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Abstract

The regular linear model in which the vector of the first order param-
eters is divided into two parts: to the vector of the useful parameters
and to the vector of the nuisance parameters is considered. We exam-
ine eliminating transformations which eliminate the nuisance parameters
without loss of information on the useful parameters and on the variance
components.

Key words: Regular linear regression model, useful and nuisance
parameters, LBLUE, eliminating transformation.
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1 Notations

The following notations will be used throughout the paper:

R™ the space of all n-dimensional real vectors;
Up the real column p-dimensional vector,
Apn the real m x n matrix

A’ r(A) the transpose, the rank of the matrix A;
Tr(A) the trace of the matrix A;

*Supported by the Council of Czech Government J14/98:153100011.

59



60 Pavla KUNDEROVA

M(A), Ker(A) the range, the null space of the matrix A;

M*(A) the ortogonal complement of the subspace .Z(A);
A~ a generalized inverse of the matrix A
[satisfying AA™ A = AJ;
At the Moore—Penrose generalized inverse of the matrix A

[satisfying AATA = A, ATAAT = AT,
(AATY = AAT, (ATA) = AT A];

Py the orthogonal projector onto .#Z(A);

My =1I-P,4 the orthogonal projector onto .#*(A) = Ker(A');
I, the k x k identity matrix;

Om,n the m x n null matrix.

If #(A) C .#(V), V ps.d., then the symbol PY denotes the projection
matrix projecting vectors onto subspace .#(A) with respect to the V-seminorm
given by the matrix V, ||z||y = Va'Vz; MY =1 - PY.

Let Ny is p.d. (p.s.d.) matrix and A, , an arbitrary matrix, then the
symbol A_ ) denotes the matrix satisfying AA;I(N)A =Aand NAD ) A=
[NA7 nA]'- (A ()Y is a solution of the consistent system Az = y whose
N-seminorm is minimal, see [3, p. 151]).

2 Linear model with nuisance parameters

Let us consider the following linear model

Y:(X,S)(£)+e, o)
where Y = (Y1,...,Y,) is a random observation vector, 8 € R" is a vector of

the useful parameters, x € R* is a vector of the nuisance parameters, X, , is
a design matrix belonging to the vector 3, Sy, s is a design matrix belonging to
the vector k.

We suppose that

1. E(Y)=X@+ Sk, VB€ R", Vk € R®,

2. ’UCLT(Y) =3y = ,z;=1 Vi, VI = (191, .. .,’191,)/ €3 C RP, Vyq,... ,Vp
given symmetric matrices, -

3. 9 C RP contains an open sphere in RP,
4. if ¥ € 9, the matrix Xy is positive semidefinite,

5. the matrix ¥y is not a function of the vector (8, k')’

If the matrix ¥y is positive definite for any ¥ € ¥ and r(X,S) =r+s <n,
the model is said to be regular, (see [1, p. 13]).
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Theorem 1 In the regular model (1) the 9-LBLUE of the parameter (§', k')’
is given by

-1 -1
3 (X'S; M5 X)IX'S; My
) E“ME‘;I Y. 2)
(8's5'8)-18's5 My 8

Proof see see [4, Theorem 1].

Remark 1 As Xy is supposed to be positive definite, we can write (see (2,
Lemma 16])

-1
S;IMy =35 - 5518(8'5;18)718'S;! = (MsSeMs)*.

The statement of the Theorem 1 has the equivalent form

(-
_ ( (X' (MsZyMs)T X1 X' (MsZyMs)* ) Y.

(S,EI;IS)_ls,EEI{I — X[XI(M526M3)+X]_IXI(M525M3)+}

Remark 2 1. A parametric function h’3 is unbiasedly estimable in the model
(1) iff
h e ./ﬂ(X M S)-

It is easy to prove it, because the class of all unbiasedly estimable functions h’3
in the model (1) is following

prnscrs(3) ()}

/
i.e. for each estimable h’( there exists u € R™ such that <Z’) = <‘§, ) u,

& h=Xu, uS=0 © h=X Msw, we R"

2. In the regular model (1) we have #(X)N.#(S) = {0} and it is equivalent
to M(X') = M(X'Ms) (see [3, p. 145]).

Theorem 2 Let us denote o = Y.5_ 9 V;.
a) In regular model (1) the function

14
gv=> g, Ve,
=1

is unbiasedly, quadratically and invariantly estimable (i.e. the estimator has the
form Y'AY, where A, is symmetric matriz, the estimator is invariant with
respect to the change of the vector 3) if and only if

g € MSnix,5)ToMix,5)* )
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where

{S(Mix.s)BoMix.5))* i = TH(M (x,5)S0M (x,5)) T Vi(M (x,5)Z0M (x,5)) "V 5],
ij=1,...,p.

b) If the function g'0 satisfies the condition from a), then the 9o-MINQUE
of 'Y is given as

p
g0 =Y NY'(Mx,5%0M x5 Vi(Mx.550Mx.5)"Y,

=1
where the vector A = (A1,...,Ap) is a solution of the system of equations

S (Mix,5) 50 M(x.5)* A = G-

Proof see [3, Theorem IV.1.11].

Remark 3 The matrix Siu, 55,0, x.5))+ is called the criterion matrix for the
estimability of the function g’d. As M x5 = MsMuyg,x = MysxMs, it
holds

{SMx 5y 20 M x5+ Yid
= Tr[(Mpsx M sSoM sM pg x )TV [Mpgx MsSoM sM s x )TV 5]
=Tr[(MxMsSoMsM x )tV (MxMsSoMsMx)* V],
where the equality

(MysxMsXoMsMpyox)" = (MxMgsSoMsMx)™T,

was used.

3 Eliminating transformations

There are situation in the practice, that the number of nuisance parameters is
much more greater than the number of useful parameters. This fact could cause
difficulties in the course of calculations.

Two approaches to the problem of nuisance parameters are used:

a) the structural approach: it respects the structure of the model and seeks to
find classes of linear functionals of useful (main) parameters such that their esti-
mators allow the nuisance parameters to be neglected; the estimators computed
under disregarding nuisance parameters remain to be unbiased. The variance of
the estimator belonging to the above mentioned class could behave analogously.

b) the eliminating approach: this approach solves the problem of nuisance
parameters by their elimination by a transformation of the observation vector
provided this transformation is not allowed to cause a loss of information on the
useful parameters.
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In [1], [3] there is considered the following class of eliminating matrices
SH={T:TX =X,TS =0},
where T is the matrix of proper dimension. Thus we get the model
TY ~ [ X3, TSsT').

