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Abstract 

In the variational theory of splines the smoothing splines are con­
structed on the base of some extremal properties of interpolatory splines 
on a proper class of more general functions. The spline degree and the 
form of the minimized functional (the order of the derivative with min­
imized norm) are strictly connected here. In this article we use spline 
free parameters to find spline with minimal value of different function-
als used for smoothing (with some choice of the derivative order, of the 
norm used). We use local spline representation and we formulate the cor­
responding quadratic programming problems for computation of optimal 
local spline parameters. The problems of function values and mean values 
smoothing are considered simultaneously here. 

Key words: Smoothing splines, generalized quartic smoothing splines. 
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1 Introduction 

We can find different approaches to the data smoothing generally and also to 
the smoothing splines. The well known cubic smoothing splines with given 
smoothing parameter (see [2]) use some extremal property of natural cubic in­
terpolatory splines and give the minimum to the functional which combines 
a smoothing criterion (the norm of the spline second derivative squared) and 

*Supported by the Council of Czech Government, J 14/98: 153100011. 

27 



28 Jiří KOBZA 

the least squares criterion (for given data versus smoothed data on the given 
spline knot set). This idea was generalized to the function values smoothing 
(FVS) with natural odd degree splines and mean values smoothing (MVS) with 
even degree splines ([8]), to the splines in general Hilbert spaces ([1], [11], [15]. 
Some another forms of the smoothing criterion (the norm of jumps in the third 
derivative) were introduced in [3], [18], [14], a statistical point of view is applied 
in [16]. In the computational algorithms the local spline parameters (see [2], 
[18], [14]) or B-spline basis are used ([13], [3]). The connection between the 
spline degree and the spline derivative degree used in the smoothing part of the 
functional was slightly relaxed, but still can be found in most of this approaches. 

When we narrow the set of functions considered for optimization to the linear 
space of splines on the given spline knotset and given degree, we can use the 
spline free parameters for optimization purposes with the type of the functional 
(the choice of some norm or the derivative order) chosen independently on the 
spline degree. Such approach to the linear, quadratic and cubic smoothing 
splines is described in [8]. The problems mentioned can be stated in the most 
cases as some special quadratic programming (QP) problems and they can be 
solved with standard algorithms of quadratic programming or with some special 
algorithms (using pseudoinverse, difference equation algorithms). 

When we apply similar approach to the quartic smoothing splines in some 
local representation, we have to overcome some technical problems connected 
with two different types of local parameters used, with computing coefficients of 
the matrices in the continuity conditions and in quadratic forms of the function-
als minimized. This makes more difficult to obtain the results concerning the 
uniqueness of the minimizer in the case of the general knotset. The aim of this 
paper is to present the structure of such objects and algorithms for computing 
local parameters of quartic smoothing splines. The cases of FVS and MVS will 
be discussed together as similar quadratic programming problems with different 
input matrices and with similar results. 

2 Problem statement 

Let us have given the monotone spline knotset on the real axis 

x = {xi, i = 0( l)n 4-1} with stepsizes hi — Xt+i — Xi 

and with the points of interpolation t = {^, Xi < U < -Et+i, i = 0(l)n} in 
the FVS problem. The quartic splines with the defect one on this knotset 
are piecewise quartic polynomial functions s(x) £ C^ (with possible jumps in 
the fourth derivative in spline knots only). The set of quartic splines on the 
given knotset x forms linear space S4(x). Let us consider the problems with 
errorneous data p = {pi, i = 0( l)n} given as 

• the function values pi « s(U) in the FVS problem; 

• the mean values Pi ~ ^- f*t+1 s(x)dx in the MVS problem. 
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The exact values of function or mean values of the smoothing spline we will 
denote as g = [pj. 

Let us now consider some functionals which can be used as some criterion of 
the spline smoothness evaluated from continuous or discrete form of information 
(squared norms of derivatives and their generalizations): 

Jk(s)= r+\sM(x)]2dx, Jkd(s) = J2J2cjl[s^)(xi)]
2
1 ke {0,1,2,3}. (1) 

Jxo j=0 z=0 

In the following we will discuss the examples where for k € {0,1,2,3} and 
for special choice of coefficients Cji the functional Jkd(s) includes the squared 
l2-norms of vectors of one or two local parameters 

[s], [m], [M], [T], [m, M], [s, m], [s, M], [s, T], [m, T], (2) 

