
[’tJlx -Ju tJll Jv|PZ Zz|p< )tJlx JuLzzlm( )tyt Ju? (2.12a-d)
a=1 u B=1 v

where (A, u,v) € {(1,2,2),(2,1,1),(3,4,3),(4,3,4)}.

Proof We will prove only the first case, the others can be proved analogously.
Let us start from (2.2a). We have

io [ P ety (i« te oS p ety _ (e la oS _ Tla,S
zlp(io)th-.-ju = (25 + LGz )(ia>t1‘1-.-ju = (25 + L3z — Lz
1

o oS p 2.8y T p 21...7 bee oS p T
+ Lspz )(ia>t31‘ Jv z|p<ia)tj§...ju + Tslpz ( )tjll Jv
2

and analogously

P jﬁ i1.. P jﬁ 110y s i1..
zljza(p)tn Ju"zljg(p)th ]v+Tp]B<p>t]l J»?

Substituting this at (2.2a) it follows that

e

L t?x e =
_t;i ]u|P ‘Z[”f‘;(i )t;i 1]?,+Tla s( )t;i J"]+ZZ|M( )tﬁ o
a=1 2 B=1 2
o1 () e S (i s S (D)
from where we obtain (2.12) for (\, u,v) = (',2,2). a

3 Lie derivative of the connection
3.1 On the base of (1.11) for the Lie derivative of the connection we have

L Ly = 25 + L p2° — 25 L8 + 2515, + 25 LY, (3.1)
As it was proved at [10] Lie derivative can be written in the next way

L.Li = z| et Rjkpz + T}y k27 + L3 Tpo2? + Ly T3y 2P + Tz

P (3.2)

LoLy = L2Lj = 2} ji + Rip?” + (T2 ) ks (3.2))
1 1
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EzLj'k = ;CzL;-k = ijk + R;kpz + T Ikz + T;kzlj

2
+T,§jzfp+Tk|pz +( T, + T Ts + T3, T) 2, (3.3)
2
L.LYy = gzLj.k =z, + é{;—kpzp —That, + Thlh (3.4)
3 3 3

L Lch = LZL]’C = zle +R1kpz +(T, J|k+T1 Tok +T1 sj)zp+T1§kzrj’ (3:5)
4

where [1-3] ' .
Rjp = Likp = Lip + Lix Ly — Ljp L (3.6)
gékp = Lijp— Lpj + LjLps — Ly;Li, (3.7
}:,z;'kp = Ligp — Lpjk + L5k Lys — Ly; Ly + Ly T (3.8)
@j‘lw LJk P L;Jj,k + L;kL;s - L;J kT Lkp sj (3.9)

are curvature tensors of the space Ly.

3.2. We have proved at Theorem 2.3. that the Lie derivative of a tensor can
be expressed more concise by using several types of covariant derivatives at Ly
simmultaneously. It is the same case for the Lie derivative of the conecction.
Namely, the next theorem is in force.

Theorem 3.1 The Lie derivative of non-symmetric connection L, is a tensor
of the type (1,2) and can be expressed with respect to covariant derivatives by
equations (3.2-5), as well as by

L.LYy =25+ Ilzjkpzp. (3.10)
21

LzL;k = Z]ik | j + ]jijpzp. (311)
1 2

Proof The equations (3.2-5), (3.10) are proved at [10]. We will here prove
(3.11).

Starting from the equation
zf = zfj + L;,jz”, (3.12)
1

J
we get

s i
21 —(ZlJ)k+Lksz|] L7t
1 2 1

= ZJk + Lm k2" + Lm I ks(z,j + Lp;2°) - Zj(z,is + L;sz”),
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From here we substitute zfjk at (3.3) and we have

L,LYy =
et ( fcjwp—L;,j,k-*-LZijs L;; Lo)2P +Tkpz” z! Tfk+z”T’k+sz’

— ‘l
Zlilk
1 2

According to (3.7) and (1.8) this equation becomes

L LY = z|] E + Rip2? + LT (3.13)

5 Jkp
From here
Lo (L —Tj) =" La(Liy — Ly + L) = L. L :zfj|k+1§;kpzp,
1 2

ie. (j « k) we get (3.11). a
The difference between (3.11) and (3.10) gives

I 7 i % P
0=21k ;= 2515+ (Brip — Rinp) 2"
1 2 2 1 2

ie.
21k~ 2 k15 = (Bhjp = Bikp) 2" = Bps” (3.14)

12 2 1

as from (3.6, 7,8) we have
Bljp — Rikp = Bpji- (3.15)
The equation (3.14) is one of the Ricci type identities at Ly (see [1], [3]).

3.3. Comparing (2.8) and (2.11), we can see that the Lie derivative of a tensor
0 0

at space [y of symmetric connection Li‘,c and Lie derivative at the space Ly of
non-symmetric connection L% k are expressed in the same way: with respect to

given symmetric connection L;- & in the first case, and in the second with respect
to the symmetric part L;- « of non-symmetric connection L;- k
0

We will here consider an analogous problem in a case of a connection (that

is not a tensor). At the space L n~ of symmetric connection L]k, by reason of

T’,c = 0 all the cases of expresses for the Lie derivative considered before, reduce
to

‘CZL;k = Z;ljk + R;-kpzp, (316)
0. 0.
where R}, is curvature tensor, generated by L} k- Let us examine a space Ly
of non-symmetric affine connection L %> Where LJ,C, ;k are given by (2.9).

The main purpose is to express EzL]-k (3.2") by covariant derivatives with
respect to Lglu and IIZ;kp by }(){}kp, formed by %;k_ We have
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;1
Zj; =25+ L2 = z5+ (L,,J + T’ )27 =zl + 2T;sz (3.17)
1
. , 1 .
2, = (2 )lk+ ( 2P k= (25) k + Lig2ly — Ll + 5 Tpi2P)1
1 1 1
=z + 5 [ T5zis + (T27) &) (3.18)
1
According to (2.7) at [3] we have
ey = Rip + 2T — 5T TT‘ Lre s 3.19
Ilzjkp“lozjkp_'_ 9 ikip T o~ ipik 4 P~ sk (3. )

and substituting (3.18,19) at (3.2") we obtain

L le_zjk+2[T1 = T2l + ( zsz”)lk]
+ B+ oIT; Jhi ~ 2TJ wTp = % P Tonl2? + (Tfpzp)'lk.
Based on (2.11), we get
LaLje = LaLy = 2+ Ryop?” + %IO:ZT;'k. (3.20)

As -
i Lo i i ‘
f)lz( ik~ §Tjk) = gz( ik~ le + L ) = gz( 5Lk + L )= gzgf;k*
from (3.20) we have
cz%§k = 5216;"“ =2l + %z;lk,,zp. (3.21)

Based on the pointed facts follows

Theorem 3.2 Lie derivative of non-symmetric connection L’ ki can be given by
the equation (3.20), where covariant derivative denoted by; and curvature tensor

R;.k are formed with respect to symmetric part L of the connection LJk, and

[:ZT’,c is expressed according to (2.11) with respect to L1 . The Lie derivative

of symmetric part of connection is given according to (3.21) i.e. it is the same
as for symmetric connection (equation (3.16)).
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