In this paper we shall consider eliminating transformations, that need not
fulfil the first condition T X = X. Our task will be to eliminate the matrix S,

belonging to the vector of nuisance parameters, i.e. we consider the following
class of eliminating matrices

Fp={T:TS =0},
that leads us to linear models
TY ~ [TXB,TEsT'}. 3)
The general solution of the matrix equation T'S = O is of the form
T=AI-5SS7),

where A is an arbitrary matrix of the corresponding type, S~ is some version
of generalized inverse of the matrix S.

If we choose 8™ = (S'WS)~S'W, where W is an arbitrary p.s.d. matrix
such that

M) = MS'WS), ()

then T = AM 2’, where M ‘év is given uniquely.
First we consider the transformation matrix T = MY , i.e. we consider linear
model

MYY ~[M¥ X3, M¥3(MY)], where £y is regular. (5)

It is easy to prove that #(Mg) = .//{([M‘év]’) Indeed:

a) if ¢ € #(MY]), there exists u € R™ such that z = (MY u, ie.
x'S = 0 and so x € A (S) = M(Ms);

b) r(Ms) = Tr(I — Ps) = n—r(S); r(M¥) = Tt(I — P¥) = n —
TH(S(S'WS)~S'W) =n — Tr[SWS(S'WS)| =n —r(§'WS) = n—r(S),
where (4) was utilized.

Thus

MX'Ms) = MX' (M),

i.e. the classes of the estimable functions g’3 in the model (1) and in the model
(5) are identical.

In the following we use
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Lemma 1 If & is p.d. matriz, W p.s.d. and S such matrices that .#(S') =
M(S'WS), then

S = Py [MoSMJ* Py
(M) MS(ME)TMY = (MsSMs)®.

Proof a) At first we verify the properties of the Moore-Penrose g-inverse
utilizing that MY S = O, MsM}¥ = Mg, and that

Ms(MsEMg)*Ms=Mg(MsESMg)t = (MsEMs)t Mg,

see [1, Lemma 10.1.35].
b) We prove the second relation by substituting the first one. a

Theorem 3 The 9-LBLUE of the estimable function f'B , f € #(X'Ms) in
the model (5) is given as

F'B=1'(X'[MsZoMs]" X) X'(MsZsMs)'Y,
i.e. it is the same as in the regular model (1).

Proof According to [1, Theorem 3.1.3], the 9-LBLUE is given by

—

’ Wyrn— ! w
f'B8= .f, {[(X (MS ) ]m(Mgvxﬂ(M;“’)’)} MS Y
= F{ME DM )] MY X(X' (MY ) MY Ts(Mg )" MY X)"}YMZ'Y
= F{IMY'S9(Mg))” M§ X[X'(MsSsMs)* X]" Y MY
= f(X'[MsZsMs]* X)™ X' (Mg ) [M§Se(Mg) MY
= f/(X'(MsEgMs)"X) ' X' (MsZeMs)TY.
Lemma 1 and following property of the matrix A:n( N):
MA') C #(N) = A:n(N) =N"A'(AN"A')",

have been taken into account. O

Theorem 4 A linear function g0 of the vector parameter ¥ € 9 C RP, unbias-
edly estimable in the model (1) before eliminating transformation is unbiasedly
estimable in the model (5).

Proof The (i,j)-th element of the criterial matrix in the model (5) is given by

{S(MAlg/XMg/EO(M;V)’MAIS/X)+}i’j =

= Tr[(M 5 MY So(M¥ ) My ) * ME V(MY
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X (M ppw x MY So(Mg')' M ypw x )P MG V5 (MY')')
= TH{(MY) (Mygw x MY So(M¥ Y My ) MY V(MY
X (M pw x Mg So(ME) M yw x)* M V).
As
(M) M pyw x MY So(ME) My x|* MY =
= (Mg )M So(Mg )T Mg — (MY)[Mg So(MY) "My X
x (X'(MY) MG So(MJ)1"MY X)” X' (M) (Mg So(M )" MY
= (M520M5)+ — (M520M5)+X[Xl(M520M5)+X]_X/(M520M5)+
=[MxMsSoMsMx]",
then
{S(MM;VXM;VEO(M;V)'MM;VXV}i,j =

= TI’[(MXMsZoMsMx)+Vi(MstZQM5Mx)+Vj], i,j = 1, ey P

Due to the Remark 3 it is evident that the criterial matrices in the model (1)
and in the model (5) are identical. ]

Theorem 5 Let g’'d, ¥ € ¥ be an unbiasedly estimable function. Then the Yo-
MINQUE in the model (1) and the 9o-MINQUE in the model (5) after elimi-
nation coincide.

Proof We have seen that each function g’¥, that is unbiasedly estimable in
the model (1) is unbiasedly estimable in the model (5).
According to Theorem 2 the ¥o-MINQUE in the model (5) is given by

14
g9 =Y NY' (MY [Myw x MY So(MY¥) M yw " MY V(MY Y
=1
XM pw x M So(ME) M yw x| "MY
14
=Y NY'[MxMsSoMsMx]'Vi[MxMsSoMsMx]'Y,

i=1

i.e. this estimator is identical to the estimator in the model (1), see Remark 3.
The equality derived in the proof of Theorem 4 has been taken into account.
O

If we use in the eliminating transformation T' = M the following matrix
W = (M xXyM x)*t, we get the transformation matrix

T — M(ngzﬂMxV’

that is very useful. It eliminates the nuisance parameters and does not change
the design matrix belonging to the vector of useful parameters, i.e. this trans-
formation yields the following model

Mngz,sMx)’fY ~ X5, MngzoMx)J”Eﬂ(MgMXz”MX)+)’], Y regular. (6)
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Remark 4 (a) The matrix W = (M xYX3M x)* satisfies the assumption (4),
as M(S') = MS'|[MxZyMx|*tS), see [1, p. 189].
(b) Theorem 3, Theorem 4 and Theorem 5 are true in the model (6).

Let us consider the more general model
AM(SMXz"MX)+Y ~ [AXB, AMngxzeMx)+Eﬂ(MngZ‘9Mx)+)/AI]’ )
Y regular, where A is such that
MX'A') = MX'Ms), (8)

i.e. the classes of the unbiasedly estimable functions in the model (1) and in the
model (7) coincide.
It holds

E(AP(XMSZzSMS)+Y) —
= AX(XI[M520M51+X)-Xl[MszﬂMs]+(Xﬁ + Sk) = AXp,

.
ie. AP()?JSE” Ms)"y is an unbiased estimator of the vector function AX 3 for
each matrix A.

+
Lemma 2 APg(MSE"MS) Y is the best estimator of its mean value.