(the notation s, m, M, T for the vectors of the spline function values, first, sec­
ond and third spline derivative values in knots Xi is used here—see sections 3.1, 
3.2). The least squares (lsq) criterion of the fit of data p by its approximation 
g in the functional minimized can be written as 

Jisq(s) = ^2wi(дi ~pi)2 = (g - p) D w ( g - p), D w = diаg[wi), Hл > 0 (3) 

with given vector w = [wi] of weighting coefficients for the FVS problem and 
similarly for the MVS problem as 

Jisq(s) = J2wih2(gi-Pi)
2 = (g - p ) T D w ( g - p), D w = diag[Wih

2]. (4) 
i=0 

To describe the quartic spline on each interval, we can use several local repre­
sentations (the full description of possible choices is given in [7], some choice will 
be used in the following sections). The continuity conditions (CC) s^j)(xi—0) = 
s^(xi + 0 ) , j = 1,2,3, for the quartic spline with the defect one can be then 
described as the underdetermined system of linear equations (recursions) with 
some free parameters and with the matrix A consisting e.g. from 
— two blocks for unknown values g and one local parameter; 
— six blocks for the unknown values g and two local parameters used. 

The needed detailed description will be given in the corresponding sec­
tions (see also [6]). Both smoothing and lsq parts mentioned above can be 
then expressed as quadratic forms in the local parameters used. The cases of 
l2,Z/2-norms differ in the coefficients in the (band, diagonal) matrices of such 
forms only and we can consider them as the problems with similar structure. 
The final form of the functional minimized can be presented as convex combi­
nation (see e.g. [2]) of such two parts or as linear combination (see [3], [16], [18], 
[17]) 

Jk(s) = Jk(s) + aJUq(s), J%d(s) = Jkd(s) + aJUq(s) (5) 
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with the smoothing parameter a attached here to the corresponding lsq part, 
which gives some balance (chosen by the user) between two parts of the func­
tional minimized. In all cases mentioned here the resulting functionals (5) min­
imized with given value of the smoothing parameter a can be expressed as 
quadratic forms in the local parameters used. When we denote by H, q the 
symmetric matrix of such form and corresponding vector in the linear part, we 
can state our problem as the quadratic programming problem with equality 
constrains, given by the continuity and interpolation conditions: 

(QP) Given H, q, A, find c with min{c T Hc + q T c ; Ac = 0}; (6) 

here c denotes the vector of local coefficients used and A the corresponding 
matrix from CC. We can use now the results from the optimization theory (see 
e.g. [4]) to discuss our problem. The existence of some minimizer in all our 
problems follows from nonnegativity of quadratic forms used and the existence 
of feasible solutions of underdetermined system of CC. The existence of the 
strong (unique) minimizer can be characterized by various conditions (see e.g. 
[5]). For our purposes we shall use the following statement. 

Lemma 1 Let us denote N(A), N(H) the null spaces of matrices A, H of the 
problem QP and let the matrix A be of full row rank. 

Then the necessary condition for the existence of the strong minimizer is the 
semidefinitness OfH. The sufficient condition for the strong minimizer is 

a) positive definitness of the symmetric matrix H (SPD), 

b) or the condition N(A) Pi N(H) = {0} in case of semidefiniteness of H, 

c) or the positive definiteness of the matrix Z T H Z , where Z is the matrix of 
the null space of the matrix A. 

P r o o f of this statement follows from nonnegativity of the matrix H and unique­
ness of the solution of the corresponding unconstrained problem (see [4, pp. 
231-232]). 

3 Functionals J£d minimized 

3.1 /2-norms of s, m, M, T as functionals J&d 

Let us consider the FVS problem on the equidistant knotset x with points of 
interpolation U = \(xi + Xi+i) (in this subsection we will consider such a case 
only). When we want to minimize the l2-norm of some of the vectors s, m , M , 
T of the discrete values of the spline derivative in the knots, then we need to 
write the CC as recurrences for components of g and the local parameter chosen 
(for the nontrivial technique used here see [6])—e.g. with parameters {M, g} we 
obtain for i = 2(1 )n — 1 the recursions 

384 
Mi_2 + 7 6 M _ i + 230M* + 76M i + i + Mi+2 - ^ ( 5 i _ 2 - 9i_1 - 9l + gi+1) = 0. 

(7) 
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In the MVS problem on the equidistant knotset with local parameters {T, g} 
we obtain recurrences (see [6]) for i = 2(1 )n — 1 