Proof We use the basic lemma on the locally best estimators (see [3, p. 84]).
The class of the estimators of the null parametric function in the model (1)
can be expressed in the form

-1
% = {W MY, vuc R},

as
E(L'Y) = (X, S) (g) —0, VB R", Vr € R°,
-1
& L'(X,5)=0 & Le.#(Mcxs)= MMyl
According to [1, p. 190, 191]
M(ng) -7 P&MszaMSﬁ'_ PngxzaMX)J', Pg(MsEaMS)+PngZva)+: o,
and so .\ .
PRSP N o = 0.
Thus

1 -
Z\?

_ 1
cov(APYSZM Ty WMy (V) = APQISEMO sy (Mg o)

(X,5)

-1
= AP&MSE"MS)JrM(Z}? S)Zﬂu =0, Vu € R", for each matrix A. a
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Theorem 6 In the model (7) the estimators AP(XMSE“’MS )+Y, where A is an
arbitrary matriz such that #(X'A') = M(X' M), create the class of all opti-
mal estimators of the vector function AX .

Proof According to [1, Theorem 3.1.3.] the ¥-LBLUE AXPp in the model (7
is given by

AXp =
= AX {(X’A’)‘

+ +
m(AM;l\lxzol\lx) 2:'3(1\4;[\[)(2(9[\1)()

' AM(szoMX)+Y
yA%) §

= AX[X' A (AMGXZM g, (M Be M)ty o= A X
x X' A/ (AM B MO g, (g Mx B M)ty g1y~ A pgMxBeM)y
= AM%MXEﬁMX)+X[X/(M(SszaMx)+)IA/(AM(SManMx)+Zﬂ
% (M(SMXZ.sMx)+)/A/)—AM(SMxEoMx)*'X]_X/(MgMXEng)+)/A/
y (AMngzoMX)+Zﬂ(MngZﬂMX)+)/A/)—AMngEoMX)+Y

MxsgMx)t MxsgMx)t -
[AM{MXZ MO g (g (Mx T MxOT 1 g1y AM(Ssz,,Mx)+Y

+
AM;I\[X):al\lx) X

It is the best unbiased estimator. With respect to the basic lemma on the
best estimators

(MxEgMx)t (MxSeMx)r i o -1
AM Ze(M A SeMx)* z
cov[PIAMs 7T 7 Be(Ms VAT AMMEMOTy W arTs Y] =0,
AMMXToMx)T S (X,S)
S
Yu € R",

is valid, i.e.

MxSyoMx)t MxZgMx)t /- _
[AMé X ToMx) Za(Mé X B Mx) ) AT} AM(MXEBMX)+E (Mz"l )'u—O
AM(A/’X EﬂA1X)+X s 9 (X:S) -

s

Yu € R,
Thus
(MxZyMx)+ (MxSgMx)ty, 4 -1
AM Ss(M A + %
[AMs o (M5 Al AMfS.MXE"MX) M()‘} S)Z,p =

AMéMX TgMx)t X

My SyMy)t MxSgMx)t _
[AMé xZTyMx) Eo(Mé X EgMxITyr pr)

MxSoMx)*t MsZyMs)t
AMMXEgMXIF o AM(S x ¥ Mox) Mg( sZeMs) Ty =0,
s

-1
where the relation M(E)?,s) = MngX E“’MX)Jng(MSz"MS)Jr, (see [1, p. 191]) has
been utilized.
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We have

+ +
[AMéAIX}:,,Mx) 26(MéAIX20A1X) ) A

AMngzﬂMX)+Y —

+
AM;AIXE‘,AIX) x

MySgMx)t MyxZSgMyx)t _
[AM; X ZoMx) Eg(M_(s xZyMx) )’ A) AP(MSE"MS)+Y
AM(MX):,,MX)+X X .

s

Let us denote
B = XI(MngEaMx)+)/AI[AM(SManMx)+Eﬂ(MngEﬂMx)+)/Al]—
x AMMxEM" x|

Then
[AMéﬂlxonlx)+ E‘,(Méhlx):"A[X)+)’A’]‘

AMGEMO Ty -

AM;AIXE,,MX)+X
= AMMxZ MO ¥ B BIX! (M 59 M)+ X]™ X' (MsS9Ms)*Y
= AMMxBMOT X (X (M 5y M )t X]™ X' (MsSMs)tY

= AX[X'(MsS9Ms)* X]~ X' (MsSyMg)TY = APsZoMs) Ty

The following equivalence has been taken into account

AMMFEMOT X gmB = AMPIxEMO" x
= M(AMMEMOT Xy - y(B).

The g-inverse matrix in the matrix B can be chosen arbitrarily. If we choose
it p.d., the condition on the right side of the equivalence is obvious. ]
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Abstract

The aim of the paper is to show some possible statistical solutions of
the connecting measurements. The algorithms were published in [1], [2]
and [3]. The paper concentrates on numerical studies of these algorithms,
finding estimators of parameters and comparing their covariance matrices.
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1 Introduction

We study two stage linear models, where we must respect uncertainty in connect-
ing measurements and estimations of parameters for connecting measurements.
We have got estimator © of parameter © in the first stage before measurements
(we measure by an instrument with known parameters). In connection with un-
certainty of estimation of parameters © for connected measurements we define
“uncertainty of type B” in comparison with “uncertainty of type A”, connected
with accuracy of connecting measurements.

*Supported by the Council of Czech Government J14/98:153100011.
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We study the model where in the second stage (connecting measurements)
occurs the constraints on parameters of the first and the second stage (type I).

We need to considered these constraints during finding estimators of param-
eters from the second stage. B

We define Up of unbiased estimators 3 of the parameters 3 in the regular

model, where we respect errors in connecting points; and class U3 of unbiased

estimators 3 of parameter [ satisfying the constraints between parameters of
the first and the second stage.

The estimators from the class Ug need not fulfil the constraints between
parameters of the first and the second stages. There does not exist any jointly
efficient estimator in the class Ug. Therefore we study estimators from the class

L~{g which minimize a linear functional of the covariance matrix of the estimator

8.

2 Estimation in model of connecting measurements with
constraints of type I

Definition 2.1 The model of connecting measurement will be called random
vector Y = (Y], Y}), with the mean values and the covariance matrix:

Yi) _ [(X1, 0 () 21,17 0
Y, D, X, B\ 0, 22/’
where X1, D, X5 are known nq X k1, no X k1, ng X kg matrices, with the condition

M(D’) € M(XY]); ©, 0 are unknown k; and ko-dimensional vectors; ¥1,1 and
35,2 are known covariance matrices of vectors Y and Ys.

In this model the parameter © is estimated on the basis of the vector Y; of
the first stage and parameter 3 on the basis of vectors Yy — DO and ©. The
results of measurements from the second stage (this means Y2) we cannot use
for the change of the estimator ©.