120 
T2_2 + 26r i_i + 6 6 r , - f 2 6 r i + 1 + T , + 2 - ^ ( - g i - 2 + 3 a ^ 1 - 3 a i - f a i + i ) = 0. (8) 

Similar recurrences hold in both problems for all couples of local parameters 
{s, g}, {m, g}, {M, g}, {T, g} (see [6]). Let us mention that in equidistant case 
for FVS and MVS problems with different local parameters only the coefficients 
at g are different. In both these problems the structure with two blocks and 
the full row rank of the matrix A in the CC and corresponding (QP) problem 
is easily to be seen now. With till unknown values of g = [gj] we can write the 
functional minimized now as 

J & W = | | [^ ) (x , ) ] | | i + a g r D g - 2 a p r D g + a p T D p (9) 

with the matrix D = D w ( D = D w ) in FVS (MVS) problem. We can see that 
in both of this cases the corresponding matrix H of such a quadratic form is for 
each k € {0,1,2, 3} and any positive value of a the diagonal matrix with positive 
diagonal elements (special SPD matrix) related to the components gj, Mj or 
gj, Tj. Similar results we obtain for remaining choices of the problem and local 
parameter. 

According to the statement a) of Lemma 1 we have proved in such a way 
the following theorem. 

Theorem 1 The FVS and MVS problems have on the equidistant knotset for 
any positive value of the smoothing parameter a and each k G {0,1,2,3} the 
unique solution with minimal value of the functional J^(s) given in (9). 

Remark 1 Till now, only one from vectors s, m, M , T was used in the smooth­
ing part J/ci(s). 

The optimal values of local parameters used in quadratic form and CC can 
be computed with QP algorithms (or with generalized pseudoinverse in special 
cases). The vector of the remaining local parameters have then to be computed 
from special formulas (see [9]). 

The results mentioned in Theorem 1 will be valid also for slightly nonequidis-
tant knotsets or shifted points of interpolation. 

Example 1 The results for the MVS problem with given data 

x = 0 : 2 : 20, p = [6,7,11,8,5,7,4,1,2,5], a = 0.1,1,10,100 

we can see plotted on Fig. 1 (the corresponding minimal values of the functional 
are approximately 5.05, 12.3, 15.0, 15.35). 
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Mvs with s4smthg.m , p1=[1,2], p2=[0,2,0l 

J2d minimized 

al=0.01,0.1, 1,10, 100 

val=1.06, 5.05, 12.3 15.0, 15.35 

10 12 14 16 18 20 

Fig. 1 

3.2 N o r m s of vectors [m,M] etc. as functionals Jkd(s) 

When we are interested to choose as the functional Jkd(s) e.g. the squared norm 
of the vector [m,M], we can use the spline local representation with local param­
eters gi,rrii,Mi on the interval [xi,Xi+1]. It can be written with local variable 
u = (x — Xi)/hi and known basis functions—quartic polynomials ip,(pJ

0,(p{ (see 
[6] for explicit form of such basis functions for FV and MV problems) as 

s(x) = i/j(u)gi + hi[(fl(u)mi + ^\(u)mi+1] + h?[(pl(u)Mi + y\(u)Ml+1}. (10) 

The CC can then for the FVS problem on equidistant knotset be written as the 
system of equations with six blocks structure 

1 5 1 
— (3772,-1 + 26ra2 + 3 m i + i ) + J ^ W - i - M m ) - -(gt - g^i) = 0, 

— ( m , - ! - m i + i ) + - ( M , _ i + 4M* + Af i +i) = 0, i = l ( l ) n . (11) 

For MVS problem and local parameters gi,rrii,Ti the CC form on the general 
knotset the system of equations with similar structure 
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ҺІ-ЦГПІ-1 + 2 ( Л І _ ! + hi)mi + himi+1 - — [7Л?_łTi_i + 8(ЛJ_. + Лf)T. + 7Л?Г i +i] 

(_», - ft-O/Л = 0, ѓ = l ( l ) n , (12) 

-hiirii-i + (/ii_i + /-ť)^i - K-irui+i 

1. 1 1 
0. + ^/i^iF i-i + ^hi-i(hi-i + /ii)Ti + -Zii-i/iiTi+i 

D o 0 

We can write similarly the CC for all possible local representations (see [7], [6]) 
and we can prove the full row rank of the corresponding block matrices A in 
case of equidistant knotset (for MVS problem even for general knotsets)—e.g. 
for the mentioned FVS case we can write the system (11) as 

m 
M 
g 

A ц A12 Aiз 
A21 A22 A23 

m 
M = 0 

with the block matrix coefficients which can be read from (11). Similar form we 
can give to CC with parameters {g, m, T} in the MVS problem and all problems 
mentioned. 