The parametric space of this model of connecting measurements Y according
Definition 2.1 is

e={©,5):B+CO+a=0}

where B, C are g x k2,q x k; matrices and where a is g-dimensional vector,
where 7(B) = ¢ < ka. »

The vector © is the parameter of the first stage (connecting), the vector 3
is the parameter of the second stage (connected). In the second stage we have
the unbiased estimator © = (X, z;}xl)—lxgz;}Yl from the first stage and
its covariance matrix Var(©) = (X, 2riX1) 7L

Definition 2.2 The model in Definition 2.1 in this parametric space © is regu-
lar provided r(X1) = ki1, 7(X2) = k2, 31,1, X2 2 are positively definite matrices
and r(B) = gq.
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Definition 2.3 We will consider the model of connecting measurements ac-
cording to Definition 2.1. Estimator LY + d of the function f(8) = f'3, where
exists © where ((Z) € ©, where f is given vector from R* we call the best linear
unbiased estimator (i.e. the best in the sense of variance) if it is

(i) unbiased: for all (8', ") € @ is E(L'Y +d) = '8,

(ii) efficient: Var(L'Y +d) < Var(L'Y + d), where L'Y + d is arbitrary other
unbiased estimator of function f(3).

Lemma 2.1 The class Ug of all linear unbiased estimators E of the parameter
B based on the vectors Yo — DO and © 1is

Us = {[X35 +Z(I - XoX3) + EBX; (Y2 — DO) + ECO + Ea:
Z an arbitrary ko X no matriz, E an arbitrary ko X ¢ matriz
X3 an arbitrary but fited X; € X~, (T means g-inverse) }.

Proof [1], p. 646.

Lemma 2.2 The class I]g of all linear unbiased estimators 3 of the parameter
B in the model from Definition 2.1 Nbased on vectors Yo — DO and ©, and
satisfaying the (random) condition BB +CO+a=0is

Us = {[I-B~B] [Xz‘ + Wi (I- ng(g) + WgBX{](Yg - DO)
+ [-B~+ (I-B~"B)W;,|CO + (I-B"B)Wja—B~a,
‘W an arbitrary ks X ne matriz, Wa an arbitrary ko X ¢ matriz
X5 and B~ are arbitrary but fivzed X5 € X~ , B~ € B~ ma,tm'ces}.

Proof [1], p. 647.

Corollary 2.1 Covariance matriz of the estimatorﬁ is

Var(3) = (I- B™B) [X; + Wi(I - X5X5) + W2BX; ] 2
x [X3 + Wi(I - XoX5) + W2BX; ] (I - BB
+{(I-B B)[-X;D - W, (I - X2X;)D - W,BX; D
+W,C] -B~C}|%;,1(I-B™B)
x {[-X;D - W;(I - X,X;)D - WyBX; D + W,C] - B~C}'.

Corollary 2.2 Covariance matriz of the estimator E, for case of the model,
where Xo =1, is

Var(®) = (I - BB)[I+ W3B|S,. x [I + W,B]'(I - B-B)'
+{(I-B~B)[-D - W,BD + W,C] - B-C}
x $,1{(I - B"B)[-D — W,BD + W,C] - B-C}".
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Theorem 2.1 In the class Us in Lemma 2.1 (estimators 3 from Up need not to
satisfay condition BG+ CO +a = 0), there exists the jointly efficient estimator

B* of the vector (3
re - V[Y,-D6
b= (X5 B) ) (—éé_a)

Si11, Si2
S = :
<8217 Sa2
Si1 = B +D(X{E[1Xy)7'D’, Sy
Sa1 = C(X{E71X1)"ID, Sa2

where

D(X,E71Xy)"!C,
C(X|Z1Xy)"tC.

I

Proof [1], p. 649.

Definition 2.4 The least squares estimator of the parameter 3 obtained under

~

the condition X1 ; = 0 (= Var(©) = 0) is called the standard estimator if in
this estimator the vector © is substituted by ©.

Theorem 2.2 The standard estimator ﬁ of the parameter 3 in the model ac-
cording Definition 2.1 is given as

B = (X5%55Xs) 71X} 55 5(Y2 ~ DO)
— (X525, X2) ' B/[B(X;%5,X,) ' B!
x {a+ CO + B(X)T;1X0) 1X}, 35 1(Y, - DO)},
whereas this estimator is unbiased, it means E([i) =f.

Proof The best linear estimator 3 determined by the least squares method
in the model Y ~, (DO + X0, Xs2) satisfying condition B3 + CO + a = 0,
where the parameter © is known, we get by minimizing the function
#(B) = (Y2 — DO — X,8)' %5 3(Y2 — DO — X30) — 2X[(a+ CO) + Bf|
= (Y: —DO)'E;3(Y2 —DO) — 26X, 5(Y2 — DO) + /X5 555X,
—2XN[a+ Ce +Bj|.

We determine the derivative of the function ¢(53)

P R
_‘g_([_i’l) = ~2X,574(Y, — DO) + 2X} 35 3X00 — 2B'A
and solve the system of equations
9 R
-fg%@ = —2X,3; (Y2 — DO) 4 2X5553X03 — 2B'A =0

B3+ CO +a=0.
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From the first equation we get 3
B = (X4T55X0) 71X 35 3(Y2 — DO) + (X535 5X5) ' B/A
and after substitution into the second equation
a+ Co + B(X;E;;XQ)_IXQEQ,Q(YQ - Do)+ B(X§E£§X2)‘1B’/\ =0
we determine
A= —[B(X;%53X,)7'B| " {a + CO + B(X,%;;X2) ' X425 5(Y2 — DO)}.
After substitution A into the first equation we get
B = (X3%53Xe) 1 X58;5(Y2 ~ DO)
— (X3%5,X2) 7 B'[B(X,2;,X0) B
x {a+CO + B(X5%;3X,) ' X555 5(Y2 — DO)},
B = —(X4X53X0) "B [B(X,2;53X2) !B} (a + CO)
+{I - (X425 5X,) ' B/[B(X}5;3X2) "' BB}
x (X335;X2) " X535 (Y, — DO),
B = {1- (X;%53X2) " B/[B(X;5;5X2) "' B BH(X; 85 5X2) T X5 555
x (Y2 — DO) — (X535 3X,) ' B/[B(X55;3;X2) ' B’ }(a + CO).
By choosing O for © we get the standard estimator.

The assertion E(B) = [ is the result from our premise E(é) = O and the
fact that E(Y;) = DO + X543. Thus

E(f) = (X3835X2) ' X535 3Xa — (X335 3X0) 7' B/[B(X;25,X0) B!
{a+CoO +B(X;%;,X,) ' X;57,Xa0} = 5,
because of a+ CO + B3 = 0. O
Theorﬁm 2.3 If Var(@) # 0 then the covariance matriz of the standard esti-
mator (3 is formed by “uncertainty A” and “uncertainty B”:
Var() =Varo(5)  +({I - (X}38;,X,) "' B'[B(X43;,X,) "' B 7'B}
X (X5332%,) 71 X5%5,5D — (X535 ,X0) 7!
x B'[B(X}%;,X2)"'B]~'C)
X Var(@))
x ({I - (X535,X,) "' B'[B(X,3;5,X2) "B "' B}
X (X533%5) X535 3D — (X53;55X,) !
x B'[B(X5%;,X2) "' B|7'CY’
—— .

uncertainty uncertainty
type A type B
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where

Varo(ﬁ) =
= (X5373X0) 71— (X4 273X,) T B/ [B(X5E53X0) ' BT IB(X5 555 X2) "

Proof is elementary. It is enough to determine Varo(3) = Varo(8)|x,=o0 and
Var(3).
Var(f) = Varg(B) + Var{({I - (X},%;}X,)"'B'(B(X3X;3X,)"'B)"'B}
X (X535, X2) T X535,D — (X58;55X0) T B
x [B(X4E;3X2)"'B/|"1C)8)}.

O

Corollary 2.3 The standard estimator for the case of the model, where Xo =1
and D =0 is

B =[I - 55,B(BX,,B')"'B|(Y; — D) — 5,,B/(BX,,B’)"}(C6 + a)).

Corollary 2.4 The covariance matriz of the standard estimator for the case
of the model, where Xo =1 and D = 0, is ' :

Var(8) = [I — 32B'(BX3,B') " 'B|Z;2[I - B (BX;,B') 'BX, 5]
+ 332B(BX,,B')"1C Var(6)C'(BX22,B') !B, 5,

or equivalently

Var(f) = a2 — X92B' (B3 ,B') B, 5 + 25 ,B'(BX2,B)'CXy
X C,(BEQ,QBI)“IBEZQ.

Deﬁnitiog 2.5 Let H be a given kg X k2 positive semidefinite matrix. The

estimator 3 from the class ﬁﬁ is H-optimal if it minimizes the function
6(@) = Tr[HVar(3)], B € Up.
Theorem 2.4 If the estimator 3 from the class I}g is H-optimal, then matri-

ces X5 ,B7, W1, W3 (T means g-inverse) in Lemma 2.2 are solutions of the
following equation

T
U (W1, W3) (3;’ T;) =(Py, P2),

where

U, = [I-B/(B~)JH[I - B-B,
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Vi = (I-XoX3)[Z22 + D(X1 571 X0) "' DI - (X3)'X5),

V, = BX; [22,2 + D(X’IEf)ixl)‘lD’] r- (X;)’X;]
- C(X{ 211 X1) DI - (X5)' X5,

P, = —[I-B'(B7)|H[I - B B|X; %22 + D(X{Z71X;)"'D’]
x [I— (X5)'X4] - [I-B/(B7)JHB~C(X] =7 1X1) " 'D'|[I - (X5)'X)),
T: = [I— (X5)X4){[Z22 + DX} B 1X1) "' D]

x (X7)'B' - D(X{=7;X1)7'C'},
T, = BX; [22‘2 + D(X’lzl‘,}Xl)‘lD’](X;)’B' + C(XiEf,}Xl)‘IC’
- C(X;Z11X1)'D'(X;)'B’ - BX; D(X| 271 Xy) 7' C,
P, = —[I- B'(B")JH[I - B"B|X; [3; + D(X|%{1X1) 'D'|(X;)'B’
+[I-B/(B7)|HB C(X{Z{1X;)"'C’
- [I-B/(B7)HB C(X{Z[;X:) 'D'(X;)'B’
+[I-B/(B7)JH[I- B B]X; D(X|®7X;)"'C".
Proof [1], p. 653.

3 Numerical studies—constraints type I

In this part we will concentrate on a numerical calculation of the estimator of
parameters. In all following examples we need to construct a condition express-
ing a relation between parameters of the first and the second stages. From this
condition we can always construct a vector function g of parameter § and ©
where g(3,0) = 0. We apply the Taylor expansion at point (Bp,Op) to this
function. So for estimators of parameters we get the condition

g(8,0) = g(B0,©0) + Cé6 + BsfS = 0.

We could not change the value © in connecting measurements, and so we
must consider A N .
8(8,0) = g(b,©) + Bip = 0.

On basis of these accounts we get the statement
68 = [I — £2,B'(BS22B") 'B|(Y2 — fo) — £22B'(BX;,B') " 'g(6o, ©).

Example 3.1 Let us have the elg\vations O and O, of points A and B, their
values were estimated by values ©; and ©2. The problem is how to find the
elevation of inner point P (see. Figure 1) by means of measured values Y; and
Y of elevations 3; and 3, between points A ar}\d P and between points P and
B. The accuracy of estimated values ©; and ©, is characterized by standard
deviations; eventually can be determined by covariance matrix (below) and
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analogously it is valid for random variables Y; and Y, which characterize the
measurement of the parameters (; and fJs.

Let ©1,0, be parameters of the first stage (connecting) and (31, G2 be pa-
rameters of the second stage (connected). The estimations él, @2 of differences
©1, 0O, are given from the first stage, the measurement of values Y7, Y, param-
eters (1, 02 are done in the second stage of measurements.

B2 Y2

B v, b

©1 01

Figure 1: Model of estimation height of inner point

Let us find estimators for the values (él, éz) = (150,400.1) and (Y3,Y2) =
(125, 125).! Values of variables ©1, 02, 31 and s, etc. are indicated in meters.

Values of covariance matrices are indicated in m? (for example /o7 =
0.04 m).

We construct a model of connecting measurements in Definition 2.1.

Let ©1,0©4 be random variables with mean values ©1, 0, and with disper-

; 2 .2
sions 7, T3,

In our case we will consider?

2
_ (72, 0\ _ [0.0009, 0.0002, N
Zu = ( 0, r§> - (0.0002, 00007, ) K1= T2z

Let Y;1,Y> be stochastically independent random variables with mean values
51, B2 and with dispersions ¢%, 02,

() -l () =]

In our case we will consider

2
_ (o}, 0 _ (0.0016, 0.0000, B
o2 = ( 0, ag) - <0‘0000, 00016, )0 X2l

1When we admit that @1, Y1 and Y3 are exact values, then it should be éz = 400 m.
2Assumption X1 = I3,2 means that values ©;,©2 are measured directly.
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One can observe in Figure 1 the following condition is implied for parameters
of I. stage ©1, ©5 and parameters of I. stage (1, B2:

B1+ P2 =02 —-0;. (c1)

In our case we can write the estimator from the class L?ﬁ (see Lemma 2.2)
in this form:

=~ Y, k ~ ~
B = <Y;) + (_1_k) (Y1 + Yo + 02 - 6y).
Thus, we have for the covariance matrix:

vy = (592).