The corresponding functionals 

J^d(s) = \\[m,M}\\l + aJlsq 

to be minimized can all be presented as quadratic forms with diagonal (one 
block for each local parameter used) SPD matrices H with positive elements 
Cji, awi (or awihf for MVS). So we can state the following theorem. 

Theorem 2 The FVS problem on equidistant knotset and MVS problem on the 
general knotset have the unique solution for any positive value of the smoothing 
parameter a and for functionals Jkd(s) corresponding to squared l^-norms of 
the vectors [s, m], [s, M], [s, T], [m, M], [m, T]. 

Remark 2 Similar results will be valid on slightly changed knotsets and for 
functionals Jkd(s) with more general SPD matrix H (obtained e.g. when we 
approximate Jk(s) using proper quadrature formulas). 

Example 2 The FVS splines from the data 

x = -0.5 : 1 : 20.5; t = 0 : 1 : 20; 

p = [15,11,4,5,0, - 2 , - 7 , -1,6,10,12,16,19,17,13,12,8,6,3,1,0], 

corresponding to the values of the parameter a = 0.01,0.1,1,10,100 and with 
minimal values of the functional equal approximately to 9.6, 70.5, 227.8, 445.2, 
622 are plotted on Fig. 2. 
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-10 

(min norm[m;M]) 

FVS with s4smthg.m , p1=[1,1], p2=[1,1,2] 

8 10 

Fig. 2 
12 14 16 18 20 

4 Functionals Jg minimized 

4.1 Functionals J0, Ji with parameters {g, m, M} 
The local representation (10) with parameters {g, m,M} for FVS problem can 
be used to compute the coefficients of quadratic form 

ľXn+l '" Q " 

-Io(s) = / [s(x)}2dx = У2ҺІ9Ì + ™ У]hÌ9i(m t+i -
•Ixo tҐ0

 sotҐ0 

ГПì 

— £ hhi(Mi + Mi+1) + — — J2 fc?(8483ro? + 9914™^+! +8483m?+1) 
г=0 i=0 

+ 258̂ 48 Ž h" (239M* - ™MiMi+1 + 239M2
+1) 

i=0 

i n 

+ Y, ht(3n9miMi - 2257miMi+i + 2257mi+1Mi - 3119m i+iM i+i). 
г=0 
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The functional JQ(S) we can then write in the matrix form as 

D R 1 2 

JŞ(s) = m 
M 

R12 R22 
R i з R23 

R i з " g " Pw 
т 

" g " 
R23 m -2а 0 m 

Rзз_ _M_ 0 _M_ 
+ «PwP (13) 

with the diagonal matrix D = diag[h + aw], vector p w = diag[w]p, bidiagonal 
matrices R i 2 > R i 3 and tridiagonal matrices R22,R23,R33, the coefficients of 
which can be recognized from explicit expression written above. We can com­
pute the functional JQ(S) for the MVS problem with the same local parameters 
(for Jo (s) see [9]) and we obtain as the result the quadratic form with simi­
lar matrix structure (but with different, more simple coefficients and with the 
vector p ^ = diag[uji/i|]p and with the matrix D = D ^ = diag[/ij -f ahfwi]). 

The functional Ji(s) (the L2-norm of the spline first derivative squared) of 
the FVS spline on the equidistant knotset (equal zero for constant s(x) only) 
computed from the same local representation gives more simple quadratic form 

Ji(s) = 

hi 

ŕXn+1 

J t [s'(x)]2 dx • 
210 

m 
M 

R i ІQ rn 
M 

= Y^ 5Ťnt78mÍ + 5 4 m i m i + i + 78™?+i + h\(2Mf - 3MiMi+1 + 2M\ 
г=0 

210 
2

+ l ) 

4- hl(22miMi - 13miM i + i 4- l3ml+1Mi - 22mi+iMi+1] (14) 

with (n+1, n+1) SPD matrices R i , R 2 ; on the equidistant knotset these ma­
trices are 

R i 

78 27 " 4 
27 156 27 

, R 2 = h3 

- 3 

27 156 27 
27 78 _ _ 

"22 - 1 3 
13 0 - 1 3 

Q = /г2 

13 0 - 1 3 
13 -22 

- 3 8 - 3 
- 3 4 

Let us mention that we obtain identical expression for Ji(s) in case of MVS 
problem (the explanation see in [9]). 