S21, S22
where
s11 = K2(1E+ 78+ 03) + (1 + k)03,
s12 = —k(1+k)(1? +73) — (1 + k)%(0? - K%02),
k(L + k) (12 + 73) — (1 + k)%(0? — K203),
(L+ k)3 (1% + 12 + 02) + k?0,.

S21

Il

522

As we can see, it is impossible to find any jointly efficient estimator. Now
we will determine numerically the standard estimator 3 (see Corollary 2.3), and
its covariance matrix Var(J) (see Corollary 2.4).

At first we will construct the function ¢g(3,0) = B1 + B2 + ©1 — O3 from
our condition (c1). We will use the Taylor expansion at point (3°, @°) for this
function in the form

(B11 32)5,6 + (Cl1 02)5@ +a= 07

where o oo o o
99(8°, 8% 9g(8°,09%)
Bi=-22") 1  Bp=22C ) g
! a6, 2 362
_ 9g(8°%,0% _9g(8°,8%
“G="96, L =755 =7h

a= g(ﬁ",e‘)) = (,3? + 9 + 69 — 93) .

From approximate values ©9 = 150.0,09 = 400.1, 39 = 125,39 = 125 we
will determine a = 150.0 — 400.1 4+ 125.0 + 125.0 = —0.1.
In our linearized model we will determine from Corollary 2.3 and Corol-

lary 2.4:
- 125.05 5 1.1-107%3 —5.0-10~*
b= (125.05)’ Var(f) = (~5.0- 104 1.1- 10—3) :
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Furthermore we will determine numerically H-optimum estimator E for the

matrix
10
== (1)

according to the relationship in Lemma 2.2. We determine matrices X5, B™,

W, and W5 from Theorem 2.4; and its covariance matrix Var@) from the
relationship from Corollary 2.2

= 125.05 = ( 11-107% -5.0-107*
b= (125.05)’ Var() = (-5.0' 10 1.1.10—3) '

As we can see, the estimator[i is the same as the estimator B The estimated
elevation of the point P is ©1 + 3 = ©1 +4, = 150 m + 125.05 = 275.05.

In this case the estimator 5, which we got for chosen matrix H is the same as
the standard estimator 4. Our aim was to show, that it can occur the situation
we cannot find any better estimation than the standard estimation. In other
examples we show, that generally we can find better estimator. Furthermore our
aim was to show using Taylor’s expansion, which is used in almost all non-linear
situations, according to our aspiration to demonstrate the universal approach
for numerical solutions.

Example 3.2 Let us have A and B points with their elevations ©; and ©,
measured in the first stage by the values ©; and ©5. The problem is to esti-
mate as exactly as possible the elevation 3; at the inner point P; by means of
measured values Y7, Y2 and Y3 (see Figure 2).

The accuracy in determination of the values @1 and @2 of heights ©; and
O, is characterized by the standard deviations, or by the covariance matrix (see
follow up) and analogously of measured values Y7, Y2 and Y3 of the values (i,
B2 and 3.

B
K — — —— — o — ———— ——y
B3 Y3
K — e — — — — — P2
o, | B2 Y2 0.
B1 A Y;
K —
e:| @

Figure 2: Model with two inner points
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Now let us determine the standard estimator and the H-optimum estimator
and their covariance matrices for the values (©1,02) = (125.00,575.09) and
(Y1,Y2,Y3) = (100.00, 150.00, 200.00).3

We will construct a model of connecting measurement according to Defini-
tion 2.1.

Let ©1,05 be random variables with mean values ©1, ©5 and with the dis-

persions 7'12, 72,
él e1
1 (82) 2[ 1(62) 11]
In our case we will consider
2
_ (72,0 _ {0.0009, 0.0002, 3
B = ( 0, rg) - (0.0002, 00007, )0 K1=l2e

Let Y37,Y5,Ys be stochastically independent random variables with mean values
B1, B2, B3 and with the dispersions 0%, 03,03,

Y1 b1
Yo=Y | ~N3 [ Xo| B2 | ;822
Y3 B3
In our case we will consider
02,0 0 0.0016, 0.0000 0.0000,
L= 0, ¢4 0 | = 0.0000, 0.0016 0.0000, |, Xy =1Is.
0, 0, o2 0.0000, 0.0000 0.0016,

One can observe in Figure 2 that the following condition is implied for pa-
rameters of the first stage ©;, ©3 and parameters of the second stage (1, B2
and fs:

B1+ B2+ B3 =02 — O1. (c2)

We~will calculate numerically a standard estimator ﬁ and H-optimum esti-

mator 3 like in previous example.
First of all we will construct the function g(8, ©) = f1+02+03+01—02 from
our condition (c2). We will construct the Taylor expansion at point (3%, ©°) in

the form
(Bla 321 B3)6ﬂ + (017 02)59 +a= 07

where
dg(6°,0°) dg(8°,0°) dg(8°,0%)
= =1 = —t—_— = By = 2" 7 1’
B 0B B 0f2 L B 0B
0 00 8a(3°. ©°
c, =20.0) _ o _%0.8) _

881 692

3If we admitted that the values 61, Y1, Y2 and Y3 are exact values, then it must be
©2 = 575.00 m.
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a= (B + 063 +065+6]—63).
From the approximate values ©¢ = 125.00, 69 = 575.09, 3} = 100.00,
B9 = 150.00, 39 = 200.00 we receive a = 100.00 + 150.00 + 200.00 + 125.00 —
575.09 = —0.09.

In our linearized model we will numerically determine the estimator and the
covariance matrix from the Corollary 2.3 and the Corollary 2.4:

) 100.030 R 1.2-107% —4.0-107* —4.0-10~*
8= { 150.030 |, Var(B) = | —4.0-107% 1.2-1073 —4.0-10~*
200.030 -4.0-107* -4.0-107% 1.2-1073

After that we will numerically calculate the H-optimum estimator B for the

matrix
100

H={000
000

according to Lemma 2.2 and its covariance matrix according to Corollary 2.2.
The matrices X5, B™, W; and W3 we determine from the Theorem 2.4

~ 100.024 ~ 1.173-1073 —4.267-10~* —4.267-1074
g=1150.033 |, Var@@)=| —4.167-10"* 1.233.107% -3.667-10"*
200.033 —4.267-10"* —3.667-10~* 1.233-1073

Next we will calculate Tr(H Var(3)) = 1.173- 1073,

These estimators B andﬁ are typically different in this case.

The elevation between the points A and P; obtained by the standard esti-
mator is £ = 150.030.