The functional Jf (s) we can then write in the matrix form as 

J?(s) 

Г 1 т 
1 g 

m 
2ÏÕ M 

D 
0 

0 

0 І Q т 1 

0 " g " Pw 
т 

' g " 

? Q m - 2 a 0 m 

ŕ R 2 _M_ 0 _M_ 
+ <*PwP 

(15) 
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with D = 2 1 0 a D w and vector p w introduced above. We obtain the same form 
for the functional Jf (s) in the MVS problem (but with the vector pjj, and matrix 
D = Djj, described above). 

For s(x) ^ 0 we have Jo(s) > 0 and the symmetric matrix H of the quadratic 
form JQ(S) is positive definite. For the data p different from constant vector (in 
such a case we have the solution g = p, m = M = 0) we have also Ji(s) > 0. 
The matrix H is then again positive definite. 

The results obtained we can state in the following theorem. 

Theorem 3 The FVS problems on equidistant mesh and MVS problems on 
general mesh with functionals Jo*(s), Jf (s) have the unique minimizer for data 
p different from vector with pi = const. 

Example 3 The results of computing MVS spline with input data 

x = 0 : 2 : 20; p = [6, 7,11,8,5, 7,4,1,2,5], k = 0, a = 0.1,1,10,100 

are plotted in Fig. 3. The minimal values of the functional JQ(S) are approxi­
mately 15, 142, 1231, 11771. 

When we try to compute the quadratic forms J2*(s), J%(s) with local param­
eters {g, m, M } , we obtain singular matrix H. To obtain more simple structure 
of such matrix, we will use another local spline representation. 

12 

al=100 

al=0.1 

al=0.01 

-2 

-6 

al=0.01,0.1, 1,10, 100 

val=2Ó, 250, 1420, 12310, 117710 

MVS with s4smthg.m , p1=[1,2], p2=[2,0,0] (JO minimized) 

6 8 10 12 14 16 18 20 

FІg. 3 
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4.2 Functionals J%,J$ wi th parameter s {g, m, T} 

When we use this local spline representation (see [6] for the description of basis 
functions used here) 

s(x) = i/j(u)gi + hi[(fl(u)mi + <p\(u)mi+1] + h\[ipl(u)Ti + tp\(u)Tl+1] (16) 

then the computation of expressions for functionals Jk with k = 2,3 gives for 
FVS and MVS problems the identical results 

ы*) = E 
г = 0 

l ( m 2 - 2mimí+1 + m2
+1) + ^ ( 4 T 2 + 7TTi+1 + 4T2

+1) 

Ms) = \ £ h^Ti + T*T»+i + r"+i)-
ѓ = 0 

We can see here the block diagonal structure in the matrices of forms 

Ыs) 
m 
T 

т R i 
R 2 „ 

m 
T Ы») 

m 
T 

т 0 
R 2 . 

m 
T 

(17) 

(18) 

with SPD matrix R2 and symmetric semidefinite matrix R i (different for func­
tionals J2, J3)—their components we can read from (17). 

The CC with parameters g, m, T in both problems we can write as (see [6]) 

B g + A n m + A i 2 T = 0 

A 2 i m + A 2 2 T = 0 

with full row rank matrices Ay and bidiagonal (n. n+1)- matrix 

1 - 1 

(19) 

B 

1 

The complete functional minimized J%(s) w ^ can write then for k -= 2 and FVS 
problem in the matrix form with p w , D w described above as 

J?{8) = 

-IT г 

m 
Т 

a D v 

R i 

R 2 

" g " 
m -2а 

Pw 
0 

T " g " 
m 

Т 0 Т 
+ t*p£p. (20) 

We obtain similar result for MVS problem with the above mentioned objects 
D w , Pw- The same structure of the matrix of the quadratic form, but with the 
matrix R i = 0 we can find for the functionals Jg(s) in the FVS and MVS 
problems. 

Theorem 4 The FVS and MVS problems on the general knotset with function­
als J2*(s), Js(s) have the unique minimizer for any data p , w > 0. and for each 
a > 0 . 
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P r o o f We will use the criterion given in the Lemma 1 to the QP problem with 
corresponding matrices H of the quadratic form and full row rank matrix A of 
the continuity conditions with the structure described in (19) for both function-
als in FVS and MVS problems. 

1) The functional J2*(s) we have written as quadratic form in parameters 
{g, m, T } with the block diagonal matrix H = d iag[aD w , R i , R 2 ] . Let us sup­
pose that [g;m;T] G N(H). Then from regularity of matrices D W , R 2 the 
identities g = 0, T = 0 follow. The remaining equality R i m = 0 is fulfilled 
by the vector with constant components only. But the rest of CC constrains 
A u m = 0, A 2 i m = 0 can be then fulfilled with the vector m = 0 only. So 
the sufficient condition b) from Lemma 1 is fulfilled for the problem with the 
functional J2*(s). 

2) For the functional J3*(s) we have the matrix H = d i a g [ a D w , 0 , R 2 ] . 
Let us again consider the vector [g;m;T] G N(H). The regularity of matrices 
D W , R 2 implies then g = 0 , T = 0. The overdetermined system from the re­
maining CC system A u m = 0, A 2 i m = 0 has the trivial solution m = 0 only, 
because the corresponding homogeneous difference equations with different co­
efficients have in both cases common the trivial solutions only. So the matrices 
H , A have only null vector common in their nullspaces. 

Quite similarly we can consider the MVS problem (with the matrix D w 

instead od D w ) . • 

(J2 minimized) 

MVS with s4smthg.m , p1=[1,2], p2=[2,2,0] 

10 

Fig. 4 



Quartic smoothing splines generalized 39 

Example 4 The MVS splines with input data 

x = 0 : 2 : 1 0 ; p = [3, 7,4, 2,1]; k = 2,3; a = 0.1,1,10,100 

are plotted on Figs 4, 5; the corresponding minimal values of J£* are for 
[2.8,9.1,13.9,14.9]; for k = 3 : [1.24,3.28,5.15,5.54]. 

MVS with s4smthg.m , p1=[1,2], p2=[2,3.0l (J3 minimized) 

10 

Fig. 5 

Remark 3 In all examples given above we can find the similar common features 
of the smoothing procedure: 
— the monotone increasing character of the functional with a growing; 
— the convergence to the spline with zero value of the first part Jk(s) for a —• 0; 
— the convergence to interpolatory spline for a —> oo; 
— we can observe special oscilatory trends in case k = 0. 

5 Algorithms, M-file s4smthg.m 

As we have shown in the foregoing sections, we can use pseudoinverse matrix 
solution of the system of CC for computing optimal spline parameters in some 
simple cases. For linear, quadratic or cubic smoothing splines we can sometimes 
eliminate some parameters from CC and use the unconstrained minimization 
technique (see [2], [3], [8]). The general problems were stated here as problems of 
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quadratic programming with equality constrains. The Matlab function (M-file) 
s4smthg.m was worked out by the author for the purpose of computing local 
parameters of the quartic smoothing spline (the function values for visualisation 
and another purposes can be then computed with another function spl4hodn.m 
or s4smg.m). 

The syntax of this function is 

f u n c t i o n [ p r 1 , p r 2 , g , v a l ] = s 4 s m t h g ( x , t , p , p i , p 2 , w , a l ) , 

with input arguments 
x ... the vector of spline knots (equidistant or general), 
t ... the vector of interpolation points—interval midpoints for FVS, 

empty for MVS 
p ... the vector of the values to be smoothed (FV, MV), 
p l = [ l , l ] , [1,2] . . . equidistant knotset used for FVS, MVS, 
pl=([2, l ]) , [2,2] ... general knotset used for (FVS), MVS; 
p2=[i,k,j] ... the code of the functional minimized: 

[0,k,0],k=0:3.. . J&, 
[0,k,l], k=0:3 ... approximation of Jk with trapezoidal rule; 
[l,k,j], k=0, l ; j—1,2,3 (j>k) .. . vector of [k,j]-th derivative; 
[2,k,0], k=0:3 ... Jk(s) in [g,m,M] local representation: 
[3,k,0], k=2,3 ... Jk(s) in [g,m,T] local representation: 

w ... positive weighting coefficients in the Isq part; 
a l . . . nonnegative value of the smoothing parameter a. 
Output parameters [pr l ,pr2,g,va l] : 
p r l , p r 2 .. . vectors of the optimal spline local parameters 

(ordered according to user's choice of [i,j,k]); 
g ... the vector of smoothing spline function values in knots or mean values; 
val ... minimal value of the functional optimized. 

The algorithm computes from input data the components of the matrices and 
vectors in equality constrains and quadratic form. The pseudoinverse approach 
or the qp-function from Matlab is used in s4smthg.m for computing optimal 
spline local parameters. 

The algorithms and M-files for computing with MVS quartic splines with 
natural, periodic or complete boundary conditions can be found also in [10]. 
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