The elevation between the points A and P; obtained by the H-optimum

estimator is 51 = 150.024.

By choosing the matrix H which minimized a dispersion in estimator of the
first component of the vector 3 we got better estimator for the elavation between
the points A and Py in comparison with the standard estimator 3. This follows

from the fact, that for the chosen matrix H it is Tr(H Var(,g)) =1.173-1073 <
1.200 - 1073 = Var1(6).

Example 3.3 The aim is to find an estimator for the plane coordinates of the
points Pi and P, in a cartesian co-ordinates from the Figure 3. We have the
measured values 61, @2 of coordinates ©1, ©; of the point A, the measured val-
ues 93, @4 of coordinates ©3, 04 of the point B, the measured values Y7, Y2,Y3
of lengths 1, G2 and B3 and the measured values Yy, Y5 of angles 84 and G5 (see
Figure 3).

Let ©1, 04, ©3,0,4 be parameters of the first stage (connecting) and 51, Ba,
B3, B4, Ps be parameters of the second stage (connected). The aim of the
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measurements is  to determine the values [31, ,@2, [3’3, ﬁ4, Bs, when the estima-
tors ©1,03,03,04 of the coordinates ©1,0,,03,0, are given from the first
stage of measurements. The measurements Y1, Y2, Y3, Yy, Y5 of the parameters
051, B2, B3, B4, Bs are done in the second stage of measurements.

Py = (©1+ 61,02) 2(93394)

Py = (©1 + B1 — B2 cos Bs, O2 + B2 sin B4)

—B3 sin(B4 + Bs)

B2 sin(B4)

A= ((—)1’ @2) B1 P, —B2cos(Bs) Bscos(Bs+ Bs)

Figure 3: Model for determining distance on encastered polygon

In our model we will determine estimators and their covariance matrices for
the result of measurements (@1, 92, 83, @4) (0,0,640.1,480.1) and the result
(Y1,1’2,YE;,Y4,Y5) (240 300, 340, 2.498091546, 2.70425476).

The values 61, @2, (93, 94, Y1,Ys,Ys, etc. are in meters. The values of the
angles Yy, Y5 are written in radians.

The accuracy of measurements was given by the covariance matrices. Let
91, @2, (-)3, @4 be random variables with mean values ©1, O3, O3, O4,

91 @1
C] e

Y= (Ejz ~ Ny | X, @:j ;21
Q4 ©4

In our case we will consider *
0,0016, 0,0002, 0,0004, 0,0000
0, 0002, 0,0016, 0,0002, 0,0000
0,0004, 0,0002, 0,0016, 0,0005 |’
0, 0000, 0,0000, 0,0005, 0,0016

Y1 = X =144.

Let Yi,Y2,Ys,Ys,Ys be stochastically independent random variables with
mean values B1, B2, B3, B4, Bs and with dispersion ¢%,03,03,03,02,

" B1

Y, B2
Yo=|Ys | ~Ns|Xo| B3 |33

Y, Ba

Ys Bs
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In our case we will consider

0.0016, 0.0000, 0.0000, 0.0000  0.0000
0.0000, 0.0016, 0.0000, 0.0000  0.0000

$22 = | 0.0000, 0.0000, 0.0016, 0.0000 0.0000 |,  Xp=I5g.
0.0000, 0.0000, 0.0000, (5729:)%, 0.0000
0.0000, 0.0000, 0.0000, 0.0000, (zHids)?

One can observe in Figure 3 the following condition is implied for the pa-
rameters of the first stage ©,,0,, 03,04 and for the parameters of the second

Stage ﬁ17/527 /a37 ﬂ47ﬂ5:
(03— 01)2 4 (04 — 05)? = 2% 4+ 42, (3)
where

x = 51 — Bacos(By) + B3 cos(Bs + O5)
y = B2sin(f4) — B3 sin(Bs + Bs).

As in the previous examples we will calculate numerically the standard es-

timator § and the H-optimum estimator 3.
First of all we will construct the following function from our condition (c3):

g(6,0) = (03 — ©1)* + (04 — ©3)* — (87 — 26182 cos(B4) + 53
+ 23103 cos(B4 + fB5) — 232133 cos(fB4) cos(Ba + B5) +
+ 82 — 28,33 sin(By) sin(B4 + Bs)).

We will generate the Taylor expansion at point (8%, ©%) for the above func-
tion in the form

(BI1B21 BSaB4vB5)6ﬁ + (017027 037 04)69 +a= 0

0 0 ] U 0 0
where B; = 3g(ﬁ 9”2 By = agﬂﬂ 60 . By = 8g(ﬁﬁ,@ By = 3g(ﬁﬁ;@ ’

3

Bs = ag(ﬂ e") c - Bg(ﬁ e") L Cp= ag( "g"z , Cy = 298 e“) o7 ag<ﬂ° )
4

a=g(8°, @°)
We will determine the appropriate partial derivative and determine the

)

value a

—2B1,0 + 202,0 cos(B4,0) — 263,0 cos(Ba,0 + Bs,0),

2061,0 cos(Ba,0) — 282,0 + 23,0 cos(Ba,0) cos(Ba,0 + B5,0) + 23,0 sin(B4,0)
x sin(fB4,0 + Bs,0),

By = —201,0¢05(B4,0 + (5,0) + 202,0 cos(B4,0) cos(Ba,0 + B5,0)

— 2(83,0) + 22,0 sin(B4,0) sin(By,0 + B5,0),

By
B,
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By = —20; 0fa,05in(B4,0) + 261,083,0 sin(B,0 + F5,0) +262,0083,0
x (—sin(Ba,0) cos(Ba0 + Bs,0) — cos(Ba,0) sin(Ba0 + B5,0))
+ 202,003,0 (cos(B4,0) sin(Ba,0 + Bs,0) + sin(B1,0) cos(Ba,0 + B5,0)) ,

—2B1,083,0 sin(Ba,0 + B5,0) + 22,003,0 cos(B4,0)
x sin(Ba,0 + Bs,0) — 262,083,0 cos(B4,0 + Bs,0),

Cl = ———2(93)0 - 91’0)7 Cg = ——2(94,0 - 92,0),
C3 = 2(03,0 — 010), Ca=2(040—020),

Bs

a = (630 — 610)> + (40 — f20)° — B2 o + 21,082,0 cos(Ba,0) — B30
— 261,003,0 cos(Ba,0 + B5,0) + 262,003,0 cos(Ba,0) cos(Ba,0 + B5,0) — P
+ 202,083,0 sin(B4,0) sin(Ba,0 + Bs,0)-

By choosing

Bo = (B1,0, 82,0, B3.0, B1.0, Bs,0) = (240, 300, 340, 2.498091546, 2.70425476)

and O = (@1)0, @2,0, 3,0, @4,0) we get B; = —1280, By = —1600, B3 = —1449,
B4 = —-230400, Bs; = —230400, C; = —1280, Cy = —960, C3 = 1280, C4 = 960,
a = —224.02.

In our linearized model we will determine numerically the estimator and the
covariance matrix from the Corollary 2.3 and the Corollary 2.4:

240.044

300.056

8= 340.050
2.49810329204
2.70426650604

L]

1.5129- 103 —1.0888-10~% —9.8631 - 10~ —2.3032-10~8 —2.3032.10"8

. ~1.0888-10~% 14639 103 —1.2329.10~* —2.8790 108 —2.8790 108
Var(3)=| —9.8631- 105 —1.2329-10~% 1.4883-10~3 —2.6080-10—8 —2.6080-10~8
—2.3032-10-8 —2.8790- 108 —2.6080-10~8 2.3443 .10~ —6.0903 - 10—12

—2.3032- 1078 —2.8790- 108 —2.6080 - 10~8 —6.0903 - 10~12  2.3443 - 10~°

After that we will numerically determine the H-optimum estimator {3 for the
- matrix
10000
01000
H=]|00100
00010
00001

according to Lemma 2.2 and its covariance matrix according to Corollary 2.2.

We determine matrices X5, B~, W1 and W3 according to the Theorem 2.4 in
this way:
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U, = —(I-B'(B~))H(I- B"B),
Vi=0, V,=0 T, =0,

P, = —(I-B/(B"))HI-B B)X,, =0,
T, = BY,,B' + C%,,,C,

P, =-1I-B(B7))HI-B B)X;:B'+(I1-B'(B”))HB Cx%,;,C'".
Then the matrices W1, Wy are solution of the equations

0, 0
Uiwi, W) (¢, ) = 0 P)

and we get
U; (o, W2T) = (O,Pz) = U W,T =P; = W, =U]P,T;
In our case we get from Lemma 2.2:

240.025
300.031
340.028 |,

2.49810329204

2.70426650604

=™/
Il

1.3726 - 1073 —2.8430-10~% —2.5754-10~% —6.0048 - 10~ 8 —6.0048 - 10~8

~ —2.8430- 1074 1.2446 -10~3 -3.2193-10~4 —7.5060 - 10~8 —7.5060 - 10~8
Var(3) = | —2.5754-10"% —3.2193-10~% 1.3084 1073 —6.7995-10~8 —6.7995.10~8
—6.0048 - 10~8 —7.5060 - 10~8% —6.7995-10~8% 1.9142-10~% 1.6791-10"8
—6.0048 - 10~8 —7.5060 - 10~8 —6.7995-10~8  1.6791-10~% 1.9142.10"8

By chosen matriz H minimizing data errors in the process estimation of
the vectorﬁ we got better estimator of the parameter 3 in comparison with the
standard estimator (. It follows from the fact that for the chosen matriz H is
Tr(HVar(ﬁ)) =3.9256- 1073 < 4.4651-107% = T&(HVar(B). R

Let us study the proportion accuracy of the standard estimator 3; and the
H,;-optimum estimator 5, fori=1,...,5. We will not determine the estimatozs

from now, but we will only study the trace of the covariance matrix Tr(H Var(g)

for comparing it with the above mentioned Tr(H Var(3).

Tr(H, Var(3)) = 1.3726 - 10~3

For matrix H; = N
! < Tr(H, Var(8)) = 1.5129 - 1073,

we get

(=N =Nl ]
[= =N ]
[=N =N ]

Tr(H, Var(@)) = 1.2446 - 1073

for matrix Hy = .
< Tr(Hz Var(8)) = 1.4639 - 1073,

we get

COOCC coocor~
C0OoOre coocoo
coocoo

coooo
[=N-N-N-N=]
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Tr(H; Var(3)) = 1.3084 - 1073

we get n
< Tr(H3 Var(3)) = 1.4883- 1073,

for matrix Hs =

coocoo
(= R N
co~OoO
coooo
(=== R i )

Tr(Hy Var(3)) = 2.3345. 10~°

we get A
< Tr(Hy Var(8)) = 2.3443 - 1079,

for matrix Hy =

ocoocoo
[=R=N-N-No]
(=i i)
OO0
coocoo

Tr(H; Var(3)) = 2.3345-10°

we get A
< Tr(Hs Var(B)) = 2.3443 - 1079,

for matrix Hs =

(=N )
[ R
ooooo
coocoOo
—_-Oo 00O

It is evident that Tr(H; Var(3)) < Tr(H, Var(8)) for i = 1,...5. Now let us
study the proportion of this values for different covariance matrices ¥;,; and
35,2. In other numerical calculations we choose the matrix X¥;; as the fixed
one and we change the matrix ¥ o by the multiplication by the number k. The
proportions in dependence on k are shown in the following table and graph.

The proportion Tr(H; Var(bv)) and Tr(H; Var(3))

k i=1H; | i=2H; | i=3H3 | i=4,Hy | i=5Hs
400 100.00 % | 100.00 % | 100.00 % | 100.00 % 100.00%
100 100.00 % | 100.00 % | 100.00 % | 100.00 % 100.00%
64 100.00 % 99.99 % 99.99 % | 100.00 % 100.00%
50 99.99 % 99.98 % 99.99 % | 100.00 % 100.00%
25 99.97 % 99.94 % 99.96 % | 100.00 % 100.00%
16 99.92 % 99.85 % 99.89 % | 100.00 % 100.00%
9 99.77 % 99.57 % 99.68 % 99.99 % 99.99%
5 99.31 % 98.73 % 99.04 % 99.97 % 99.97%
4 9897 % | 9812 % | 98.58 % | 99.96 % 99.96%
3
2

98.30 % 96.95 % 97.67 % 99.93 % 99.93%
96.68 % 94.21 % 95.51 % 99.87 % 99.87%
1 90.72 % 85.02 % 87.91 % 99.58 % 99.58%
1/2 78.72 % 68.96 % 73.65 % 98.85 % 98.85%
1/4 60.81 % 48.89 % 54.29 % 97.19 % 97.19%
1/10 35.45 % 25.69 % 29.81 % 92.23 % 92.23%
1/16 24.93 % 17.37 % 20.48 % 87.66 % 87.66%
1/25 1724 % 11.69 % 13.93 % 81.57 % 81.57%
1/50 9.27 % 6.12 % 7.37 % 68.36 % 68.36%
1/64 7.37 % 4.83 % 5.83 % 62.67 % 62.67%
1/100 4.82 % 313 % 3.80 % 51.62 % 51.62%
1/400 124 % 0.80 % 0.97 % 20.90 % 20.90%
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